三年级奥数-第7讲 加减法应用题
- 格式:doc
- 大小:54.50 KB
- 文档页数:3
第七讲巧填算符知识导航所谓填算符,就是指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
在填算符的问题中,所填的算符包括+、-、×、÷、()、[]、{}。
解决这类问题常用的基本方法:凑数法、逆推法和试填法,常常这几种方法并用。
凑数法是根据所给的数,凑出一个与结果比较接近的数,然后,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
凑数法常用于数字较多,结果也较大的题目。
逆推法常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
逆推法常用于数字不太多,题目比较小的题目。
在解决实际填算符的问题时,通常需要我们打开思维,多方位思考!例题精讲【例1】在4个4 之间填上+、-、×、÷或括号,使算式成立。
4 4 4 4=8分析:这类问题我们可以用倒推法解决。
想想:□+4=8,□-4=8,□×4=8,□÷4=8①从□+4=8考虑,前面3个4 得4,即有4+4-4+4=8,4-4+4+4=8,4-﹝4-4﹞+4=8②从□-4=8考虑,前面3个4 得12,即有4+4+4-4=8,4×4-4-4=8③从□×4=8考虑,前面3个4 得2,即有﹝4+4﹞÷4×4=8④从□÷4=8考虑,前面3个4 得32,即有﹝4+4﹞×4÷4=8,4×﹝4+4﹞÷4=8【例2】在下列五个5之间,添加适当的运算符号+、-、×、÷或括号,使下面的算式成立。
5 5 5 5 5 = 10分析:由于5的个数比较少,因此采用倒推法,即从结果出发,由后往前进行推想。
如果最后一个5前面添“+”号,那么我们只要使5 5 5 5 =5 成立便可,然后继续由后往前推,重复上面的想法,只要使5 5 5 +5=5,即 5 5 5 =0 ,这个等式很容易完成,因此可以得到如下填法:(5-5)×5+5+5=10 ;(5-5)÷5+5+5=10 ;5×(5-5)+5+5=10 ;同样思路可得:5×5-5-5-5=10;(5÷5+5÷5)×5=10;(5×5+5×5)÷5=10。
小学三年级奥数讲解及练习题:应用题一、知识要点应用题是小学数学中非常重要的一部分内容,它需要我们小朋友用学到的数学知识来解决生产、生活中的一些实际问题。
学好应用题的关键在于认真分析题意,掌握数量关系,找到问题的突破口。
在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求的问题;也可以从问题出发,找到必须的两个条件。
在实际解答时,我们可以根据题目中的数量关系,灵活运用这两种方法。
有时,借助线段图来分析应用题的数量关系,解答就更容易了。
二、精讲精练【例题1】学校里有排球24只,足球的只数比排球的2倍少5只,学校有排球、足球共多少只?【思路导航】根据题意画出线段图从上图可以看出,把24只排球看作1倍数,足球的只数比这样的2倍还少5只,用24×2-5=43(只)可以求出足球的只数,再用43+24=67只可以求出两种球的总只数。
练习1:1.小红每分钟跳绳25下,小军每分钟跳的下数比小红的3倍少16下,小军每分钟比小红多跳几下?2.王奶奶家养鸡12只,养鹅的只数比鸡的只数的4倍还多7只。
王奶奶家共养鸡、鹅多少只?3.少先队员种柳树30棵,种的杨树的棵数比柳树棵数的3倍多14棵。
少先队员种的杨树、柳树共多少棵?【例题2】人民广场花圃中有180盆郁金香,比月季花盆数的3倍少15盆。
月季花有多少盆?【思路导航】从上图可以看出,把月季花的盆数看作1倍数,郁金香的盆数是这样的3倍少15盆。
如果郁金香再增加15盆,就正好是月季花盆数的3倍。
因此用(180+15)÷3=65(盆)就可求出月季花的盆数。
练习2:1.小明的父亲每月工资1000元,比小明母亲每月工资的2倍少200元。
小明母亲每月工资多少元?2.饲养场养母鸭400只,比公鸭只数的7倍还多36只。
饲养场养公鸭多少只?3.水果店卖出9筐水果,平均每筐重45千克。
卖出水果的千克数比剩下的3倍还多27千克,还剩多少千克水果?【例题3】小林家养了一些鸡,黄鸡比黑鸡多13只,白鸡比黄鸡多12只,白鸡的只数正好是黑鸡的2倍。
小学三年级奥数题和倍问题、加减法的巧算、相遇问题1.小学三年级奥数题和倍问题篇一1、红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?2、甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?3、甲书架有图书18本,乙书架有图书8本,班图书管理员又买来图书16本,怎样分配才能使甲书架图书的本数是乙书架的2倍?4、被除数和除数和为120,商是7,被除数和除数各是多少?5、被除数、除数、商的和为79,商是4,被除数、除数各是多少?2.小学三年级奥数题加减法的巧算篇二1、巧算下面各题:①36+87+64②99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30002、①188+873②548+996③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101013.小学三年级奥数题加减法的巧算篇三1、计算:123+234+345-456+567-678+789-890123+234+345-456+567-678+789-890=123+234+345+(567-456)+(7*78)-890=123+234+345+111+111-890=234+(123+567)-890=234+690-890=34+890-890=342、569+384+147-328-167-529569+384+147-328-167-529=(569-529)+147-(147+20)+388-4-328=40-20+56=763、计算:6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)=(6480-8)+(5320-1)+(9360-6)+(6840-1)-(4476-2476-4)-(3323-1323-4)-(7358-5358-4)-(4843-2843-4)=(6480+5320)+(9360+6840)-8-1-6-1-2000+4-2000+4-2000+4-2000+4=11800+16200-8000-16+16=28000-8000=200004.小学三年级奥数题相遇问题篇四1、甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地。
三年级加减法应用题50道一、加减法应用题(1 - 20题)1. 学校图书馆原来有故事书320本,又买来150本,现在有多少本故事书?- 解析:原来有的故事书本数加上又买来的本数,就是现在有的本数。
即320 + 150=470(本)。
2. 三年级一班有男生23人,女生25人,这个班一共有多少人?- 解析:男生人数加上女生人数就是班级总人数,23+25 = 48(人)。
3. 小明有120颗糖,给了小红30颗,还剩多少颗糖?- 解析:原有的糖数减去给出去的糖数就是剩下的糖数,120 - 30=90(颗)。
4. 果园里有苹果树350棵,梨树比苹果树少100棵,梨树有多少棵?- 解析:苹果树的棵数减去100棵就是梨树的棵数,350-100 = 250(棵)。
5. 超市上午卖出牛奶200箱,下午卖出180箱,一天共卖出多少箱牛奶?- 解析:上午卖出的箱数加上下午卖出的箱数就是一天卖出的总数,200 + 180=380(箱)。
6. 小红有85元钱,买文具花了30元,还剩多少钱?- 解析:原有的钱数减去花掉的钱数就是剩下的钱数,85-30 = 55(元)。
7. 停车场原来有52辆车,开走了20辆,又开来15辆,现在停车场有多少辆车?- 解析:先算出开走20辆后剩下的车辆数为52 - 20 = 32辆,再加上开来的15辆,32+15 = 47(辆)。
8. 三班图书角有故事书180本,科技书比故事书多50本,科技书有多少本?- 解析:故事书的本数加上50本就是科技书的本数,180+50 = 230(本)。
9. 小明家上个月用电150度,这个月比上个月节约了30度,这个月用电多少度?- 解析:上个月用电度数减去节约的度数就是这个月用电度数,150 - 30 = 120(度)。
10. 学校组织植树活动,三年级种了120棵树,四年级比三年级多种30棵,四年级种了多少棵树?- 解析:三年级种树的棵数加上30棵就是四年级种树的棵数,120+30 = 150(棵)。
第一讲加减法的巧算在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加法的巧算:1.加法的交换律:a+b=b+a,其中a,b各表示任意一数。
例如,5+6=6+52.加法结合律:a+b+c=(a+b)+c=a+(b+c),其中a,b,c各表示任意一数。
例如,4+9+7=(4+9)+7=4+(9+7)例1 计算23+54+18+47+82 (1350+49+68)+(51+32+1650)例2 计算:57+64+238+46 4993+3996+5997+848例3计算:875-364-236 1847-1928+628-136-64 1348-234-76+2234-48-24例4计算512-382 6854-876-97 397-146+288-339练习一巧算下列各题:42+71+24+29+58 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253_158) 1457-(253-158)389-497+234 698-154+269+787第二讲横式数字谜这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:1.一个加数+另一个加数=和;2.被减数-减数=差;3.被乘数×乘数=积;4.被除数÷除数=商。
由它们推演还可以得到以下运算规则:由1.得和-一个加数=另一个加数;由2.得减数+差=被减数,被减数-差=减数;由3.得积÷乘数=被乘数,积÷被乘数=乘数;由4.得商×除数=被除数,被除数÷商=除数。
其次,要熟悉数字运算和拆分。
例如,8=0+8=1+7=2+6=3+5=4+424=1×24=2×12=3×8=4×6(两个数之积)24=1×2×12=2×2×6=2×2×3=……(三个数之积)24=1×2×2×6=2×2×2×3=……(四个数之积)例1下面算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7例2 下列算式中,□,○,△,☆各代表什么数?(1)□+□+□=48;(2)○+○+6=21-○;(3)5×△-18÷6=12;(4)6×3-45÷☆=13。
第7讲:填数游戏专题分析:小朋友都喜爱做游戏,填数游戏不但非常有趣,而且能促使你积极地思考问题、分析问题、但做填数游戏也有一定的难度,不过只要你掌握了方法,填起来就很轻松了。
填数时要仔细观察图形,确实图形中关键位置应填几,关键位置一般是图形的顶点或中间位置。
另外要将所填的空与所提供的数联系起来,一般要先计算所填数的总和与所提供的总和之差,进而确定关键位置应填几。
关键位置的数确定好了,其他问题就迎刃而解了。
例题1、在右图的小圆圈中他分别填入数字1∽9,使两条直线上的五个数的和相等,这五个数的和是多少呢?习题一、1在下面的小方格内分别填入2∽10,使横行、竖行中的五个数的和相等。
2、把1、4、7、10、13、16、19这七个数填入下图中的7方框里,使每条直线上的三个数的和相等。
3、把6、8、10、12、14、16、18这七个数填在下图的小圆圈中,使每条直线上的三个数及大圆圈上的三个数的和都是32例题2、把数字1∽8分别填入右图的小圆圈内,使每个五边形上的五个数的和都等于20。
习题二、1、将数字1∽6分别填入下图的小圆圈内,使每个大圆圈上的四个数的和都是15.2、把5、6、7、8、9、10这六个数填入下图三角形三条边的小圆圈内,使每条边上的三个数的和都是21.3、把1∽8这8个数字分别填入下图的各个小方格里,使每一横行、每一竖行的三个数的和都是13.例题3、用5∽13这九个数补全右图的方格,使每行、每列及对角线上的三个数之和相等。
习题三、1、将1∽9这9个数字填在下面的方格内,使横行、竖行及对角线上的三个数的和都是15.2、将1∽16这16个数字分别填入下图的16个方格内,使每行、每列及两条对角线上的四个数的和都相等。
3、将1∽11这11个数分别填入下面的“王”字格中,使每行、每一列的数之和都等于18.例题4、将数字1、2、3、4、5、6、7、填入下图的小圆圈中,使大、小圆环上的三个数字之和以及每条直线上的三个数字之和都相等。
加减法应用题这一讲主要介绍利用加、减法解答的简单应用题。
例1小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?解:将已知条件表示为下图:表示为算式是:24+?=46+5。
由此可求得养鹅(46+5)-24=27(只)。
答:养鹅27只。
若例1中鸡和鹅的总数比鸭少5只(其它不变),则已知条件可表示为下图,表示为算式是:24+?+5=46。
由此可求得养鹅46-5-24=17(只)。
例2一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?分析:根据已知条件,将各种数量关系表示为下图。
有几种思考方法:(1)根据取走18个梨后,梨比苹果少12个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。
(2)根据取走18个梨后梨比苹果少12个,我们设想“少取12个”梨,则现有的梨和苹果一样多,都是52个。
这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。
(3)根据取走18个梨后梨比苹果少12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。
这样一来,现有苹果就比原来的梨多了12个(见下图)。
由此可求出原有梨(52+18)-12=58(个)。
由上面三种不同角度的分析,得到如下三种解法。
解法 1:(52-12)+18=58(个)。
解法 2:52+(18-12)=58(个)。
解法 3:(52+18)-12=58(个)。
答:原来梨筐中有58个梨。
例3某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
又知巧克力糖的块数恰好是小白兔软糖块数的2倍。
三年级一班共买了多少块糖果?分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。
三年级奥数-第7讲加减法应用题用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。
应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。
这一讲主要介绍利用加、减法解答的简单应用题。
例1小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?解:将已知条件表示为下图:表示为算式是:24+?=46+5。
由此可求得养鹅(46+5)-24=27(只)。
答:养鹅27只。
若例1中鸡和鹅的总数比鸭少5只(其它不变),则已知条件可表示为下图,表示为算式是:24+?+5=46。
由此可求得养鹅46-5-24=17(只)。
例2一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?分析:根据已知条件,将各种数量关系表示为下图。
有几种思考方法:(1)根据取走18个梨后,梨比苹果少12个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。
(2)根据取走18个梨后梨比苹果少12个,我们设想“少取12个”梨,则现有的梨和苹果一样多,都是52个。
这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。
(3)根据取走18个梨后梨比苹果少12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。
这样一来,现有苹果就比原来的梨多了12个(见下图)。
由此可求出原有梨(52+18)-12=58(个)。
由上面三种不同角度的分析,得到如下三种解法。
解法1:(52-12)+18=58(个)。
解法2:52+(18-12)=58(个)。
解法3:(52+18)-12=58(个)。
答:原来梨筐中有58个梨。
例3某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
第7讲加减法应用题
用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。
应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。
这一讲主要介绍利用加、减法解答的简单应用题。
例1小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?
解:将已知条件表示为下图:
表示为算式是:24+?=46+5。
由此可求得养鹅
(46+5)-24=27(只)。
答:养鹅27只。
若例1中鸡和鹅的总数比鸭少5只(其它不变),则已知条件可表示为下图,
表示为算式是:24+?+5=46。
由此可求得养鹅
46-5-24=17(只)。
例2一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?
分析:根据已知条件,将各种数量关系表示为下图。
有几种思考方法:
(1)根据取走18个梨后,梨比苹果少12个,先求出梨筐里现有梨
52-12=40(个),再求出原有梨
(52-12)+18=58(个)。
(2)根据取走18个梨后梨比苹果少12个,我们设想“少取12个”梨,则现有的梨和苹果一样多,都是52个。
这样就可先求出原有梨比苹果多
18-12=6(个),再求出原有梨
52+(18-12)=58(个)。
(3)根据取走18个梨后梨比苹果少12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果
52+18=70(个)。
这样一来,现有苹果就比原来的梨多了12个(见下图)。
由此可求出原有梨(52+18)-12=58(个)。
由上面三种不同角度的分析,得到如下三种解法。
解法 1:(52-12)+18=58(个)。
解法 2:52+(18-12)=58(个)。
解法 3:(52+18)-12=58(个)。
答:原来梨筐中有58个梨。
例3某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
又知巧克力糖的块数恰好是小白兔软糖块数的2倍。
三年级一班共买了多少块糖果?
分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。
先求出哪一种糖的块数最简便呢?我们先把已知条件表示为下图。
由上图可求出,
小白兔软糖块数=15+28=43(块),
水果糖块数=43+15=58(块),
巧克力糖块数=43×2=86(块)。
糖果总数=43+58+86=187(块)。
答:共买了187块糖果。
例4一口枯井深230厘米,一只蜗牛要从井底爬到井口处。
它每天白天向上爬110厘米,而夜晚却要向下滑70厘米。
这只蜗牛哪一个白天才能爬出井口?
分析与解:因蜗牛最后一个白天要向上爬110厘米,井深230厘米减去这110厘米后(等于120厘米),就是蜗牛前几天一共要向上爬的路程。
因为蜗牛白天向上爬110厘米,而夜晚又向下滑70厘米,所以它每天向上爬110-70=40(厘米)。
由于120÷40=3,所以,120厘米是蜗牛前3天一共爬的。
故第4个白天蜗牛才能爬到井口。
若将例4中枯井深改为240厘米,其它数字不变,这只蜗牛在哪个白天才能爬出井口?(第5个白天)。