第1章 算法概述
- 格式:ppt
- 大小:1.69 MB
- 文档页数:37
第1章 群体智能算法概述1975年,美国Michigan大学的John Holland[1]教授发表了其开创性的著作《Adapatation in Natural and Artificail System》,在该著作中John Holland教授对智能系统及自然界中的自适应变化机制进行了详细阐述,并提出了计算机程序的自适应变化机制,该著作的发表被认为是群体智能(Swarm Intelligence)[2]算法的开山之作。
随后,John Holland和他的学生对该算法机制进行了推广,并正式将该算法命名为遗传算法(Gentic Algorithm,GA)[3]~[5]。
遗传算法的出现和成功,极大地鼓舞了广大研究工作者向大自然现象学习的热情。
经过多年的发展,已经诞生了大量的群体智能算法,包括:遗传算法、蚁群优化(Ant Colony Optimization,ACO)[6]~[7]算法、差异演化(Differential Evolution,DE)[8]~[12]算法、粒子群优化(Particle Swarm Optimization,PSO)[13]~[16]算法等。
随着群体智能算法在诸如机器学习、过程控制、经济预测、工程预测等领域取得了前所未有的成功,它已经引起了包括数学、物理学、计算机科学、社会科学、经济学及工程应用等领域的科学家们的极大兴趣。
目前关于群体智能计算的国际会议在全世界各地定期召开,各种关于信息技术或计算机技术的国际会议也都将智能进化技术作为主要研讨课题之一。
甚至有专家指出,群体智能计算技术、混沌分析技术、分形几何、神经网络等将会成为研究非线性现象和复杂系统的主要工具,也将会成为人们研究认知过程的主要方法和工具。
1.1 群体智能算法的特点1.1.1 智能性群体智能算法通过向大自然界中的某些生命现象或自然现象学习,实现对于问题的求解,这一类算法中包含了自然界生命现象所具有的自组织、自学习和自适应性等特性。
第一章 进化优化算法概述1.1 进化算法的一般框架自1960年以来,进化算法已经发展出相当多的种类,但一般认为进化算法有5个基本组成部分[3]:1.问题解的遗传表示。
2.种群的初始化方法。
3.根据个体适应度对其进行优劣判定的评价函数。
4.产生新的种群的进化算子5.算法的参数取值1.1.1进化优化算法解决对象的描述进化算法主要是求解优化问题,其数学模型如下:Maximizey =f (x )(1.1)Subject to g(x )=()(1x g ,)(2x g ,…,)(x g m )≤0 (1.2)其中 x =(1x ,2x ,…,n x )∈X ,x 是决策向量,X 是决策向量形成的决策空间;y 是决策目标。
这是个最大化问题,对于最小化问题可以令y '=C -f (x )转化为最大化问题,因此,它们在本质上是一致的。
根据优化函数f (x )是否连续可以将最优化问题分为二大类:连续函数的最优化与离散函数的最优化。
后者也可以称为组合优化问题。
根据是否包含约束条件(1.2)可分为约束优化问题和无约束优化问题。
此外,若y 是一个决策向量,则是一个多目标的优化问题,我们将在第二章进一步讨论。
1.1.2进化优化算法结构进化算法的一般结构如图 1.1所示,进化算法维持由一群个体组成的种群P (t )(t 为进化代数)。
每个个体代表问题的一个潜在解。
每个个体通过目标函数评价得到适应度并根据优胜劣汰的原则进行选择。
被选择的个体经历遗传操作产生新的个体,主要有两种遗传操作:杂交是将多个个体的有关部分组合起来形成新的个体,变异是将一个个体改变而获得新的个体。
新产生的个体(子代)继续被评价优劣。
从父代种群和子代种群中选择比较优秀的个体形成新的种群。
在若干代后,算法收敛到一个最优个体,该个体很有可能代表问题的最优或次优解。
图1.1 进化算法流程图1.1.3进化算法几个环节的解释遗传编码:如何将问题的解编码成染色体是进化算法使用中的关键问题,目前的编码方式主要有二进制编码[4]、Gray编码、实数编码、字符编码等,对于更复杂的问题,用合适自然的数据结构来表示染色体的等位基因,可以有效抓住问题的本质,但总的来说,完整的遗传编码理论尚未建立,部分文献[5~7]的讨论都有都有一定的局限性。
计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。
全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。
主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。
书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。
为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。
粤教版普通高中信息技术必修1《数据与计算》第三章《算法基础》第一节算法概述信息技术的发展与普及使得我们的生活更加便捷高效。
在这背后,算法作为信息技术的核心,扮演着重要的角色。
本章将介绍算法的基础知识,帮助读者更好地理解和应用。
第二节算法的定义算法是解决问题或执行特定任务的一系列步骤的有限序列。
它可以被看作是一种转换关系,将输入转换成输出。
算法应具备以下特性:有穷性、确定性、可行性和有效性。
第三节算法的分类根据问题的性质和解决方法的不同,算法可以分为不同的类型。
常见的算法分类包括搜索算法、排序算法、图算法等。
每种类型的算法都有其独特的特点和应用场景。
第四节算法的分析算法的效率是衡量算法好坏的重要指标之一。
通过对算法进行分析,可以评估其时间复杂度和空间复杂度。
时间复杂度描述了算法运行时间与输入规模的关系,空间复杂度描述了算法所需的额外存储空间。
第五节常用算法的介绍本节将详细介绍一些常用的算法。
其中包括二分查找算法、冒泡排序算法、快速排序算法等。
通过学习这些算法的原理和实现方法,读者可以更好地理解和运用。
第六节算法的设计与实践好的算法设计是提高算法效率的基础。
本节将介绍算法设计的基本思想,包括贪心算法、动态规划算法等。
此外,我们还将探讨算法在实际应用中的一些问题与解决方法。
第七节算法的应用领域算法在信息技术的各个领域都有广泛的应用。
本节将介绍算法在图像处理、人工智能、数据挖掘等领域中的具体应用,展示算法的强大能力和潜在价值。
结语算法作为信息技术的核心,对我们的生活产生了深远的影响。
通过本章的学习,我们不仅了解了算法的基本概念和分类,还学习了常用算法的原理和实现方法。
相信在将来的学习和实践中,我们能够更好地应用算法解决问题,提高工作和生活效率。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
算法导论答案第一章:算法概述啊算法的定义算法是一系列解决问题的明确指令。
它是一个有穷步骤集,其中每个步骤或操作由确定性和可行性特征。
算法是通过将预期的输入转换为输出来解决问题的工具。
第二章:插入排序插入排序的思想插入排序是一种简单直观的排序算法,其基本思想是将待排序的序列分为已排序和未排序两部分,每次从未排序的部分中取出一个元素,并将其插入到已排序部分的正确位置,直到所有元素都被排序。
插入排序的算法实现以下是插入排序的伪代码:INSERTION-SORT(A)for j = 2 to A.lengthkey = A[j]// Insert A[j] into the sorted sequence A[1.. j-1].i = j - 1while i > 0 and A[i] > keyA[i + 1] = A[i]i = i - 1A[i + 1] = key插入排序的时间复杂度插入排序的时间复杂度为O(n^2),其中n是排序的元素个数。
虽然插入排序的最坏情况下的复杂度很高,但是对于小规模的数据集,插入排序是一种较快的排序算法。
第三章:分治策略分治策略的基本思想分治策略是一种解决问题的思想,它将问题的规模不断缩小,直到问题足够小而可以直接解决。
然后将子问题的解合并起来,得到原问题的解。
分治策略的应用实例一种经典的应用分治策略的算法是归并排序。
归并排序将待排序的序列划分为两个子序列,分别排序后再将两个有序子序列合并为一个有序序列。
以下是归并排序的伪代码:MERGE-SORT(A, p, r)if p < rq = floor((p + r) / 2)MERGE-SORT(A, p, q)MERGE-SORT(A, q + 1, r)MERGE(A, p, q, r)MERGE(A, p, q, r)n1 = q - p + 1n2 = r - qlet L[1..n1+1] and R[1..n2+1] be new arraysfor i = 1 to n1L[i] = A[p + i - 1]for j = 1 to n2R[j] = A[q + j]L[n1 + 1] = infinityR[n2 + 1] = infinityi = 1j = 1for k = p to rif L[i] <= R[j]A[k] = L[i]i = i + 1elseA[k] = R[j]j = j + 1分治策略的时间复杂度归并排序的时间复杂度为O(nlogn),其中n是待排序序列的长度。
算法设计与分析课程实验与设计福州大学王晓东第1章算法概述算法实现题1-1 统计数字问题算法实现题1-2 字典序问题算法实现题1-3 最多约数问题算法实现题1-4 金币阵列问题算法实现题1-5 最大间隙问题第2章递归与分治策略算法实现题2-1 输油管道问题算法实现题2-2 众数问题算法实现题2-3 邮局选址问题算法实现题2-4 马的Hamilton周游路线问题算法实现题2-5 半数集问题算法实现题2-6 半数单集问题算法实现题2-7 士兵站队问题算法实现题2-8 有重复元素的排列问题算法实现题2-9 排列的字典序问题算法实现题2-10 集合划分问题算法实现题2-11 集合划分问题2算法实现题2-12 双色Hanoi塔问题算法实现题2-13 标准2维表问题算法实现题2-14 整数因子分解问题第3章动态规划算法实现题3-0 独立任务最优调度问题算法实现题3-1 最少硬币问题算法实现题3-2 序关系计数问题算法实现题3-3 多重幂计数问题算法实现题3-4 编辑距离问题算法实现题3-5 石子合并问题算法实现题3-6 数字三角形问题算法实现题3-7 乘法表问题算法实现题3-8 租用游艇问题算法实现题3-9 汽车加油行驶问题算法实现题3-10 最小m段和问题算法实现题3-11 圈乘运算问题算法实现题3-12 最大长方体问题算法实现题3-13 正则表达式匹配问题算法实现题3-14 双调旅行售货员问题算法实现题3-15 最大k乘积问题算法实现题3-16 最少费用购物算法实现题3-17 收集样本问题算法实现题3-18 最优时间表问题算法实现题3-19 字符串比较问题算法实现题3-20 有向树k中值问题算法实现题3-21 有向树独立k中值问题算法实现题3-22 有向直线m中值问题算法实现题3-23 有向直线2中值问题算法实现题3-24 树的最大连通分支问题算法实现题3-25 直线k中值问题算法实现题3-26 直线k覆盖问题算法实现题3-27 m处理器问题算法实现题3-28 红黑树的红色内结点问题第4章贪心算法算法实现题4-1 会场安排问题算法实现题4-2 最优合并问题算法实现题4-3 磁带最优存储问题算法实现题4-4 磁盘文件最优存储问题算法实现题4-5 程序存储问题算法实现题4-6 最优服务次序问题算法实现题4-7 多处最优服务次序问题算法实现题4-8 d森林问题算法实现题4-9 汽车加油问题算法实现题4-10 区间覆盖问题算法实现题4-11 硬币找钱问题算法实现题4-12 删数问题算法实现题4-13 数列极差问题算法实现题4-14 嵌套箱问题算法实现题4-15 套汇问题算法实现题4-16 信号增强装置问题算法实现题4-17 磁带最大利用率问题算法实现题4-18 非单位时间任务安排问题算法实现题4-19 多元Huffman编码问题算法实现题4-20 多元Huffman编码变形算法实现题4-21 区间相交问题算法实现题4-22 任务时间表问题算法实现题4-23 最优分解问题算法实现题4-24 可重复最优分解问题算法实现题4-25 可重复最优组合分解问题算法实现题4-26 旅行规划问题算法实现题4-27 登山机器人问题第5章回溯法算法实现题5-1 子集和问题算法实现题5-2 最小长度电路板排列问题算法实现题5-3 最小重量机器设计问题算法实现题5-4 运动员最佳匹配问题算法实现题5-5 无分隔符字典问题算法实现题5-6 无和集问题算法实现题5-7 n色方柱问题算法实现题5-8 整数变换问题算法实现题5-9 拉丁矩阵问题算法实现题5-10 排列宝石问题算法实现题5-11 重复拉丁矩阵问题算法实现题5-12 罗密欧与朱丽叶的迷宫问题算法实现题5-13 工作分配问题算法实现题5-14 独立钻石跳棋问题算法实现题5-15 智力拼图问题算法实现题5-16 布线问题算法实现题5-17 最佳调度问题算法实现题5-18 无优先级运算问题算法实现题5-19 世界名画陈列馆问题算法实现题5-20 世界名画陈列馆问题(不重复监视)算法实现题5-21 2´2´2魔方问题算法实现题5-22 魔方(Rubik’s Cube)问题算法实现题5-23 算24点问题算法实现题5-24 算m点问题算法实现题5-25 双轨车皮编序问题算法实现题5-26 多轨车皮编序问题算法实现题5-27 部落卫队问题算法实现题5-28 虫蚀算式问题算法实现题5-29 完备环序列问题算法实现题5-30 离散01串问题算法实现题5-31 喷漆机器人问题算法实现题5-32 子集树问题算法实现题5-33 0-1背包问题算法实现题5-34 排列树问题算法实现题5-35 一般解空间搜索问题算法实现题5-36 最短加法链问题算法实现题5-37 n2-1谜问题算法实现题6-1 最小长度电路板排列问题算法实现题6-2 最小长度电路板排列问题算法实现题6-3 最小权顶点覆盖问题算法实现题6-4 无向图的最大割问题算法实现题6-5 最小重量机器设计问题算法实现题6-6 运动员最佳匹配问题算法实现题6-7 n皇后问题算法实现题6-8 圆排列问题算法实现题6-9 布线问题算法实现题6-10 最佳调度问题算法实现题6-11 无优先级运算问题算法实现题6-12 世界名画陈列馆问题算法实现题6-13 子集树问题算法实现题6-14 排列树问题算法实现题6-15 一般解空间的队列式分支限界法算法实现题6-16 子集树问题算法实现题6-17 排列树问题算法实现题6-18 一般解空间的优先队列式分支限界法算法实现题6-19 骑士征途问题算法实现题6-20 推箱子问题算法实现题6-21 图形变换问题算法实现题6-22 行列变换问题算法实现题6-23 重排n2宫问题算法实现题6-24 最长距离问题算法实现题7-1 模平方根问题算法实现题7-2 素数测试问题算法实现题7-3 集合相等问题算法实现题7-4 逆矩阵问题算法实现题7-5 多项式乘积问题算法实现题7-6 皇后控制问题算法实现题7-7 3SAT问题算法实现题7-8 战车问题算法实现题7-9 圆排列问题算法实现题7-10 骑士控制问题算法实现题7-11 骑士对攻问题第8章线性规划与网络流算法实现题8-1 飞行员配对方案问题算法实现题8-2 太空飞行计划问题算法实现题8-3 最小路径覆盖问题算法实现题8-4 魔术球问题算法实现题8-5 圆桌问题算法实现题8-6 最长递增子序列问题算法实现题8-7 试题库问题算法实现题8-8 机器人路径规划问题算法实现题8-9 方格取数问题算法实现题8-10 餐巾计划问题算法实现题8-11 航空路线问题算法实现题8-12 软件补丁问题算法实现题8-13 星际转移问题算法实现题8-14 孤岛营救问题算法实现题8-15 汽车加油行驶问题算法实现题8-16 数字梯形问题算法实现题8-17 运输问题算法实现题8-18 分配问题算法实现题8-19 负载平衡问题算法实现题8-20 深海机器人问题算法实现题8-21 最长k可重区间集问题算法实现题8-22 最长k可重线段集问题算法实现题8-23 火星探险问题算法实现题8-24 骑士共存问题第9章NP完全性理论与近似算法算法实现题9-1旅行售货员问题的近似算法算法实现题9-2 可满足问题的近似算法算法实现题9-3 最大可满足问题的近似算法算法实现题9-4 子集和问题的近似算法算法实现题9-5 子集和问题的完全多项式时间近似算法算法实现题9-6 2SAT问题的线性时间算法算法实现题9-7 实现算法greedySetCover《算法设计与分析》期中试卷1 试题1 数列极差问题试题2 双调TSP回路问题试题3 最佳调度问题《算法设计与分析》期中试卷2 试题1 石子合并问题试题2 整数因子分解问题试题3 汽车加油问题《算法设计与分析》期终试卷1 试题1 乘法表问题试题2 工作分配问题试题3 飞行员配对方案问题《算法设计与分析》期终试卷2 试题1 直线k中值问题试题2 图形变换问题试题3 无向图的最大割问题。
Python最优化算法实战第一章最优化算法概述1.1最优化算法简介最优化算法,即最优计算方法,也是运筹学。
涵盖线性规划、非线性规划、整数规划、组合规划、图论、网络流、决策分析、排队论、可靠性数学理论、仓储库存论、物流论、博弈论、搜索论和模拟等分支。
当前最优化算法的应用领域如下。
(1)市场销售:多应用在广告预算和媒体的选择、竞争性定价、新产品开发、销售计划的编制等方面。
如美国杜邦公司在20世纪50年代起就非常重视对广告、产品定价和新产品引入的算法研究。
(2)生产计划:从总体确定生产、储存和劳动力的配合等计划以适应变动的需求计划,主要采用线性规划和仿真方法等。
此外,还可用于日程表的编排,以及合理下料、配料、物料管理等方面。
(3)库存管理:存货模型将库存理论与物料管理信息系统相结合,主要应用于多种物料库存量的管理,确定某些设备的能力或容量,如工厂库存量、仓库容量,新增发电装机容量、计算机的主存储器容量、合理的水库容量等。
(4)运输问题:涉及空运、水运、陆路运输,以及铁路运输、管道运输和厂内运输等,包括班次调度计划及人员服务时间安排等问题。
(5)财政和会计:涉及预算、贷款、成本分析、定价、投资、证券管理、现金管理等,采用的方法包括统计分析、数学规划、决策分析,以及盈亏点分析和价值分析等。
(6)人事管理:主要涉及以下6个方面。
①人员的获得和需求估计。
②人才的开发,即进行教育和培训。
③人员的分配,主要是各种指派问题。
④各类人员的合理利用问题。
⑤人才的评价,主要是测定个人对组织及社会的贡献。
⑥人员的薪资和津贴的确定。
(7)设备维修、更新可靠度及项目选择和评价:如电力系统的可靠度分析、核能电厂的可靠度B风险评估等。
(8)工程的最佳化设计:在土木,水利、信息电子、电机、光学、机械、环境和化工等领域皆有作业研究的应用。
(9)计算机信息系统:可将作业研究的最优化算法应用于计算机的主存储器配置,如等候理论在不同排队规则下对磁盘、磁鼓和光盘工作性能的影响。