6-图像畸变校正
- 格式:ppt
- 大小:1.49 MB
- 文档页数:31
2021年2月Feb. 2021第50卷第2期Vol.50 No.2红外与激光工程Infrared and Laser EngineeringMEMS 振镜扫描共聚焦图像畸变机理分析及校正缪 新叫李航锋1,张运海心,王发民込施 辛彳(1.中国科学技术大学,安徽合肥230026;2.中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室,江苏苏州215163;3.苏州大学附属第二医院,江苏苏州215000)摘要:在皮肤反射式共聚焦显微成像过程中,针对MEMS 振镜二维扫描引起的共聚焦图像畸变,开 展了光束偏转理论分析,得出了投影面扫描图像的具体形状表征,理论畸变图像与真实畸变图像一致, 明确了畸变机理,提出一种有效的畸变校正算法,实现对图像二维畸变的校正。
首先记录原始光栅畸变图像,然后基于Hessian 矩阵提取光栅中心线,拾取特征点并设置基准参考线,通过基于最小二乘法 的7次多项式插值法标定二维方向像素畸变校正量,采用加权平均法填补间隙像素灰度值,最终实现图像畸变校正。
利用网格畸变测试靶实验得出7次多项式插值后的校正决定系数最高、均方根误差值 最低,整幅512行图像在7次多项式插值后最优行数占379行,比例为74%,通过残差分析,二维方向 上残差最大为4个像素,最小为0个像素,平均为1.15个像素,校正结果较为精确。
皮肤在体实时成像实验显示,图像畸变校正后组织结构特征更加真实准确,表明这种校正算法有效可行,有助于皮肤疾 病的准确诊断。
关键词:图像二维畸变;机理分析;Hessian 矩阵;光栅;多项式插值 中图分类号:TH742.9文献标志码:A DOI : 10.3788/IRLA20200206Analysis and correction of image distortion in MEMSgalvanometer scanning confocal systemMiao Xin 12, Li Hangfeng 1, Zhang Yunhai 1,2*, Wang Famin 1,2, Shi Xin 3(1. University of Science and Technology of China, Hefei 230026, China;2. Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences, Suzhou 215163, China;3. The Second Affiliated Hospital of Soochow University, Suzhou 215000, China)Abstract: Aiming at the distorted confocal images caused by the two-dimensional scanning of MEMS galvanometer during skin imaging by reflectance confocal microscopy, the theoretical analysis of beam deflectionwas carried out, and the specific shape representation of projection plane scanning image was obtained. It was concluded that the theoretical distortion image was consistent with the real distortion image. The distortionmechanism was clarified and a distortion correction method was proposed. First, the original distorted grating image was recorded, then the center lines of grating were obtained based on the Hessian matrix, after that feature points were picked and datum reference lines were set. Finally, the correction to the distorted confocal images wasrealized by calibrating the corrections of the two-dimensional pixel distortions using polynomial interpolation收稿日期:2020-10-12;修订日期:2020-11-15基金项目:国家重点研发计划(2017YFC0110305);山东省自然科学基金(ZR2019BF012);济南市“高校20条”资助项目(2018GXRC018);苏州市民生科技项目(SS201643)红外与激光工程第50卷第2期based on the least square method and filling the gray value of gap pixels by weighted average method.By the experiment of measuring target with grid distortion,the correction coefficient was the highest and the root mean square error was the lowest after polynomial interpolation of degree7.Also,the optimal number of512rows was 379,accounting for74%.The residual distortions were accurately evaluated,in two dimensional,the maximum value is4pixels,the minimum value was0pixel and the average value was L15pixels,so the results were accurate.The experiment of in vivo real-time skin imaging shows that the organizational structure features are more real and accurate after corrections.So this method is effective and feasible,which is helpful for accurate diagnosis of skin diseases.Key words:two-dimensional distortions of images;polynomial interpolation0引言作为一款新型影像学临床诊断设备,皮肤反射式共聚焦显振镜利用皮肤中血红蛋白、黑色素和角蛋白等不同组织成分的折射率差异进行成像,为皮肤组织的实时观测提供有效的技术手段,在恶性皮肤肿瘤早期诊断、治疗后随访等方面发挥了愈发重要的作用"役为进一步实现皮肤病检查时的便捷性,需要发展手持式皮肤共聚焦显振镜,由于受到系统体积和重量限制,系统中的核心部件扫描振镜要采用单镜面式MEMS振镜实现二维扫描成像,该扫描方式使得采集到的图像存在较为严重的二维畸变,扭曲了皮肤组织真实的结构形态.如不对这种图像畸变进行校正,将不利于医生观察皮损组织真实形态、边界轮廓、结构特征等信息,直接影响临床诊断结果因此,需要在分析产生图像畸变机理的基础之上,实现畸变校正,将真实图像信息准确呈现,为皮肤疾病诊断奠定基础。
摄影中的镜头畸变与校正技巧摄影是一门充满艺术性和技术性的创作形式。
在摄影过程中,摄影师常常会面临各种技术挑战,其中之一就是镜头畸变。
镜头畸变是在拍摄过程中产生的图像变形现象,它可能会影响到照片的质量和真实性。
为了解决这一问题,摄影师需要熟悉镜头畸变的类型和校正技巧。
一、什么是镜头畸变镜头畸变是指镜头在成像过程中引起的图像变形。
它主要分为三种类型:桶形畸变、枕形畸变和畸形畸变。
1. 桶形畸变桶形畸变是在照片中出现图像向中心收缩的现象,形状类似于桶子。
这种畸变通常出现在广角镜头和鱼眼镜头中,由于广角镜头的视角较大,所以图像边缘会向中心收缩。
2. 枕形畸变枕形畸变是在照片中出现图像向边缘收缩的现象,形状类似于枕头。
这种畸变通常出现在长焦镜头中,由于长焦镜头的视角较窄,所以图像边缘会向中心收缩。
3. 畸形畸变畸形畸变是在照片中出现一些不规则的图像变形现象,如弯曲或拉伸等。
这种畸变通常由于镜头的质量较差或者使用不当造成。
二、镜头畸变的校正技巧镜头畸变可以通过以下几种方法进行校正,以保证照片的质量和真实性。
1. 镜头校正大部分相机和摄像机都具有镜头校正功能,可以通过设置菜单中的参数进行校正。
通过选择恰当的校正参数,可以有效减轻或消除镜头畸变。
2. 后期校正在后期处理中,我们可以使用专业的图像编辑软件来进行镜头畸变的校正。
这种方法可以更加精确和灵活地处理畸变问题,同时也可以对图像进行其他的调整和修饰。
3. 畸变校正镜头一些专业的摄影镜头具有畸变校正的功能。
这些镜头内部集成了特殊的光学组件,可以在成像过程中主动校正镜头畸变,提供更加真实和准确的图像。
4. 构图和摄影技巧在实际拍摄中,合理的构图和摄影技巧也可以帮助减轻或掩盖镜头畸变。
通过选择恰当的角度、距离和焦距等因素,可以最大程度地优化图像的透视和比例关系,减少畸变的出现。
总结:镜头畸变是摄影过程中常见的技术挑战之一。
摄影师可以通过了解镜头畸变的类型和校正技巧,有效地解决这一问题,保证照片的质量和真实性。
opencv畸变校正原理OpenCV是一个功能强大的计算机视觉库。
在计算机视觉中,图像畸变校正是一个重要、必不可缺的过程。
OpenCV库提供的畸变校正函数可以帮助去除图像中的畸变,提高图像的准确性和可靠性。
畸变是指物体投射到相机成像平面上时,由于光学系统自身的错误,而导致图像发生形变的现象。
主要有两种畸变:径向畸变和切向畸变。
径向畸变是指由于透镜曲率半径不同而产生的畸变,而切向畸变是指透镜装配不好或不水平,导致图像发生变形的现象。
畸变的原因造成了图像中物体的实际尺寸与图像上物体的可视尺寸不同,这就导致测量这些物体的尺寸和距离时很不准确。
因此,在进行计算机视觉相关的应用时,需要先将图像进行畸变校正。
OpenCV 提供了一组API函数来处理这个问题,接下来我们将逐步介绍它的原理。
1. 获取相机参数在畸变校正之前,需要获取相机的畸变参数,这可以通过相机标定实现。
通过对已知世界坐标和相应像素坐标的对应关系进行标定,可以得到相机的畸变参数。
这个过程需要使用适当的标定工具和标定板。
2. 计算畸变校正的映射矩阵OpenCV提供的initUndistortRectifyMap函数可以帮助我们计算校正图像的映射矩阵。
这个函数需要输入相机参数和输出图像的尺寸以及矫正图像的畸变参数。
它将根据输入的参数计算出图像的X、Y映射矩阵。
3. 校正图像OpenCV提供的remap函数可以帮助我们校正图像。
该函数需要输入原始图像、X、Y映射矩阵以及输出图像。
通过使用计算出的映射矩阵,函数将重新映射图像像素,从而消除图片中的畸变。
总结:在本文中,我们了解了OpenCV畸变校正的基本工作原理,首先是获取相机的畸变参数,然后计算校正图像的映射矩阵,最后通过remap函数实现图像的畸变校正。
OpenCV持续改进,使得使用OpenCV进行畸变校正变得更加简单和快捷,能够为计算机视觉应用提供更精确的图像信息。
Photoshop中的纠正镜头畸变方法Photoshop是一款功能强大的图像编辑软件,它不仅可以对图片进行修饰、调整和美化,还可以进行纠正镜头畸变的操作。
镜头畸变是指由于镜头设计或拍摄角度而引起的图像变形现象,常见的有鱼眼畸变、桶形畸变和枕形畸变等。
在这篇文章中,我将详细介绍使用Photoshop纠正镜头畸变的方法和步骤。
纠正镜头畸变的方法如下:1. 打开图像:首先,在Photoshop中打开需要进行镜头畸变纠正的图像。
可以选择“文件”-“打开”命令,或者使用快捷键“Ctrl+O”进行文件的导入。
2. 将图像转换为智能对象:在图层面板中,选中背景图层,并右键点击选择“转换为智能对象”。
这一步的目的是将图像转换为智能对象,以便后续的非破坏性编辑。
3. 选择滤镜:在顶部菜单栏中选择“滤镜”-“镜头校正”-“去畸变”。
这个滤镜可以自动校正图像的畸变,但需要设置一些参数以适应具体的畸变情况。
4. 调整参数:在弹出的“去畸变”窗口中,可以看到几个参数选项。
首先,选择针对何种类型的畸变进行校正,常见的有鱼眼畸变、桶形畸变和枕形畸变。
根据实际情况选择合适的畸变类型。
5. 设置畸变度:接下来,在“去畸变”窗口中,可以看到一个滑块,用于设置畸变度。
根据图像的具体情况,逐渐调整滑块的位置,观察图像的变化,直到达到满意的效果为止。
6. 应用滤镜:点击“确定”按钮后,滤镜将会应用到图像上,纠正镜头畸变。
可以通过对比原始图像和纠正后的图像来验证效果。
7. 保存图像:最后,保存经过纠正的图像。
选择“文件”-“另存为”命令,选择保存格式和存储位置,点击“保存”按钮即可。
需要注意的是,纠正镜头畸变是一项相对复杂的工作,具体的参数设置和效果预览需要根据实际情况进行调整。
在进行纠正之前,最好先观察图像的畸变情况,并确定适当的处理方法。
总结:使用Photoshop纠正镜头畸变是一项相对简单且非破坏性的编辑操作。
通过转换为智能对象并使用“去畸变”滤镜,可以快速有效地纠正图像的镜头畸变。
Photoshop镜头校正:纠正照片中的畸变和失真Photoshop是一款功能强大的图像处理软件,其中的镜头校正功能可以有效地纠正照片中的畸变和失真。
在本文中,我将详细介绍如何使用Photoshop进行镜头校正,并分步骤列出具体操作方法。
步骤1:导入照片在打开Photoshop软件后,点击菜单栏中的"文件",然后选择"打开",将需要校正的照片导入到软件中。
步骤2:选择镜头校正工具在Photoshop的工具栏中,找到"滤镜"工具,并点击展开菜单。
在菜单中找到"镜头校正"选项,点击进入镜头校正界面。
步骤3:选择校正模式在镜头校正界面中,有多种校正模式可供选择。
根据不同的畸变类型选择相应的模式。
常见的校正模式有:- 鱼眼透视:适用于鱼眼镜头或产生浓重透视效果的照片。
- 全景:适用于全景照片或宽广景象的照片。
- 矩形:适用于纠正照片中出现的比例失真或平面透视。
步骤4:调整校正参数在选择了相应的校正模式后,可以根据具体照片的情况调整校正参数。
这些参数包括:- 校正度:控制纠正的程度,可以根据实际需要进行微调。
- 倾斜:用于调整照片的倾斜程度,使之恢复为正常的水平状态。
- 放大/缩小:用于调整照片的大小比例。
- 旋转:用于对照片进行旋转调整。
- 缩放:可以根据具体数值进行放大或缩小。
步骤5:应用校正效果在调整了相应的校正参数后,可以点击"应用"按钮,将校正效果应用到照片中。
此时,可以实时查看照片的校正效果。
步骤6:进一步编辑在应用了校正效果后,可以进一步编辑照片,使其更加完美。
可以使用Photoshop中的其他功能,如亮度/对比度调整、色彩平衡、磨皮等,来进一步改善照片的品质。
步骤7:保存照片在编辑完成后,可以点击菜单栏中的"文件",然后选择"保存",将编辑好的照片保存在本地文件夹中。
光学系统是指由光学元件组成的系统,用于收集、传输、处理、显示光的系统。
然而,由于材料的特性和光的传播特点,光学系统在工作过程中常常会出现畸变现象。
畸变是指光学图像在传输过程中产生的变形或失真。
了解和掌握光学系统的畸变及其校正方法对于提高系统的图像质量和光学系统设计至关重要。
光学系统的畸变主要分为几种类型:径向畸变、切向畸变、畸变中心漂移、色差等。
径向畸变是指由于透镜材料的非均匀折射率导致光线弯曲,使图像产生“桶形畸变”或“枕形畸变”。
而切向畸变则是由于透镜表面的形状不均匀引起的,使得图像在某一方向上有扭曲的现象。
畸变中心漂移是指改变观察角度会导致图像中心位置的改变。
色差则是由于不同波长的光在透镜中的折射率不同,使得多色光聚焦位置不同,造成色彩偏移。
针对这些畸变问题,人们提出了多种校正方法。
其中,最常用的校正方法之一是使用非线性透镜。
非线性透镜是通过控制透镜曲面形状的变化来实现畸变校正的。
这种方法可以将光线在透镜中的折射路径调整到理想状态,从而达到对畸变的校正效果。
此外,还有一种常见的校正方法是采用多镜头组合,即采用多个透镜组合来校正畸变。
这种方法通过将不同形状或具有不同光学性质的透镜进行组合,来纠正图像的畸变。
每一个透镜都能够对特定类型的畸变进行校正,从而整体上达到对光学系统畸变的校正效果。
此外,数字图像处理技术也可以应用于光学系统的畸变校正。
通过使用计算机算法对捕捉到的图像进行处理,可以对图像进行畸变校正。
例如,可以利用几何变换的方法,对图像进行旋转、平移等操作,从而达到校正图像畸变的效果。
在光学系统的设计中,畸变校正也是一个重要的考虑因素。
通过合理选择和组合光学元件,可以减小或消除系统中的畸变现象。
此外,在制造过程中也需要对光学元件进行精确加工和质量控制,以保证系统的图像质量。
总之,光学系统的畸变与校正是一个复杂而重要的问题。
了解不同类型的畸变现象及其校正方法,对于光学系统的设计和工程应用具有重要意义。
光刻机曝光过程中的光学畸变分析与校正光刻技术在集成电路制造中扮演着重要的角色,而光刻机作为其中的核心设备之一,其曝光过程中的光学畸变问题一直是制约曝光质量和产品稳定性的关键因素之一。
本文将对光刻机曝光过程中的光学畸变进行深入分析,并介绍一种常用的校正方法。
一、光刻机曝光过程中的光学畸变分析1. 光学畸变的定义光学畸变是指在光学系统中由于折射、散射、透射等因素引起的光线传输过程中的形变、失真或者颜色变化等现象。
对于光刻机而言,光学畸变会导致曝光图案与设计图案不一致,进而影响芯片的制造精度和可靠性。
2. 光刻机曝光中的主要光学畸变(1)球差:球差是凸透镜或凹透镜引起的光线聚焦点不在一个平面上的现象。
当光刻机曝光过程中存在球差时,会使得曝光图案的焦点位置产生偏移,导致芯片图案的失真。
(2)像散:像散是由于光学系统中透镜的离轴位置或者透镜形状不对称导致焦点位置分散的现象。
造成像散的主要原因是非对称的透镜加工或者材料不均匀。
(3)畸变:光刻机曝光过程中引起的图案形变现象。
畸变可以分为径向畸变和切向畸变两种,径向畸变是指在图案的边缘部分产生形变,而切向畸变则是指在图案的内部产生形变。
二、光学畸变的校正方法1. 光刻机光学系统的精确调节(1)调节光刻机透镜组:通过调节光刻机透镜组的位置、角度和形状等参数,使得光线在透镜系统中的传输更加准确,从而减小光学畸变的发生。
(2)使用补偿透镜:在光刻机的光学系统中加入特殊设计的补偿透镜,通过光线的经过补偿透镜后实现光学畸变的校正。
2. 软件算法的应用光刻机中的曝光过程往往涉及到复杂的图像处理算法。
通过在软件层面上对曝光图案进行数学建模和算法优化,可以减小光学畸变的影响。
三、实验验证与结论我们针对一款特定型号的光刻机进行了光学畸变的实验分析与校正。
实验结果表明,在采用精确调节光学系统和应用软件算法的双重方法后,光学畸变得到了有效的校正。
曝光图案的失真率明显下降,芯片的制造精度和可靠性得到了显著提升。
halcon畸变校正adaptive算法原理Halcon (海康) 是一种用于机器视觉应用的强大的软件库。
它提供了广泛的图像处理和分析功能,包括畸变校正(Distortion Correction) 算法。
畸变校正在机器视觉中非常重要,因为它可以去除图像中由镜头畸变引起的形变,从而提高图像的准确性和可靠性。
在Halcon中,adaptive算法是一种常用的畸变校正方法。
本文将逐步介绍adaptive算法的原理及其应用。
第一节:畸变校正基础畸变校正是通过转换像素坐标来纠正图像中的形状失真。
镜头畸变主要包括径向畸变和切向畸变。
径向畸变是由于镜头形状引起的,会使得图像中的直线弯曲或弯曲。
切向畸变是由于镜头放置角度引起的,会导致图像中的直线扭曲或倾斜。
畸变校正的目标是将图像重新映射到一个平面上,使得图像中的直线变为直的。
畸变校正方法通常包括建立畸变模型和对图像进行数学变换两个步骤。
第二节:adaptive算法原理adaptive算法是一种自适应的畸变校正方法,它可以根据已知的畸变模型参数自动调整校正结果,以减小残余畸变。
adaptive算法的原理基于对畸变模型的灵活性进行优化。
adaptive算法包括以下主要步骤:1. 提供已知的畸变模型参数,包括径向畸变系数和切向畸变系数。
这些参数可以通过镜头制造商提供的校准数据或通过标定板的图像处理得到。
2. 将待校正的图像分割成小的校正区域。
这可以通过图像中的特定特征或用户定义的区域来完成。
3. 对于每个校正区域,计算出原始图像中的坐标和校正后图像中的坐标之间的映射关系。
这通常使用畸变模型参数来进行计算。
具体算法包括对原始图像的每个像素进行反向畸变计算,并查找最近邻像素来获得校正后图像中的坐标。
4. 根据映射关系对图像进行数学变换。
这通常包括对校正后图像进行插值来生成新的校正图像。
插值方法可以根据应用需求进行选择,常见的插值方法有双线性插值和双三次插值等。
5. 对校正图像进行残余畸变分析。
快速矫正照片中的倾斜和畸变现如今,随着数码相机的普及和智能手机的发展,人们拍摄照片的频率越来越高。
然而,在拍摄的过程中,照片中的倾斜和畸变往往不可避免地出现。
这些问题会影响照片的美观度和真实性,给我们带来困扰。
而幸运的是,我们可以借助一些图像处理软件和技巧来快速矫正照片中的倾斜和畸变。
下面是一个详细的步骤,以帮助大家快速矫正照片中的倾斜和畸变:1. 选择图像处理软件:首先,我们需要选择一款功能强大且易于使用的图像处理软件。
目前市场上有许多选择,比如Adobe Photoshop、GIMP和Lightroom等。
2. 打开照片:使用选择的图像处理软件,打开照片。
在软件的菜单栏中找到“文件”选项,并选择“打开”功能。
然后浏览计算机中的文件夹,找到目标照片并打开它。
3. 选择校准工具:一般情况下,在软件的工具栏中可以找到校准工具。
根据自己使用的软件,可能会有不同的命名和位置。
常见的校准工具包括“旋转”和“畸变校正”。
4. 旋转矫正:对于照片中的倾斜问题,我们可以使用旋转矫正工具来进行矫正。
点击校准工具中的“旋转”选项,并在照片中找到需要矫正的区域。
在软件中,我们可以通过拖动一个角来旋转图像,使得水平线与图像中的水平线对齐。
一旦我们达到满意的矫正效果,就可以应用和保存照片。
5. 畸变校正:除了倾斜问题,照片中的畸变问题也需要修复。
常见的畸变包括桶形畸变和枕形畸变。
点击校准工具中的“畸变校正”选项,并在照片中找到畸变的区域。
在软件中,我们可以通过调整某些参数来校正畸变。
这些参数可能包括角度,水平线和垂直线等。
调整这些参数,直到我们达到所需的校正效果,然后应用和保存照片。
6. 使用自动校准:如果你觉得手动调整太繁琐,你也可以尝试使用软件中的自动校准功能。
这些功能可以根据图像中的线条和边缘自动检测并校正倾斜和畸变。
虽然它们可能无法完美修复所有问题,但它们可以提供一个很好的起点,然后我们可以手动微调以达到满意的结果。