算法设计及分析第一章算法概述
- 格式:ppt
- 大小:245.51 KB
- 文档页数:10
第一章算法概述1.算法:解决问题的一种方法或过程;由若干条指令组成的有穷指令。
2.算法的性质:1)输入:有零个或多个输入2)输出:有至少一个输出3)确定性:每条指令是清晰的、无歧义的4)有限性:每条指令的执行次数和时间都是有限的3.算法与程序的区别➢程序是算法用某种程序设计语言的具体实现➢程序可以不满足算法的有限性4.算法复杂性分析1)算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要空间资源的量称为空间复杂性2)三种时间复杂性:最坏情况、最好情况、平均情况3)可操作性最好且最有实际价值的是最坏情况下的时间复杂性第二章递归与分支策略1.递归概念:直接或间接调用自身的算法2.递归函数:用函数自身给出定义的函数3.递归要素:边界条件、递归方程4.递归的应用✧汉诺塔问题void Hanuo(int n,int a,int b,int c){if(n==1) return;Hanuo(n-1,a,c,b);move(a,b)Hanuo(n-1,c,b,a);}✧全排列问题void Perm(Type list[],int k,int m){ //产生list[k,m]的所有排列if(k == m){for(int i = 0;I <= m;i++) cout<<list[i];cout<<endl;}else{for(int i = j; i<=m;i++){Swap(list[k],list[i]);Perm(list,k+1;m);Swap(list[k],list[i])}}}5.分治法的基本思想:将一个规模较大的问题分成若干个规模较小的子问题,这些子问题互相独立且与原问题相同。
6.分治法的使用条件:✓问题的规模缩小到一定程度可以容易地解决✓问题可以分解为若干个规模较小的相同问题✓利用原问题分解出的子问题的解可以合并为原问题的解✓各个子问题是相互独立的7.分治法的时间复杂度8.分治法的应用二分搜索1)时间复杂度 O(logn)2)参考算法快速排序1)快排的运行时间与划分是否对称有关2)时间复杂度O(nlogn)合并排序1)基本思想:将待排元素分成大小大致相同的两个子集合,分别对两个子集合进行排序,最总将排序好的子集合合并成所要求的排序好的集合。
算法设计与分析第 1 章绪论算法理论研究的是算法的设计技术和算法的分析技术,前者是指面对一个问题,如何设计一个有效的算法,后者则是对已设计的算法,如何评价或者判断其优劣。
二者是相互依存的,设计出的算法需要检验和评价,对算法的分析反过来又将改进算法的设计。
1.1 算法的基本概念算法的概念在计算机科学领域几乎无处不在,在各种计算机软件系统的实现中,算法设计往往处于核心地位。
例如,操作系统是现代计算机系统中不可缺少的系统软件,操作系统的各个任务都是一个单独的问题,每个问题由操作系统中的一个子程序根据特定的算法来实现。
用什么方法来设计算法,如何判定一个算法的优劣,所设计的算法需要占用多少时间资源和空间资源,在实现一个软件系统时,都是必须予以解决的重要问题。
1.1.1 为什么要学习算法用计算机求解任何问题都离不开程序设计,而程序设计的核心是算法设计。
普通来说,对程序设计的研究可以分为四个层次:算法、方法学、语言和工具,其中算法研究位于最高层次。
算法对程序设计的指导可以延续几年甚至几十年,它不依赖于方法学、语言和工具的发展与变化。
例如,用于数据存储和检索的 Hah 算法产生于 20 世纪 50 年代,用于排序的快速排序算法发明于 20 世纪 60 年代,但他们至今仍被人们广为使用,可是程序设计方法已经从结构化发展到面向对象,程序设计语言也变化了几代,至于编程工具很难维持三年不变。
所以,对于从事计算机专业的人士来说,学习算法是非常必要的。
学习算法还能够提高人们分析问题的能力。
算法可以看做是解决问题的一类特殊方法——它不是问题的答案,而是经过精确定义的①、用来获得答案的求解过程。
因此,无论是否涉及计算机,特定的算法设计技术都可以看做是问题求解的有效策略。
著名的计算机科学家科努思(Donald ·Knuth)是这样论述这个问题的:“受过良好训练的计算机科学家知道如何处理算法,如何构造算法、操作算法、理解算法以及分析算法,这些知识远不只是为了编写良好的计算机程序而准备的。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。