例举关于正方形的中考试题
- 格式:doc
- 大小:3.15 MB
- 文档页数:4
专题22 正方形1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
即有一组邻边相等的矩形是正方形先证它是菱形,再证有一个角是直角。
即有一个角是直角的菱形是正方形。
4.正方形的面积:设正方形边长为a,对角线长为b ,S正方形=222ba【例题1】(2019湖南郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.√2B.2C.√3D.4专题知识回顾专题典型题考法及解析【例题2】(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.一、选择题1.(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1D.2.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)3.(2019•四川省广安市)把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为()专题典型训练题()A61()B31()C51()D414.(2019•贵州省铜仁市)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2B.3C.4D.5\5.(2019黑龙江省绥化)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<42﹣2时,P点最多有9个③当P点有8个时,x=22﹣2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③二、填空题6.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.127.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.8.(2019•湖北省随州市)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(-1)a;⑤BG•DE+AF•GE=a2.其中正确的是______.(写出所有正确判断的序号)9.(2019福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)10.(2019•四川省凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.11. (2019•广东广州)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)12.(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为.13.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(2019江苏镇江)将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD= .(结果保留根号)15.(2019辽宁抚顺)如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A ,B ,C 在格点上,连接AB ,BC ,则tan ∠ABC = .三、解答题16.(2019湖南湘西州)如图,在正方形ABCD 中,点E ,F 分别在边CD ,AD 上,且AF =CE .(1)求证:△ABF ≌△CBE ;(2)若AB =4,AF =1,求四边形BEDF 的面积.17. (2019海南)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A,D 不重合),射线PE 与BC 的延长线交于点Q.第10题图HGFEDCBA(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.18.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.19.(2019•湖北省仙桃市)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG ∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.20.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG ⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.21.(2019湖北襄阳)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.。
正方形的典型题目
题目:在正方形ABCD中,E是BC的中点,F是CD上一点,且CF = (1/4)CD。
求证:∠EAF = 45°。
证明:
第一步,由题目信息,可知正方形ABCD中,AB=BC=CD=DA,且∠B=∠C=∠D=90°。
第二步,连接AC,取AC的中点为O,连接EO和FO。
第三步,根据正方形的性质,可知AC⊥BD,且AC、BD互相平分。
所以,EO为三角形ABC 的中位线,FO为三角形ADC的中位线。
第四步,由三角形中位线的性质,有EO=1/2AB,FO=1/2AD。
而AB=AD,所以EO=FO。
第五步,因为EO=FO,且O为AC的中点,所以∠EOF=90°。
又因为∠BAC=45°,所以∠EAF=∠EOF-∠BAC=45°。
综上,∠EAF = 45°。
这道题考察了正方形的性质、三角形中位线的性质以及角度的计算等知识点。
在解题过程中,我们巧妙地利用了正方形和三角形的性质来找到解题的突破口。
考点:正方形一.选择题(共4小题)1.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.2.(2018•宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG ⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.3.(2018•湘西州)下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.4.(2018•张家界)下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.二.填空题(共7小题)5.(2018•武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.6.(2018•呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH(SAS),即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点(不与点A重合),且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.7.(2018•青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.8.(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).9.(2018•江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2或2或﹣.【分析】根据正方形的性质得出AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=90°,根据勾股定理求出AC、BD、求出OA、OB、OC、OD,画出符合的三种情况,根据勾股定理求出即可.【解答】解:∵四边形ABCD是正方形,AB=6,∴AC⊥BD,AC=BD,OB=OA=OC=OD,AB=BC=AD=CD=6,∠ABC=∠DAB=90°,在Rt△ABC中,由勾股定理得:AC===6,∴OA=OB=OC=OD=3,有三种情况:①点P在AD上时,∵AD=6,PD=2AP,∴AP=2;②点P在AC上时,设AP=x,则DP=2x,在Rt△DPO中,由勾股定理得:DP2=DO2+OP2,(2x)2=(3)2+(3﹣x)2,解得:x=﹣(负数舍去),即AP=﹣;③点P在AB上时,设AP=y,则DP=2y,在Rt△APD中,由勾股定理得:AP2+AD2=DP2,y2+62=(2y)2,解得:y=2(负数舍去),即AP=2;故答案为:2或2或﹣.10.(2018•潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为(﹣1,).【分析】连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=ADtan∠DAM可得答案.【解答】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=ADtan∠DAM=1×=,∴点M的坐标为(﹣1,),故答案为:(﹣1,).11.(2018•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为+3 .【分析】根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.【解答】解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故答案为: +3.三.解答题(共6小题)12.(2018•盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.13.(2018•吉林)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.【分析】根据正方形的性质,利用SAS即可证明;【解答】证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.14.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.15.(2018•潍坊)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF ⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.【分析】(1)通过证明△ABF≌△DEA得到BF=AE;(2)设AE=x,则BF=x,DE=AF=2,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x•2=24,解方程求出x得到AE=BF=6,则EF=x﹣2=4,然后利用勾股定理计算出BE,最后利用正弦的定义求解.【解答】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.16.(2018•湘潭)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.17.(2018•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.。
中考数学总复习《正方形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.正方形具有而菱形不一定具有的性质是( )A.对边相等B.对角线相等C.对角相等D.对角线互相平分2.如图,正方形ABCD中,点F为AB上一点,CF与BD交于点E,连接AE,若∠BCF=20°,则∠AEF的度数为( )A.35°B.40°C.45°D.50°3.(2024·邯郸模拟)如图,在正方形木框ABCD中,AB=10 cm,将其变形,使∠A=60°,则点D,B间的距离为( )A.10√2cmB.10√3cmC.10 cmD.20 cm4.如图,点E是正方形对角线AC上一点,过E作EF∥AD交CD于点F,连接BE,若BE=7,DF=6,则AC的长为( )A.9√2B.6√2+√22C.6√2+2√6D.6√2+√265.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.6.小红在一张菱形纸片中剪掉一个正方形,做成班刊刊头(如图所示).若菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则这张菱形纸片的边长为cm.7.如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为.8.如图,在正方形ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:△ABE≌△CDF.【B层·能力提升】9.七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为.10.(1)如图①,在正方形ABCD中,点E,F分别是边BC,CD上的点,BE=CF,AF,DE 交于点G,求证:AF⊥DE且AF=DE;(2)如图②,点E,F分别在边CB,DC的延长线上,且BE=CF,(1)中结论是否也成立?如果成立,请写出证明;如果不成立,请写出理由;【C层·素养挑战】11.如图,在边长为3的正方形ABCD的外侧,作等腰三角形ADE,EA=ED=5.2(1)△ADE的面积为;(2)若F为BE的中点,连接AF并延长,与CD相交于点G,则AG的长为√13.12.如图,在正方形ABCD中,E,F分别是边AD,AB上的点,连接CE,EF,CF.(1)若正方形ABCD的边长为2,E是AD的中点.①如图1,当∠FEC=90°时,求证:△AEF∽△DCE;时,求AF的长;②如图2,当tan∠FCE=23时,求证:AE=AF.(2)如图3,延长CF,DA交于点G,当GE=DE,sin ∠FCE=13参考答案【A层·基础过关】1.正方形具有而菱形不一定具有的性质是(B)A.对边相等B.对角线相等C.对角相等D.对角线互相平分2.如图,正方形ABCD中,点F为AB上一点,CF与BD交于点E,连接AE,若∠BCF=20°,则∠AEF的度数为(D)A.35°B.40°C.45°D.50°3.(2024·邯郸模拟)如图,在正方形木框ABCD中,AB=10 cm,将其变形,使∠A=60°,则点D,B间的距离为(C)A.10√2cmB.10√3cmC.10 cmD.20 cm4.如图,点E是正方形对角线AC上一点,过E作EF∥AD交CD于点F,连接BE,若BE=7,DF=6,则AC的长为(D)A.9√2B.6√2+√22C.6√2+2√6D.6√2+√265.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.6.小红在一张菱形纸片中剪掉一个正方形,做成班刊刊头(如图所示).若菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则这张菱形纸片的边长为13cm.7.如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为2.8.如图,在正方形ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:△ABE≌△CDF.【证明】∵四边形ABCD是正方形∴AB=CD,AD∥BC∵BE∥DF∴四边形BEDF是平行四边形∴BE=DF在Rt△ABE和Rt△CDF中{AB=CDBE=DF∴Rt△ABE≌Rt△CDF(HL).【B层·能力提升】9.七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为2dm2.10.(1)如图①,在正方形ABCD中,点E,F分别是边BC,CD上的点,BE=CF,AF,DE 交于点G,求证:AF⊥DE且AF=DE;【解析】(1)∵四边形ABCD是正方形∴AD=DC=BC,∠ADC=∠DCB=90°.∵BC=DC,BE=CF,∴CE=DF∴△ADF≌△DCE(SAS).∴AF=DE,∠FAD=∠EDC∵∠ADC=90°∴∠ADG+∠EDC=90°∴∠ADG+∠FAD=90°∴∠AGD=90°,即AF⊥DE.(2)如图②,点E,F分别在边CB,DC的延长线上,且BE=CF,(1)中结论是否也成立?如果成立,请写出证明;如果不成立,请写出理由;【解析】(2)(1)中结论仍然成立,证明如下:∵四边形ABCD是正方形∴AD=DC=BC,∠ADC=∠DCB=90°.∵BC=DC,BE=CF∴CE=DF∴△ADF≌△DCE(SAS).∴AF=DE,∠FAD=∠EDC.∵∠ADC=90°,∴∠ADG+∠EDC=90°∴∠ADG+∠FAD=90°.∴∠AGD=90°,即AF⊥DE.【C层·素养挑战】.11.如图,在边长为3的正方形ABCD的外侧,作等腰三角形ADE,EA=ED=52(1)△ADE的面积为3;(2)若F为BE的中点,连接AF并延长,与CD相交于点G,则AG的长为√13.12.如图,在正方形ABCD中,E,F分别是边AD,AB上的点,连接CE,EF,CF.(1)若正方形ABCD的边长为2,E是AD的中点.①如图1,当∠FEC=90°时,求证:△AEF∽△DCE;②如图2,当tan∠FCE=23时,求AF的长;【解析】(1)①∵四边形ABCD是正方形∴∠A=∠D=90°∵∠CEF=90°∴∠AEF+∠CED=90°,∠ECD+∠CED=90°∴∠AEF=∠ECD,∴△AEF∽△DCE;②如图2中,延长DA交CF的延长线于点G,过点G作GH⊥CE交CE的延长线于点H.∵∠H=∠D=90°,∠GEH=∠CED∴△GEH∽△CED∴GHCD =EH DE∵CD=2,AE=ED=1,∴GH=2HE设EH=m,GH=2m.∵CE=√DE2+CD2=√12+22=√5∴CH =m +√5 ∵tan ∠ECF =GH CH =23,∴m+√5=23∴m =√52,∴EH =√52,GH =√5∴EG =√GH 2+EH 2=√(√5)2+(√52)2=52∴AG =EG -AE =52-1=32DG =EG +DE =52+1=72∵AF ∥CD ,∴AF CD =AGGD∴AF 2=3272,∴AF =67; (2)如图3,延长CF ,DA 交于点G ,当GE =DE ,sin ∠FCE =13时,求证:AE =AF .【解析】(2)如图3中,过点G 作GH ⊥CE 交CE 的延长线于点H.设AD =CD =a ,GE =DE =t ,EH =x ,GH =y ,CE =n ∵∠H =∠D =90°,∠GEH =∠CED ∴△GEH ∽△CED ,∴GH CD =EH ED =EG EC∴y a =x t =tn,∴x =t 2n,y =atn在Rt △CGH 中,sin ∠ECF =13=GH CG∴CG =3GH ,CH =2√2GH ∴y x+n =2√2,∴2√2y =x +n ,∴2√2×at n=t 2n+n ,∴2√2at =t 2+n 2在Rt △CDE 中,n 2=t 2+a 2第 11 页 共 11 页 ∴2√2at =2t 2+a 2,∴a =√2t ∵AF ∥CD ,∴AF CD =AG DG ,∴AF a =2t -a 2t ∴AF =a (2t -a )2t =a -a 22t =a -t ∵AE =a -t ,∴AE =AF .。
第六课时 正方形【考点精要】本节主要内容是正方形的概念、性质及判定;热门考点是运用正方形的性质及判定解决有关证明和计算问题;也可与圆、相似、方程、函数等相结合,以综合题的形式出现.【经典例题】例1.(2012襄阳)如图,ABCD 是正方形,G 是BC 上(除端点外)的任意一点,DE ⊥AG 于点E ,BF ∥DE ,交AG 于点F .下列结论不一定成立的是( )A .△AED ≌△BF AB .DE -BF =EFC .△BGF ∽△DAED .DE -BG =FG例2.(2012铜仁)以边长为2的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于A 、B 两点,则线段AB 的最小值是__________. .例3.(2012绥化)如图所示,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF ⊥a 于点F 、DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为.例4.(2012四川内江,21,9分)如图11,四边形ABCD 是矩形,E 是BD 上的一点,∠BAE =∠BCE ,∠AED =∠CED ,点G 是BC 、AE 延长线的交点,AG 与CD 相交于点F . (1)求证:四边形ABCD 是正方形;(2)当AE =2EF 时,判断FG 与EF 有何数量关系?并证明你的结论.【双基检测】一.选择题:1.(2012,黔东南)点P是正方形ABCD边AB上一点(不与A、B重合),连结PD并将线段PD绕点P顺时针旋转90º,得线段PE,连结BE,则∠CBE等于()A、75ºB、60ºC、45ºD、30º2.(2012河北省11,3分)11、如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A.7 B.6 C.5 D.43〔2011•日照市〕观察图中正方形四个顶点所标的数字规律,可知数2011应标在()(A)第502个正方形的左下角(B)第502个正方形的右下角(C)第503个正方形的左上角(D)第503个正方形的右下角4.(2012义乌)一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.(2012安徽省)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.22a B. 32aC. 42a D.52a6.(2012桂林)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t ,△APQ 的面积为S ,则S 与t 的函数关系的图象是( )7.(2011ABCD 沿对角线平移, 使点A 移至线段AC 的中点A ’处,得新正方形A ’B ’C ’D ’,新 正方形与原正方形重叠部分(图中阴影部分)的面积是( ) AB .12C .1D .148.(2012咸宁)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心, 相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( ).A .(2,0)B .(23,23)C .(2,2)D .(2,2)9. ( 2012年宁波)勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中,就有“若勾三,股四,则弦五”记载,如图1是由边长相等的小正形和直角三角形构成的可以用其面积关系验证勾股定理。
杭州正方形中考题(2013-2021)1、(2013)如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1。
(1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=,。
①求关于的函数解析式和自变量的取值范围,并求出的最大值; ②当图中两块阴影部分图形关于点P 成中心对称时,求的值。
2、(2016)如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G 在同一直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H .(1) 求sin EAC ∠的值.(2)求线段AH 的长.x 21S S y =y x x y y H G F E D C BA3、(2017)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG 。
(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长。
4、(2018)如图,在正方形ABCD 中,点G 在边BC 上(不与点B 、C 重合),连接AG ,作DE ⊥AG,于点E ,BF ⊥AG 于点F ,设k BC BG = (1)求证:AE=BF(2)连接BE ,设βα=∠=∠EBF EDF ,,求证:βαtan tan k =(3)设线段AG 与对角线BD 交于点H , AHD ∆和四边形CDHG 的面积分别为 21S S 和,求12S S 的最大值.5、(2019)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2(1)求线段CE 的长(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG6、(2020)如图,在正方形ABCD 中.点E 在BC 边上,连接AE ,∠DAE 的平分线AC 与CD 边交于点G ,与BC 的延长线交于点F.设λ=EBCE (λ>0). (1)若AB =2,λ=1,求线段CF 的长.(2)连接EG ,若EG ⊥AF ,①求证:点G 为CD 边的中点.②求λ的值。
正方形问题1 如图,在边长为6的正方形ABCD的两侧作正方形BEFG和正方形DMNK,恰好使得N、A、F三点在一直线上,连接MF交线段AD于点P,连接NP,设正方形BEFG的边长为x,正方形DMNK的边长为y.(1)求y关于x的函数关系式及自变量x的取值范围;(2)当△NPF的面积为32时,求x的值;(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切?如果能,请求出x的值,如果不能,请说明理由.解析:(1)∵正方形BEFG、正方形DMNK、正方形ABCD∴∠E=∠F=90O,AE∥MC,MC∥NK∴AE∥NK,∴∠KNA=∠EAF∴△KNA∽△EAF,∴NKEA=KAEF,即yx+6=y-6x∴y=x+6(0<x≤6)(2)由(1)知NK=AE,∴AN=AF∵正方形DMNK,∴AP∥NM,∴FPPM=AFAN=1∴FP=PM,∴S△MNP =S△NPF =32∴S正方形DMNK =2S△MNP =64∴y=8,∴x=2(3)连接PG,延长FG交AD于点H,则GH⊥AD易知:AP=y2,AH=x,PH=y2-x,HG=6;PG=AP+GF=y2+x①当两圆外切时在Rt△GHP中,PH2+HG2=PG2,即(y2-x)2+62=(y2+x)2解得:x=-3-33(舍去)或x=-3+3 3 ②当两圆内切时在Rt△GHP中,PH2+HG2=PG2,即(y2-x)2+62=(y2-x)2方程无解所以,当x=33-3时,两圆相切N KGCEDFA BPM2 已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF =45°,连接EF.(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想;(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),求y关于x的函数解析式,并指出x的取值范围;(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心,以BE 为半径的⊙E和以F为圆心,以FD为半径的⊙F之间的位置关系;(4)如图2,当点E在BC的延长线上时,设AE与CD交于点G.问:△EGF与△EFA能否相似?若能相似,求出BE的长,若不可能相似,请说明理由.解析:(1)猜想:EF=BE+DF证明:将△ADF绕点A顺时针旋转90°,得△ABF′,易知点F′、B、E在同一直线上(如.图1)∵AF′=AF∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF又AE=AE,∴△AF′E≌△AFE∴EF=F′E=BE+BF=BE+DF(2)在Rt△EFC中,EC2+FC2=EF2∵EC=1-x,FC=1-y,EF=x+y∴(1-x)2+(1-y)2=(x+y)2∴y=1-x1+x(0<x<1)A BDCEF图1ABDC EFG图2ABDCEF图1F′12(3)①当点E 在点B 、C 之间时,由(1)知EF =BE +DF ,故此时⊙E 与⊙F 外切; ②当点E 在点C 时,DF =0,⊙F 不存在.③当点E 在BC 延长线上时,将△ADF 绕点A 顺时针旋转90°,得△ABF′(如图2) 则AF′=AF ,∠1=∠2,B F′=DF ,∠F ′AF =90° ∴∠F ′AE =∠EAF =45° 又AE =AE ,∴△AF ′E ≌△AFE ∴EF =EF′=BE -B F′=BE -DF ∴此时⊙E 与⊙F 内切综上所述,当点E 在线段BC 上时,⊙E 与⊙F 外切;当点E 在BC 延长线上时,⊙E 与⊙F 内切 (4)△EGF 与△EFA 能够相似,只要当∠EFG =∠EAF =45° 即可 此时CE =CF设BE =x ,DF =y ,由(3)知EF =x -y 在Rt △CFE 中,CE 2+CF 2=EF 2∴( x -1 )2+( 1+y )2=( x -y )2∴y = x -1x +1 (x >1)由CE =CF ,得x -1=1+y ,即x -1=1+ x -1x +1化简得x 2-2x -1=0,解得x 1=1- 2(舍去),x 2=1+ 2 ∴△EGF 与△EFA 能够相似,此时BE 的长为1+ 23 已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧. (1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长;(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B′EFG 的边EF 与AC 交于点M ,连接B′D ,B′M ,DM .是否存在这样的t ,使△B′DM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.A D A DABD CEF G图2F ′12解析:(1)如图①,设正方形BEFG的边长为x 则BE=FG=BG=x∵AB=3,BC=6,∴AG=AB-BG=3-x∵GF∥BE,∴△AGF∽△ABC∴AGAB=GFBC,即3-x3=x6解得x=2,即BE=2(2)存在满足条件的t,理由如下:如图②,过D作DH⊥BC于点H则BH=AD=2,DH=AB=3由题意得:BB′=HE=t,HB′=|t-2|,EC=4-t在Rt△B′ME中,B′M2=B′E2+ME2=22+(2-12t)2=14t2-2t+8∵EF∥AB,∴△MEC∽△ABC∴MEAB=ECBC,即ME3=4-t6,∴ME=2-12t在Rt△DHB′中,B′D2=DH2+B′H2=32+(t-2)2=t2-4t+13 过M作MN⊥DH于点N则MN=HE=t,NH=ME=2-12t∴DN=DH-NH=3-(2-12t)=12t+1在Rt△DMN中,DM2=DN2+MN2=54t2+t+1(ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2即54t2+t+1=(14t2-2t+8)+(t2-4t+13),解得t=207(ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2即t2-4t+13=(14t2-2t+8)+(54t2+t+1),解得t1=-3+17,t2=-3-17∵0≤t≤4,∴t=-3+17BACD图①EFGBACD图②EFGH B′MN(ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2即14t2-2t+8=(t2-4t+13)+(54t2+t+1),此方程无解综上所述,当t=207或-3+17时,△B′DM是直角三角形(3)当0≤t≤43时,S=14t2当43≤t≤2时,S=-18t2+t-23当2≤t≤103时,S=-38t2+2t-53当103≤t≤4时,S=-12t+52提示:当点F落在CD上时,如图③FE=2,EC=4-t,DH=3,HC=4由△FEC∽△DHC,得FEEC=DHHC即24-t=34,∴t=43当点G落在AC上时,点G也在DH上(即DH与AC的交点)t=2当点G落在CD上时,如图④GB′=2,B′C=6-t由△GB′C∽△DHC,得G′BB′C=DHHC即26-t=34,∴t=103当点E与点C重合时,t=4①当0≤t≤43时,如图⑤∵MF=t,FN=12t∴S=S△FMN=12·t·12t=14t2②当43≤t≤2时,如图⑥∵PF=t-43,FQ=34PF=34t-1BC图⑤EBC图⑥EBACD图③EFGB′HBACD图④EFGB′H∴S△FPQ=12(t-43)(34t-1)=38t2-t+23∴S=S△FMN-S△FPQ=14t2-(38t2-t+23)=-18t2+t-23③当2≤t≤103时,如图⑦∵B′M=12B′C=12(6-t)=3-12t∴GM=2-(3-12t)=12t-1∴S梯形GMNF=12(12t-1+12t)×2=t-1∴S=S梯形GMNF-S△FPQ=(t-1)-(38t2-t+23)=-38t2+2t-53④当103≤t≤4时,如图⑧∵P B′=34B′C=34(6-t)=92-34t∴GP=2-(92-34t)=34t-52∴S梯形GPQF=12(34t-52+34t-1)×2=32t-72∴S=S梯形GMNF-S梯形GPQF=(t-1)-(32t-72)=-12t+52BC图⑦EB C图⑧EB。
中考数学总复习《正方形》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________ 1. 如图,在四边形ABCD中,对角线AC,BD相交于点O .第1题图(1)若四边形ABCD是平行四边形,请添加条件__________,使四边形ABCD是正方形;【判定依据】__________________________;(2)若四边形ABCD是矩形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________;(3)若四边形ABCD是菱形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________.2. 如图,在正方形ABCD中,对角线AC,BD相交于点O.(1)∠ABC=________,∠BAC=________,∠COD=________;(2)若AB=3,则BC=________,CD=________;(3)若OA=2,则AC=________,BD=________,AD=________;(4)若OA=4,则正方形ABCD 的面积是________,周长是________.第2题图知识逐点过考点1 正方形的性质及面积边四条边都相等,对边平行角四个角都是直角1.对角线相等且互相①________;对角线2.每一条对角线平分一组对角对称性既是轴对称图形,又是中心对称图形,有4条对称轴,对称中心是两条②________的交点面积公式S=a2=12l2【温馨提示】正方形的两条对角线把正方形分成四个全等的等腰直角三角形考点2 正方形的判定边1.有一组邻边相等,并且有一个角是③________的平行四边形是正方形(定义);2.有一组邻边④________的矩形是正方形角有一个角是⑤________的菱形是正方形对角线1.对角线⑥________的矩形是正方形;2.对角线⑦________的菱形是正方形;3.对角线互相⑧__________的四边形是正方形考点3 平行四边形、矩形、菱形、正方形的关系从边、角的角度看从对角线的角度看考点4 中点四边形概念依次连接任意一个四边形各边中点所得的四边形原图形任意四边形矩形菱形正方形对角线相等的四边形对角线垂直的四边形对角线垂直且相等的四边形中点四边形形状平行四边形菱形矩形正方形菱形矩形正方形【温馨提示】连接特殊四边形中点的四边形面积是原图形的一半教材原题到重难考法与正方形有关的证明与计算例如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.例题图变式题1. 结合角度求线段长如图,正方形ABCD的边长为4,点F为对角线AC上一点,连接BF,当∠CBF=22.5°时求AF的长.第1题图2. 过点F作AB边的垂线如图,在正方形ABCD中,F是对角线AC上一点,作EF⊥AB于点E,连接DF,若BC=6,BE=2,求DF的长.第2题图3. 过点F分别作AB,BC边的垂线如图,F是正方形ABCD对角线AC上一点,过点F分别作FE⊥AB,FG⊥BC,垂足分别为点E,G,连接DF,EG.(1)求证:EG=DF;(2)若正方形的边长为3+3,∠BGE=30°,求DF的长.第3题图真题演练命题点正方形性质的相关计算1. 如图,正方形ABCD的边长为4,延长CB至点E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K .则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN∶S△ADM =1∶4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第1题图2. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.第2题图基础过关1. 正方形具有而菱形不具有的性质是()A. 对角线平分一组对角B. 对角线相等C. 对角线互相垂直平分D. 四条边相等2. 若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等3.如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第3题图4. 如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A. 2αB. 90°-2αC. 45°-αD. 90°-α第4题图5.在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件_________________________ 使得矩形ABCD为正方形.6. 如图,在边长为2的正方形ABCD中,点E在AD上,连接EB,EC,则图中阴影部分的面积是__________.第6题图7. 七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板,如图所示,由5个等腰直角三角形,1个正方形和1个平行四边形组成,则图中阴影部分的面积为__________dm2.第7题图8. 如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为__________.第8题图9. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,点F为DE的中点,若△CEF的周长为32,则OF的长为__________.第9题图10. 如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.第10题图综合提升11. 如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A. 23B. 352 C. 5+1 D. 10第11题图12. 如图,在正方形ABCD 中,点E 为BD 上一点,DE =3BE ,连接AE ,过点E 作AE 的垂线,交CD 于点F ,连接AF 交BD 于点G .下列结论:①sin ∠BAE =13 ;②∠EAF =45°;③点F 为CD 的中点;④BE +DG =GE .其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个第12题图13. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE ,△ABF ,△BCG ,△CDH )和中间一个小正方形EFGH 拼成的大正方形ABCD 中,∠ABF >∠BAF ,连接BE .设∠BAF =α,∠BEF =β,若正方形EFGH 与正方形ABCD 的面积之比为1∶n ,tan α=tan 2β,则n =( ) A. 5 B. 4 C. 3 D. 2第13题图参考答案1. (1)AC =BD ,且AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直且相等的平行四边形是正方形(答案不唯一); (2)AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直的矩形是正方形; (3)∠ABC =90°(答案不唯一)【判定依据】有一个角是直角的菱形是正方形.2. (1)90°,45°,90°;(2)3,3;(3)4,4,22 ;(4)32,162 . 教材原题到重难考法例 解:△ABC ≌△ADC ,△ABF ≌△ADF ,△CDF ≌△CBF ,理由如下: ∵四边形ABCD 是正方形∴AB =AD =BC =CD ,∠DAC =∠BAC =∠DCA =∠BCA =45° 在△ABC 和△ADC 中 ⎩⎪⎨⎪⎧AB =AD ∠BAC =∠DAC AC =AC∴△ABC ≌△ADC (SAS) 在△ABF 和△ADF 中 ⎩⎪⎨⎪⎧AB =AD ∠BAF =∠DAF AF =AF∴△ABF ≌△ADF (SAS) 在△DCF 和△BCF 中 ⎩⎪⎨⎪⎧DC =BC ∠DCF =∠BCF CF =CF∴△DCF ≌△BCF (SAS).(选择其中任意一对证明即可) 1. 解:在正方形ABCD 中,∠ABC =90°,AB =BC ∴∠BAC =∠BCA =45° ∵∠CBF =22.5°∴∠ABF =∠ABC -∠CBF =90°-22.5°=67.5°∴∠AFB =180°-∠BAC -∠ABF =180°-45°-67.5°=67.5° ∴∠ABF =∠AFB ∴AF =AB =4.2. 解:如解图,连接BF第2题解图∵四边形ABCD是正方形∴AB=BC=6,∠EAF=45°∵EF⊥AB∴EF=AE=AB-BE=6-2=4∴BF=BE2+EF2=25∵正方形ABCD关于AC对称∴DF=BF=25.3. (1)证明:如解图,连接FB.∵四边形ABCD为正方形∴DA=AB,∠DAC=∠BAC∵AF=AF∴△DAF≌△BAF∴DF=BF∵四边形ABCD为正方形∴∠ABC=90°∵FG⊥BC,FE⊥AB∴∠FGB=∠FEB=90°∴∠FGB=∠FEB=∠ABC=90°∴四边形FEBG是矩形∴EG=FB∴EG=DF;(2)解:∵正方形的边长为3+3,∠BGE=30°∴BC=3+3∴BG=BC-CG=3+3-CG∵∠BGE=30°∴BG=3BE∵AC为正方形ABCD的对角线∴∠DCF=∠BCF=45°∵FG⊥BC∴∠FGC=∠FGB=90°∴∠CFG=45°∴FG=CG∵四边形FEBG是矩形∴EB=FG∴FG=CG=EB设FG=CG=EB=x∴GE=2x∴BG=3BE=3x∵BG=BC-CG=3+3-x∴3+3-x=3x∴x=3∴GE=2x=23∴DF=BF=GE=23.第3题解图知识逐点过①垂直平分②对角线③直角④相等⑤直角⑥互相垂直⑦相等⑧垂直平分且相等真题演练1. C 【解析】∵四边形EFGB 是正方形,EB =2,∴FG =BE =2,∠FGB =90°,∵四边形ABCD 是正方形,H 为AD 的中点,∴AD =4,AH =2,∠BAD =90°,∴∠HAN =∠FGN ,AH =FG ,∵∠ANH =∠GNF ,∴△ANH ≌△GNF (AAS),故①正确;∴∠AHN =∠HFG ,∵AG =FG =2=AH ,∴AF =2 FG =2 AH ,∴∠AFH ≠∠AHF ,∵AD ∥FG ,∴∠AHF =∠HFG ,∴∠AFN ≠∠HFG ,故②错误;∵△ANH ≌△GNF ,∴AN =12 AG =1,∵GM=BC =4,∴AH AN =GM AG=2,∵∠HAN =∠AGM =90°,∴△AHN ∽△GMA ,∴∠AHN =∠AMG ,∠MAG =∠HNA ,∴AK =NK ,∵AD ∥GM ,∴∠HAK =∠AMG ,∴∠AHK =∠HAK ,∴AK =HK ,∴AK =HK =NK ,∵FN =HN ,∴FN =2NK ;故③正确;∵延长FG 交DC 于M ,∴四边形ADMG 是矩形,∴DM =AG =2,∵S △AFN =12 AN ·FG =12 ×2×1=1,S △ADM=12 AD ·DM =12×4×2=4,∴S △AFN ∶S △ADM =1∶4,故④正确. 2. 15 【解析】如解图,∵四边形ABCD ,ECGF ,IGHK 均为正方形,∴CD =AD =10,CE =FG =CG =EF =6,∠CEF =∠F =90°,GH =IK =4,∴CH =CG +GH =10,∴CH =AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ (AAS),∴CJ =DJ =5,∴EJ =1,∵GL ∥CJ ,∴△HGL ∽△HCJ ,∴GL CJ =GH CH =25,∴GL =2,∴FL =4,∴S阴影=S梯形EJLF=12 (EJ +FL )·EF =12(1+4)×6=15.第2题解图基础过关1. B2. D 【解析】如解图,点E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12 BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第2题解图3. C 【解析】 ∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴OB =BC =3,∴C (3,3).4. A 【解析】如解图,将△ADF 绕点A 顺时针旋转90°得到△ABG ,则AF =AG ,∠DAF =∠BAG .∵∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠GAE =∠EAF =45°.在△GAE 和△F AE 中,⎩⎪⎨⎪⎧AG =AF ∠GAE =∠F AE AE =AE ,∴△GAE ≌△F AE (SAS),∴∠AEF =∠AEG .∵∠BAE =α,∴∠AEB =90°-α,∴∠AEF =∠AEB =90°-α,∴∠FEC =180°-∠AEF -∠AEB =180°-2(90°-α)=2α.第4题解图5. AB =BC (答案不唯一,符合条件即可,如:AC ⊥BD ) 【解析】∵邻边相等的矩形是正方形,∴可添加条件AB =BC ;∵对角线互相垂直的矩形是正方形,∴还可以添加条件AC ⊥BD .6. 2 【解析】如解图,过点E 作EF ⊥BC 于点F .∵四边形ABCD 是正方形,∴AB =BC =2,AD ∥BC ,∴EF =AB =2,∴S △BCE =12 BC ·EF =12×2×2=2.∵S 正方形ABCD =BC 2=22=4,∴S阴影=S 正方形ABCD -S △BCE =4-2=2.第6题解图7. 2 【解析】如解图,依题意得OD =22 AD =22 ,OE =12OD =2 ,∴图中阴影部分的面积为OE 2=(2 )2=2(dm 2).第7题解图8. 3 【解析】如解图,过点P 作PF ⊥AB 于点F .∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第8题解图9.172【解析】∵CE =7,△CEF 的周长为32,∴CF +EF =32-7=25.∵点F 为DE 的中点,∴DF =EF .∵四边形ABCD 为正方形,∴∠BCD =90°,BC =CD ,∴CF =EF =DF =252,∴DE =25,∴在Rt △DCE 中,CD =DE 2-CE 2 =24,∴BC =CD =24.∵点O 为BD 的中点,∴OF 是△BDE 的中位线,∴OF =12 (BC -CE )=12 (24-7)=172 .10. (1)证明:∵四边形ABCD 为正方形 ∴AB =AD ,∠A =∠D =90°. ∵MF ∥AD ∴∠DFM =90° ∴四边形ADFM 为矩形 ∴MF =AD =AB . ∵MN 垂直平分BE ∴∠BOM =90° ∴∠ABE +∠BMO =90°. ∵∠FMN +∠BMO =90° ∴∠ABE =∠FMN . 在△ABE 和△FMN 中⎩⎪⎨⎪⎧∠A =∠MFN AB =FM ∠ABE =∠FMN∴△ABE ≌△FMN (ASA); (2)解:如解图,连接ME . ∵MN 垂直平分BE ∴ME =BM .设BM =x ,则AM =8-x ,ME =x .在Rt △AME 中,由勾股定理得ME 2=AE 2+AM 2,即x 2=62+(8-x )2. 解得x =254 ,即BM =254.在Rt △ABE 中,由勾股定理得BE =62+82 =10. ∵∠MBO =∠EBA ,∠MOB =∠A ∴△BOM ∽△BAE ∴OM AE =BMBE∴OM =AE ·BM BE =6×25410 =154 .由(1)知△ABE ≌△FMN ∴MN =BE =10∴ON =MN -OM =10-154 =254.第10题解图11. B 【解析】∵四边形ABCD 是正方形,∴BC ⊥AB ,CD ∥AB ,CD =AB .∵EF ⊥AB ,∴EF ∥BC ,∴AE EC =AF FB .∵AF =2,FB =1,∴AE EC =21 .∵CD ∥AB ,∴CD ∥AG ,∴∠DCE=∠GAE ,∠CDE =∠AGE ,∴△DCE ∽△GAE ,∴AG CD =AE CE =21,∴AG =2CD ,∴CD =AB =BG .∵∠DCM =∠GBM =90°,∠DMC =∠GMB ,∴△DCM ≌△GBM (AAS),∴DM=GM =12 DG .∵AF =2,FB =1,∴AB =3.∵AD =AB =3,∴AG =6,∴在Rt △DAG 中,DG =32+62 =35 ,∴MG =352.12. B 【解析】 如解图,延长AE 交BC 于点H .∵四边形ABCD 是正方形,∴AD =AB ,AD ∥BC ,∴△ADE ∽△HBE ,∴AD HB =DEBE ,∵DE =3BE ,∴AD =3HB ,∴AB =3HB ,在Rt △ABH 中,由勾股定理得AH =AB 2+HB 2 =10 HB ,∴sin ∠BAE =HB AH =1010 ,①错误;如解图,过点E 分别作AB ,CD 的垂线,交AB ,CD 于点M ,N ,∴∠AME =∠ENF =90°,∴∠AEM +∠MAE =90°,∵∠AEF =90°,∴∠AEM +∠NEF =90°,∴∠MAE =∠NEF ,∵∠MBE =45°,∴MB =ME ,∵AB =MN ,∴AM =EN ,∴△AME ≌△ENF ,∴AE =EF ,∵∠AEF =90°,∴∠EAF =45°,②正确;∵△AME ≌△ENF ,∴ME =NF =MB ,∵BE =2 ME ,∴CF =2ME =2 BE ,∵DE =3BE ,∴BD =4BE ,∴CD =22BD =22 BE ,∴CD =2CF ,∴点F 为CD 的中点,③正确;∵点F 为CD 的中点,∴DF =12 CD =12 AB ,∵AB ∥CD ,∴△FDG ∽△ABG ,∴DG BG =DF AB =12 ,∴DG =13 BD ,GB =23 BD ,设BE =x ,则DE =3x ,BD =4x ,∴DG =43 x ,GB =83 x ,∴GE =GB -BE =53 x ,∴BE +DG =73 x ≠GE ,④错误.第12题解图13. C 【解析】设BF =a ,AF =b ,则AB =a 2+b 2 ,EF =b -a ,∴tan α=tan ∠BAF =BFAF=a b ,tan β=tan ∠BEF =BF EF =a b -a .∵正方形EFGH ∽正方形ABCD ,∴S 正方形EFGH S 正方形ABCD =(EFAB )2=EF 2AB 2 =(b -a )2a 2+b 2 =1n .∵tan α=tan 2β,∴a b =a 2(b -a )2 .∴(b -a )2=ab ,b 2+a 2-2ab =ab ,∴a 2+b 2=3ab ,∴n =a 2+b 2(b -a )2=a 2+b 2ab =3abab =3.。
1.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE_LDG;®DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个2.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P为AC上一个动点,3.如图,四边形ABCD是边长为6的正方形,点E在边上,BE=4,过点E作EF//BC,分别交CD 于G,F两点.若N分别是OG,CE的中点,则"的长为()4.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,己知BE=1,则EF的长为()359A.2B.2C.4D.35.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:©AABG^AAFG;②BG=GC;③ZEAG=45°;④AG〃CF;⑤S aecg:S a aeg=2:5,其中正确结论的个数A.2B.3C.4D.56.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()1^1A.2B.3C.3D.B7.如图,在正方形ABCD对角线BD上截取BE=BC,连接CE并延长交AD于点F,连接AE,过B作BG±AE 于点G,交AD于点H,则下列结论错误的是()A.AH=DFB.S四边形EFHG=S a DC f+S a aghC.ZAEF=45°D.△ABH^ADCF8.如图,正方形ABCD和正方形CEFG中,点。
在CG上,BC=L,CE=3,H是AF的中点,那么CH的长是().9.如图,在A AB C中,ZC=90°,AC=BC=4,Q是AB的中点,点E、F分别在AC、BC边上运动(点、E 不与点A、。
中考数学专题复习——正方形(详细答案) 中考数学复专题——正方形一.选择题(共4小题)1.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()。
A。
等于B。
等于1C。
等于3/4D。
随点E位置的变化而变化2.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB,EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()。
A。
1/8B。
1/4C。
1/2D。
3/43.下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A。
1个B。
2个C。
3个D。
4个4.下列说法中,正确的是()A。
两条直线被第三条直线所截,内错角相等B。
对角线相等的平行四边形是矩形C。
相等的角是对顶角D。
角平分线上的点到角两边的距离相等二.填空题(共7小题)5.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是60°。
6.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△___由△DAM平移得到。
若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°。
其中正确结论的序号为①和②。
7.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为9.8.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(3,-2)。
9.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为2.1.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上。