空气动力学基础知识教学教材共59页文档
- 格式:ppt
- 大小:5.59 MB
- 文档页数:59
空气动力学基础知识飞机的飞行原理第一章空气动力学基础知识一、空气的物理参数二、空气的物理性质三、大气分层四、国际标准大气五、气流特性空气是飞机的飞行介质。
随着高度的增加,空气的密度、温度、压力、音速和空气的物理参数和性质也随着变化,影响着飞机飞行中的空气动力性能、发动机的工作状态、飞机的机体结构连接间隙的变化和飞机的座舱环境的控制等。
基于上述原因,在讨论飞机的飞行原理之前,首先要对空气的物理参数和基本性质、大气的分层和国际标准大气、气流特性及气流流动的基本规律、附面层等有所了解,作为了解和掌握飞机飞行原理的基础。
一、空气的物理参数空气的密度、温度和压力是确定空气状态的三个主要参数,飞机空气动力的大小和飞机飞行性能的好坏,都与这三个参数有关。
1、空气的密度空气的密度是指单位体积内空气的质量,取决于空气分子数的多少。
即:ρ=m/V公式中:ρ为空气的密度,单位是“千克/米3”;m为空气的质量,单位是“千克”;V为空气的体积,单位是“米3”。
空气的密度大,说明单位体积内空气的分子数多,我们称为空气稠密;空气的密度小,说明单位体积内空气的分子数少,我们称为空气稀薄。
大气的密度随高度的增加而减小。
2、空气的温度空气的温度是指空气的冷热程度。
空气温度的高低表明空气分子作不规则热运动平均速度的大小。
空气温度的高低可以用温度表(计)来测量。
空气的温度一般用“t”来表示。
我国和世界上大多数国家通常采用的是摄氏温度,单位用摄氏度(℃)表示。
西方的一些国家和地区采用的是华氏温度,单位用华氏度(℉)表示。
摄氏温度(℃)和华氏温度(℉)可以用下式进行换算:℉=9/5℃十32℃=(℉—32)5/9例如:0℃为32℉;15℃为59℉。
工程计算中经常采用“绝对温度”的概念,用“T”表示,单位用开氏度(oK)表示。
当空气分子停止不规则的热运动时,即分子的运动速度为零时,我们把这时的温度作为绝对温度的零度。
绝对温度(T)与摄氏温度(t)之间的关系可以用下列公式进行换算:T=t+273绝对温度的0oK等于摄氏温度-273℃3、空气的压力空气的压力(也称气压)是指空气的压强,即单位面积上所承受空气垂直方向的作用力。
第一章 流体力学基础1. 流体:液体与气体不能保持固定的形状,富有流动性.2. 气体的状态参数密度-单位体积所含的气体质量。
比重-单位体积的气体重量。
比容—单位质量气体的体积,即密度的倒数。
压强—作用于单位面积上的法向力。
3. 气体的热力学性质热力学物质体系:用热力学去处理的客体和周围环境其他物体划分开的一个任意形态的物质体系。
物系和外界的关系:既无物质交换,又无能量交换,称为隔绝体系;无物质交换,但有能量交换,称为封闭体系;有物质交换,又有能量交换,称为开放体系。
4. 压缩性:一定质量流体在压强P 改变时其体积可以改变的性质。
流体的压缩性可以用体积弹性模数E 衡量:ρρd dPE =(体积弹性模数:使单位体积相对变化量或密度相对变化量等于1时所需的压强增量.)E 越大,表示流体越不易压缩。
E 的大小与流体种类有关,对于气体还和温度有关。
5. 黏性系数μ:μ越大,则摩擦力越大,即黏性越大。
黏性系数与气体种类有关,也与温度有关,随温度升高而增加,与压强基本无关.6. 作用在流体上的力:表面力和质量力。
7. 流线:在任一瞬时,在流场中都可以画出一系列曲线,是曲线上每点的切线方向与该点的速度方向重合。
对于定常流而言,这种流线不随时间变化,流线即流体质点的运动轨迹。
对于非定常流而言,流线随时间而变,因为流线是按每一瞬时的速度分布画出的,流线不是流体微团的运动轨迹。
8. 流管:有流线组成的管子,管子壁面由流线组成。
9. 理想流体:无黏性的流体。
10. 等熵流:沿流线熵不变。
(不同流线上的熵可能不同)11. 均熵流:不仅沿流线熵不变,而且各条流线上的熵都相同。
12. 可压流:在流动中流体微团的密度是变化的,也就是说在流场中密度为变量,则称这种流动为可压流。
13. 不可压流:在流动中流体微团的密度保持不变,也就是说在流场中密度为常数,则称这种流动为不可压流。
14.15. 定常均熵流(定常理想绝热流)的伯努利方程:16. 气流总参数:总压:总温:总密度:17. 计算题:P27 例题18. 马赫数:速度与音速的比值。
空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。
空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。
空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。
根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。
在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。
空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。
这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。
我把Introduction to flight的第四章Basic aerodynamics略读了一遍,提炼了其中的重点要点,将其总结在一起分享给同学们,希望对大家空气动力学的学习有所帮助。
这个文档内容涉及的气流都是无黏的(书134—228页),没有包含黏性研究的部分。
因为领域导论书对黏性没怎么研究,基本都是只给结论,所以就不总结了。
本文档包括两部分,一是一些基本方程,二是这些方程的一些应用。
我读书只是蜻蜓点水,对一些公式的理解可能有错误;写的只是大致的推导过程,难免有不细致严谨之处;对一些英文的翻译可能不标准,同时可能输入有误。
希望大家批评指正、私下交流。
真心希望我们共同为之润色添彩,使其更加准确无误。
同时,大家有什么学习资料都记得共享啊,让我们共同进步!大家可以再看看领域导论书,看了这个总结,再看书就比较简单了。
看书最好也看看例题,例题不仅是对公式的简单应用,而且有些还包含新的知识,能增进我们对公式的理解。
这些内容只能算是一些变来变去的简单代数问题,大家不要有压力。
不过有几条注意事项:1、注意公式的限定条件,避免错误地加以应用。
2、大物书上的理想气体方程是Pv=RT,其中的R是普适气体常量(universal gas constant),领域导论书上的P=ρRT是经过变换的等价形式,其中的R是个别气体常量(specific gas constant),等于普适气体常量R普适/M,大家变一下马上就懂了。
2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。
在一、基本方程——7、能量方程的推导中,v=1/ρ,这里的1应理解为单位质量,后面的能量方程中的V2也包含单位质量1,不然与h的量纲就不统一了;在二、公式应用——3、空速测定——C、高速亚声速流中,我们可以看出在本书中,Pv=RT,同样把大物书上的状态方程Pv=R普适T中的m当成单位质量1,并利用普适气体常量和个别气体常量的关系R个别=R普适/M,即可推出Pv=RT。