风力机空气动力学知识 64帧
- 格式:ppt
- 大小:2.44 MB
- 文档页数:15
风力发电机风轮系统2.1.1 风力机空气动力学的基本概念1、风力机空气动力学的几何定义(1)翼型的几何参数翼型翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。
下面是翼型的几何参数图1)前缘、后缘翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。
2)弦线、弦长连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。
弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。
3)最大弯度、最大弯度位置中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。
4)最大厚度、最大厚度位置上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。
5)前缘半径翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。
6)后缘角翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。
7)中弧线翼型内切圆圆心的连线。
对称翼型的中弧线与翼弦重合。
8)上翼面凸出的翼型表面。
9)下翼面平缓的翼型表面。
(2)风轮的几何参数1)风力发电机的扫风面积风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。
下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。
根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。
按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速6m/s设计的风力机风轮会很大,虽在6m/s时运行很好,但遇大风易超速损坏电机,为抗强风时需增加结构强度使成本大大增加。
风力机空气动力学常识作者:曹连芃关键字:翼型,升力,阻力,相对风速,攻角,失速迎角,叶尖速比,贝茨极限,雷诺数,实度风能曾是蒸汽机发明之前最重要的动力,数千年前就有了帆船用于交通运输,后来有了风车用来磨面与抽水等。
近年来,由于传统能源逐渐枯竭、对环境污染严重,风能作为清洁的新能源得到人们的重视,风力发电已成为重要的新能源。
对于想学习风力发电的朋友应该学习一些风力机空气动力学的基础知识。
升力与阻力风就是流动的空气,把一块薄的平板放在流动的空气中会受到气流对它的作用力。
我们先分析一下平板与气流方向垂直时的情况,此时平板受到的阻力最大,D为阻力,当平板静止时,受阻力虽大但气流并未对平板做功;只有平板在阻力作用下运动,气流才对平板做功;如果平板运动速度方向与气流相同,气流相对平板速度为零,则阻力为零,气流也没有对平板做功。
一般说来受阻力运动的平板速度是气流速度的20%至50%时能获得较大的功率。
当平板与气流方向平行时,平板受到的作用力为零。
当平板与气流方向有夹角时,在平板的向风面会受到气流的压力,在平板的下风面会形成负压区,平板两面的压差就产生了侧向作用力F,该力可分解为阻力D与升力L,阻力与气流方向平行,升力与气流方向垂直。
当夹角较小时,平板受到的阻力D较小;此时平板受到的作用力主要是升力L。
飞机的翼片是用来产生升力的,一般翼片上表面弯曲,下表面平直,即使翼片与气流方向平行也会有升力,因为翼片上表面弯曲,下表面平直,上方气流速度比下方快,跟据流体力学的伯努利原理,上方气体压强比下方小,翼片就受到向上的升力作用。
由于飞机翼片截面为流线型,受气流阻力很小。
当翼片与气流方向有夹角(该角称攻角或迎角)时,升力会增大,阻力也会增加,适当选择翼片的攻角可获得最大的升力,尽量小的阻力。
风力机利用叶片受风的阻力运转的称阻力型风力机;利用叶片受风作用产生升力而运转的称升力型风力机。
水平轴风力机基本都是升力型,垂直轴风力机有多种阻力型结构,也有升力型结构。
第3章风力机空气动力学3.1 概述风力机功率的产生仰赖于转子和风之间的相互作用。
如第 2 章所述,风的流动可以看做是由均匀流动和剧烈波动叠加而成。
经验表明,风力机性能(指输出功率和平均负载)的主要是由均匀流动部分产生的气动力所决定。
周期性的气动力可以由切变风、偏轴风(off-axis winds)、转子旋转和由空气紊流和动力学影响诱发的随机脉动力引起,它是疲累负载的来源,也是影响风力机峰值负载的一个因素。
这些当然很重要,但是只有熟悉了稳态运行的空气动力学才能理解。
因此,本章首先关注的是稳态运行的空气动力学现象,关于非稳态空气动力学的复杂现象将在本章结尾简要介绍。
实际设计的水平轴风力机通过桨叶将风的动能转变有用的能量。
本章提供了相关背景材料,帮助读者理解浆叶工作中动力的产生,计算优化叶形,分析已知叶型和浆叶特性的转子的空气动力学性能。
多位作者已经给出了预测风力机转子稳态性能的方法。
古典的风力机分析方法最初是由Betz和Glauert (Glauert, 1935)在20世纪30年代发展的。
随后,理论被发展并且可以使用计算机求解(see Wilson and Lissaman, 1974, Wilson et al., 1976 and de Vries, 1979)。
在所有这些方法中,结合动量理论和叶片微元理论(blade element theory)形成的带流理论,能够计算转子环形截面的工作特性。
本章将运用带流理论,通过对每个环形截面的特性值求积分或求和得到完整转子的特性。
本章首先分析了理想风力机转子,介绍相关的重要概念并阐述了风力机转子及其绕流气体的一般特性。
这些分析也适用于确定风力机的理论极限性能。
之后将介绍一般的空气动力学概念,用于评价利用浆叶产生动力相对于其他方法的优势。
本章的大部分内容详细说明古典分析方法对水平轴风力机的分析,以及一些应用实例和应用。
首先详述了动量理论和叶片微元理论的发展,以及用它计算简单、理想运行状况下的最佳叶型。
第三章风力机气动力学§3.1 总论风力机功率的产生依赖于转子和风的相互作用。
风由平均风和附加于上的强烈的湍流脉动合成。
风力机的平均功率输出和平均载荷等主要性能由平均气流的气动力决定。
周期性的气动力是疲劳载荷源和风力机峰值载荷的一个因素。
周期性的气动力可以由切变风、偏轴风(off-axis winds)、转子旋转、由空气紊流和动力学影响诱发的随机脉动力引起。
本章首先关注的是稳态运行的空气动力学现象,关于非稳态空气动力学的复杂现象将在本章结尾简要介绍。
本章为读者提供理解翼型产生功率的背景,以计算一个优化的叶片形状作为设计叶片的起点,对已知翼型特性线和叶型的转子分析其气动性能。
本章的大部分内容详细说明了采用古典分析方法分析水平轴风力机。
动量理论和基元叶片理论(blade element theory)构成了片条理论(strip theory)或基元叶片动量理论(BEM)。
以此计算转子环形截面的特性,然后通过积分就可以获得整个转子的特性。
内容分为:1、理想风力机的分析(Betz极限)2、翼型的运行和一般气动力概念3、重点放在水平轴风力机的经典分析方法和一些应用和例子§3.2 一维动量理论和贝兹极限控制体积和理想透平如图,气流通过透平只产生压力不连续,并假设●气流均匀,不可压缩,定常流动●气流无磨擦阻力●透平具有无限多叶片●推力均匀作用在转子叶轮旋转面上●尾流无旋转转子远上游和远下游静压等于无干扰时环境的静压设T 为风作用于风力机上的力,由动量定理可知,透平对风的作用力为:4114()()T m U m U m U U ∙∙∙=---=- (3.2.2) 对于稳态流动,14()()AU AU m ρρ==,m 是质量流量,这里ρ是空气密度,A 是横截面,U 是空气速度。
此外,还由理想流体伯努利方程可知:2211221122p U p U ρρ+=+ (3.2.3) 2233441122p U p U ρρ+=+ (3.2.4)因为14p p =,且通过透平的前后速度一样(23U U =)。
2.1 风速分布特征
研究表明,风速分布一般为正偏态分布。
用于拟合风速分布的模型很多,其中Weibull 函数应用最广,更接近风速的实际分布,其数学表达式为:
1()()()exp[()]k k w k v v P v C C C
-=- 式中 k ——形状参数,是一个无因次量
C ——R 度参数,其量纲与速度相同
通常观测到的风速2是离地面10m 高度风速值V 10,应根据所选风力机叶轮轮毂高度H ,将10m 高度风速折算至对应风速V H ,公式如下:
10()10
x H H V V =,式中 x ——取决于观测点地理特征的系数。
2.2 风力机输出特性
容量系数
运行时间折算成毛容量下的等效运行时间与给定时间区间的比值。
以某月为例,一台毛容量为300MW的发电机组,发电量为12000万千瓦时,运行时间为436小时,月统计时间为720小时,则毛容量下的等效运行小时数为:
(12000÷436)/30×436=400(小时)
毛容量系数为:
400/720*100=55.56
容量
300MW
风电场运行年有效利用小时数与全年小时数的比值,或风电场实际运行年上网电量与额定年上网电量的比值。
(表示为百分比)。
目录风力机空气动力学基础知识 (3)风力与风的测量 (14)什么是升力式风力机 (18)风轮的实度 (25)风力机调速方式 (30)风力机对风装置 (33)直驱式水平轴风力发电机 (37)概念风力机图片 (40)达里厄风力机 (43)升力-阻力结合式垂直轴风力机 (50)叶片可摆动的垂直轴风力机 (54)离心力调节叶片攻角垂直轴风力机 (59)用磁力与风力控制垂直轴风力机浆距角的方法与机构 (65)达里厄风力机图片 (74)屏障平板式风力机 (82)平板摆转式风力机 (85)风杯式阻力差风力机 (88)S式阻力差风力机之一 (91)S式阻力差风力机之二 (94)萨渥纽斯(Savonius)风力机 (94)塞内加尔式风力机 (95)阻力型风力机图片 (97)直驱式风力发电机概述 (102)外转子直驱式发电机 (105)中间定子盘式风力发电机 (109)中间转子盘式发电机 (115)薄盘式永磁发电机 (121)Enercon公司E-112风力发电机的吊装图片 (126)叶片的空气动力学基础 (134)升力型垂直轴风力机的工作状态简析 (139)浅析垂直轴风力机叶片的翼型与展弦比 (146)NACA0012翼型的截面与升力阻力曲线图 (151)简析几种垂直轴风力机叶片攻角调整方法的优缺点 (156)风能与风功率 (164)风轮尺寸与额定风速 (168)风力机空气动力学基础知识风能曾是蒸汽机发明之前最重要的动力,数千年前就有了帆船用于交通运输,后来有了风车用来磨面与抽水等。
近年来,由于传统能源逐渐枯竭、对环境污染严重,风能作为清洁的新能源得到人们的重视。
为方便风力机技术知识的学习,下面介绍一些风力机空气动力学的基础知识。
升力与阻力风就是流动的空气,一块薄平板放在流动的空气中会受到气流对它的作用力,我们把这个力分解为阻力与升力。
图1中F是平板受到的作用力,F D为阻力,F L为升力。
阻力与气流方向平行,升力与气流方向垂直。