第六章 地基沉降计算
- 格式:ppt
- 大小:2.67 MB
- 文档页数:31
6.3 常用的地基沉降计算方法这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。
所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。
对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。
6.3.1 计算地基最终沉降量的弹性力学方法地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据的。
在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s :E r P s 21μπ-⋅= (6-8)式中 μ—地基土的泊松比;E —地基土的弹性模量(或变形模量E 0);r —为地基表面任意点到集中力P 作用点的距离,22y x r +=。
对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。
如图6-6所示,设荷载面积A 内N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。
于是,地面上与N 点距离r =22)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积分求得:⎰⎰-+--=Ay x d d p E y x s 22002)()(),(1),(ηξηξηξμ (6-9)从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若沉降已知又可以反算出应力分布。
对均布矩形荷载p 0(ξ,η)= p 0=常数,其角点C 的沉降按上式积分的结果为:图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降(a )任意荷载面;(b )矩形荷载面021bp E s c ωμ-= (6-10)式中 c ω—角点沉降影响系数,由下式确定:⎪⎪⎭⎫ ⎝⎛+++++=)1ln()11ln(122m m mm m c πω (6-11)式中 m=l/b 。
1.某正常固结土层厚2.0m ,其下为不可压缩层,平均自重应力100cz a p kP =;压缩试验数据见表,建筑物平均附加应力0200a p kP =,求该土层最终沉降量。
【解】土层厚度为2.0m ,其下为不可压缩层,当土层厚度H 小于基础宽度b 的1/2时,由于基础底面和不可压缩层顶面的摩阻力对土层的限制作用,土层压缩时只出现很少的侧向变形,因而认为它和固结仪中土样的受力和变形很相似,其沉降量可用下式计算:1211e e s H e -=+ 式中,H ——土层厚度;1e ——土层顶、底处自重应力平均值c σ,即原始压应力1c p σ=,从e p-曲线上得到的孔隙比e ;2e ——土层顶、底处自重应力平均值c σ与附加应力平均值z σ之和2c z p σσ=+,从e p -曲线上得到的孔隙比e ;1100c a p kP σ==时,10.828e =;2100200300c z a p kP σσ=+=+=时,20.710e = 1210.8280.7102000129.1110.828e e s H mm e --==⨯=++2.超固结黏土层厚度为4.0m ,前期固结压力400c a p kP =,压缩指数0.3c C =,再压缩曲线上回弹指数0.1e C =,平均自重压力200cz a p kP =,天然孔隙比00.8e =,建筑物平均附加应力在该土层中为0300a p kP =,求该土层最终沉降量。
【解】超固结土的沉降计算公式为:当c cz p p p ∆>-时(300400200200a c cz a p kP p p kP ∆=>-=-=)时,10lg lg 1ni ci li i cn ei cii ili ci H p p p s C C e p p =⎡⎤⎛⎫⎛⎫+∆=+⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎣⎦∑式中,i H ——第i 层土的厚度;0i e ——第i 层土的初始孔隙比;ei C 、ci C ——第i 层土的回弹指数和压缩指数; ci p ——第i 层土的先期固结压力;li p ——第i 层土自重应力平均值,()12c i li ci p σσ-⎡⎤=+⎣⎦;i p ∆——第i 层土附加应力平均值,有效应力增量()12z i i zi p σσ-⎡⎤∆=+⎣⎦。
常用的地基沉降计算方法
一、弹性模型法
弹性模型法是地基沉降计算的一种常用方法,它基于弹性体理论,直接应用中等体积条件,利用K值表面积比来估算计算地基沉降。
1.原理及公式
弹性模型法是假设地基是一种脆性材料,按照体积稳定原理,当在地基上发生荷载时,地基沉降量s可表示为:
s=K·q/F
其中:
s:地基沉降量,m;
K:沉降系数,m/t;
q:表面单位荷载,t/m2;
F:表面积,m2
2.计算方法
(1)选择沉降系数K。
一般情况下,K的取值可根据工程案例计算,也可以参考试验结果或文献资料中给出的K值,另外,也可根据地基材料的弹性模量E和泊松比μ确定:
K=1.8(G/E)1/2+2.8(μ/E)1/3
其中:G为地基材料的弹性模量,Pa;E是弹性模量,Pa;μ是泊松比。
(2)确定计算点位及坐标系。
根据工程实际情况确定计算点位及确
定坐标系,通常坐标系以空间坐标系为准;
(3)计算沉降量s。
根据系数K和地基单位面积荷载q计算沉降量s,计算公式为:
s=K·q/F
其中:K为沉降系数,m/t;q为地基单位面积荷载,t/m2;F为表面积,m2
(4)结果分析。
沉降量计算方法①用坐标纸按比例绘制土层分布剖面图和基础剖面图,如图所示。
分层总和法计算地基沉降②计算地基土的自重应力σc,土层变化处为计算点。
计算结果按照力的比例尺(如1cm代表100kPa)绘于基础中心线左侧,注意自重应力分布曲线的横坐标只表示该点的自重应力值,应力的方向都是竖直方向。
③计算基础底面的接触压力。
④计算基础底面的附加应力。
⑤沉降计算分层。
为使地基沉降计算比较精确,除按0.4b 和1~2m分层以外,还需考虑下列因素:a.地质剖面图中,不同的土层,因压缩性不同应为分层面;b.地下水位应为分层面;c.基础底面附近的附加应力数值大且曲线的曲率大,分层厚度应小些,使各计算分层的附加应力分布曲线以直线代替计算时误差较小。
⑥计算地基中的附加应力分布。
按分层情况将附加应力数值按比例尺绘于基础中心线的右侧。
例如,深度z处,M点的竖向附加应力σz值,以线段Mm表示。
各计算点的附加应力连成一条曲线KmK′,表示基础中心点O以下附加应力随深度的变化。
⑦确定地基受压层深度zn。
由上图中自重应力和附加应力分布两条曲线,可以找到某一深度处附加应力σz为自重应力σcz的20%,此深度称为地基受压层深度zn。
4)分层总和法特点分层总和法计算沉降的优点是概念比较明确,计算过程及变形指标的选取比较简便,易于理解掌握,适用于不同地基土层的情况。
但是采用上述方法进行建筑物地基沉降计算,并与大量建筑物的沉降观测值比较,发现具有下列规律:①对于中等地基,计算沉降量与实测沉降量相近,即s计≈s 实;②对于软弱地基,计算沉降量远小于实测沉降量,即s计<s 实;③对于坚实地基,计算沉降量远大于实测沉降量,即s计>s 实。
地基沉降量计算值与实测值不一致的原因主要有以下3个方面:①分层总和法计算所作的几点假定,与实际情况不完全相符;②土的压缩性指标试样的代表性、取原状土的技术及实验的准确度都存在问题;③在地基沉降计算中,没有考虑地基、基础与上部结构的共同作用。
沉降计算公式沉降计算在工程领域可是个相当重要的环节,咱今天就来好好聊聊沉降计算公式。
先给大家举个例子,我曾经参与过一个小区建设项目。
在施工过程中,我们特别关注地基的沉降情况。
有一块地,看上去平平坦坦,但在打地基的时候,发现了一些隐藏的问题。
那就是这地下面的土层分布不均匀,有的地方软,有的地方硬。
这可就给我们的工程带来了不小的挑战。
沉降计算的公式呢,其实就像是一把解开土地沉降之谜的钥匙。
比如说分层总和法,这是个常用的方法。
它的基本思路就是把地基土分成若干层,分别计算每一层的沉降量,然后加起来就得到总的沉降量。
计算公式大致是这样:$S=\sum_{i=1}^{n}\frac{e_{1i}-e_{2i}}{1+e_{1i}}h_{i}$ 。
这里的 $e_{1i}$ 和 $e_{2i}$ 分别是第$i$ 层土压缩前和压缩后的孔隙比,$h_{i}$ 是第 $i$ 层土的厚度。
在实际应用中,可没这么简单。
得先确定地基土的压缩性指标,这就需要进行大量的土工试验。
比如说,要测量土的重度、含水量、孔隙比等等。
这可真是个细致活儿,一点都马虎不得。
就像我们那个小区项目,为了准确得到这些数据,我们的工程师和技术人员在工地上忙前忙后,取样、试验,那认真劲儿,就像是在对待一件珍贵的宝贝。
还有规范法,它相对分层总和法来说,考虑的因素更多一些,也更符合实际情况。
沉降计算还得考虑很多其他因素,比如建筑物的荷载分布、基础的形状和尺寸、土层的应力历史等等。
有时候,一个小小的因素没考虑到,计算结果就可能大相径庭。
我记得有一次,我们在计算一个高层建筑的沉降时,最初因为忽略了地下水位的变化对土层性质的影响,结果算出来的沉降量和实际监测的数据相差很大。
这可把我们急坏了,赶紧重新梳理计算过程,把这个因素考虑进去,才得到了比较准确的结果。
所以说,沉降计算可不是简单地套个公式就行,得综合考虑各种因素,仔细分析,才能得出可靠的结果。
总之,沉降计算公式虽然看起来复杂,但只要我们掌握了其中的原理,结合实际情况,认真分析,就能够为工程建设提供有力的支持,确保建筑物的安全和稳定。
地基沉降量计算地基变形在其表面形成的垂直变形量称为建筑物的沉降量。
在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。
一、分层总和法计算地基最终沉降量计算地基的最终沉降量,目前最常用的就是分层总和法。
(一)基本原理该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。
地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有:变换后得:或式中:S--地基最终沉降量(mm);e1--地基受荷前(自重应力作用下)的孔隙比;e2--地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比;H--土层的厚度。
计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。
然后按式(4-9)或(4-10)计算各分层的沉降量S i。
最后将各分层的沉降量总和起来即为地基的最终沉降量:(二)计算步骤1)划分土层如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。
2)计算基底附加压力p03)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。
4)确定压缩层厚度满足σz=0.2σsz的深度点可作为压缩层的下限;对于软土则应满足σz=0.1σsz;对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。
5)计算各分层加载前后的平均垂直应力p1=σsz;p2=σsz+σz6)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量S i8)按公式(4-11)计算总沉降量S。
分层总和法的具体计算过程可参例题4-1。
例题4-1已知柱下单独方形基础,基础底面尺寸为2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。
地基沉降计算方法地基沉降是指地面或建筑物由于地基受力而发生的下沉现象,是土木工程中一个重要的问题。
地基沉降的计算方法对工程设计和施工具有重要意义。
下面将介绍几种常用的地基沉降计算方法。
一、经验法。
经验法是指根据历史工程经验和实测数据进行估算的方法。
在没有详细的地质勘探和试验数据的情况下,可以通过查阅类似工程的实测数据,结合工程地质条件和地基工程特点,进行估算。
经验法计算简单快捷,但精度较低,适用于初步设计阶段。
二、解析法。
解析法是指根据土力学理论和数学方法,通过对地基土体的力学性质进行分析和计算,得出地基沉降的方法。
解析法需要建立地基土体的本构模型,考虑地基土体的应力-应变关系,通过数学计算得出地基沉降的结果。
解析法计算精度较高,适用于对地基沉降要求较高的工程。
三、有限元法。
有限元法是指利用有限元分析软件,将地基土体离散成有限个单元,通过数值计算得出地基沉降的方法。
有限元法考虑了地基土体的非线性和非均质性,可以较为准确地模拟地基沉降的过程。
有限元法适用于复杂地基条件和大型工程的地基沉降计算。
四、监测法。
监测法是指通过实测方法,利用沉降仪、水准仪等设备对地基沉降进行实时监测和记录,得出地基沉降的方法。
监测法可以直接观测到地基沉降的实际情况,是一种直观、准确的计算方法。
监测法适用于对地基沉降要求较高的工程,也可以用于验证其他计算方法的结果。
以上是几种常用的地基沉降计算方法,不同的方法适用于不同的工程情况。
在工程设计和施工中,需要根据实际情况选择合适的计算方法,以保证工程的安全和稳定。
同时,对于复杂的地基条件和大型工程,也可以采用多种方法进行综合计算,以提高计算结果的准确性和可靠性。
第三节 地基沉降实用计算方法一、弹性理论法计算沉降(一) 基本假设弹性理论法计算地基沉降是基于布辛奈斯克课题的位移解,因此该法假定地基是均质的、各向同性的、线弹性的半无限体,此外还假定基础整个底面和地基一直保持接触。
布辛奈斯克是研究荷载作用于地表的情形,因此可以近似用来研究荷载作用面埋置深度较浅的情况。
当荷载作用位置埋置深度较大时,则应采用明德林课题的位移解进行弹性理论法沉降计算。
(二) 计算公式建筑物的沉降量,是指地基土压缩变形达固结稳定的最大沉降量,或称地基沉降量。
地基最终沉降量:是指地基土在建筑物荷载作用下,变形完全稳定时基底处的最大竖向位移。
基础沉降按其原因和次序分为:瞬时沉降d S ;主固结沉降c S 和次固结沉降s S 三部分组成。
瞬时沉降:是指加荷后立即发生的沉降,对饱和土地基,土中水尚未排出的条件下,沉降主要由土体测向变形引起;这时土体不发生体积变化。
(初始沉降,不排水沉降)固结沉降:是指超静孔隙水压力逐渐消散,使土体积压缩而引起的渗透固结沉降,也称主固结沉降,它随时间而逐渐增长。
(主固结沉降)次固结沉降:是指超静孔隙水压力基本消散后,主要由土粒表面结合水膜发生蠕变等引起的,它将随时间极其缓慢地沉降。
(徐变沉降)因此:建筑物基础的总沉降量应为上述三部分之和,即s c s s s s s ++=计算地基最终沉降量的目的:(1)在于确定建筑物最大沉降量;(2)沉降差;(3)倾斜以及局部倾斜;(4)判断是否超过容许值,以便为建筑物设计值采取相应的措施提供依据,保证建筑物的安全。
1、 点荷载作用下地表沉降ErQ y x E Q s πνπν)1()1(2222-+-==2、 绝对柔性基础沉降⎰⎰----=Ay x d d p Ey x s 2202)()(),(1),(ηξηξηξπν0)1(2bp s c Ec ων-=3、 绝对刚性基础沉降(1) 中心荷载作用下,地基各点的沉降相等。
地基的沉降计算为了保证建筑物的安全和正常使用,对建在可压缩地基上的建筑物,尤其是比较重要的建筑物在地基设计时必须计算其可能产生的最大沉降量和沉降差,确保在规范所规定的允许范围内,否则就必须采取加固改善地基的工程措施或改变上部结构物和基础的设计。
1理论根据土的压缩性是指土在压力作用下体积缩小的性能,有关研究结果表明,作为三相系的土,在工程实践中常达到的压力(约<600KPa=作用下,土粒本身和孔隙中的水、气压缩量极小,可忽略不计,但在外荷作用下,土体中土粒间原有的联结可能受到削弱或破坏,从而产生相对的移动,土粒重新排列,相互挤紧从而导致土体孔隙中的部分水、气将被排出,土的孔隙体积便因此缩小,导致土体体积变小,其压缩量随时间增长的过程,称为土的固结。
固结问题和固结特性是作为多相介质的土体所特有的区别其它工程材料的一个独特性质。
对一般粘性土而言,通常所说的基础沉降一般都是指固结沉降,目前在工程中广泛采用的计算方法是以无侧向变形条件下的单向压缩分层总和法,首先确立应力--应变关系,广泛采用材料力学中的广义虎克定律,即土体的应力与应变假定为线性关系,这里的压缩模量Es或变形模量E0的地位(三维条件下还有土的侧膨胀系数即泊松比u)均相当于虎克定律中的杨氏模量的地位和作用。
但是土体毕竟不是理想弹性体,从土的室内压缩试验中的土的回弹、再压曲线可知,土体的变形是由弹性变形和塑性变形两部份组成,所以回弹曲线与再压曲线能构成一个迥滞环,同时应力的状态、大小以及排水条件等的不同,均会使土的变形(沉降)发生变化,从而导致计算的变形参数产生相应的改变,且使理论计算结果与现场实测发生差异,这样,即使是最接近实际的三维变形状态并考虑土体固结过程中的侧向变形时,理论计算的沉降值也必须用沉降计算经验系数ms进行修正,这些变形计算参数可通过室内或现场试验的方法确定。
2有关计算参数的确定在进行地基设计之前,先通过勘探和原位试验(如荷载试验,旁压试验)或室内压缩试验,测定有关计算沉降的土工参数。
地基沉降计算方法
地基沉降是指在地基承载力不足或地基土层过于松软时,地面
上建筑物或结构受到地基土层沉降的影响而产生的沉降现象。
地基
沉降对建筑物的安全性和稳定性会造成不利影响,因此对地基沉降
进行准确的计算和分析显得尤为重要。
下面将介绍地基沉降的计算
方法。
首先,对于浅基础而言,地基沉降的计算通常采用弹性理论的
方法。
根据地基土层的力学性质和地基承载力的要求,可以采用不
同的计算方法,如弹性模量法、叠加法、有限元法等。
其中,弹性
模量法是一种常用的计算方法,它通过考虑地基土层的弹性模量和
杨氏模量来计算地基沉降的大小。
叠加法则是将地基土层分层进行
分析,分别计算各层的沉降量,然后进行叠加得到总的地基沉降量。
有限元法则是通过建立地基土层的有限元模型,利用计算机进行数
值模拟,得到地基沉降的结果。
其次,对于深基础而言,地基沉降的计算方法与浅基础有所不同。
深基础通常采用桩基、承台基础等形式,地基沉降的计算需要
考虑地基土层的非线性特性和桩基与土层之间的相互作用。
在进行
深基础地基沉降计算时,需要考虑土-桩-结构相互作用的影响,采
用有限元法进行三维非线性分析,得到地基沉降的准确结果。
总之,地基沉降的计算方法在工程实践中具有重要的意义。
通过对地基沉降进行准确的计算和分析,可以为工程设计和施工提供科学依据,保障建筑物的安全性和稳定性。
因此,工程师在进行地基设计时,需要根据实际情况选择合适的计算方法,并结合工程实践进行合理的分析和计算,以确保地基沉降的准确性和可靠性。
地基沉降的计算方法地基在荷载作用下,沉降将随时间发展,其发展规律可以通过土体固结原理进行数值分析来估算。
但是由于固结理论的假定条件和确定计算指标的试验技术上的问题,使得实测地基沉降过程数据在某种意义上较理论计算更为重要。
通过大量的沉降观测资料的积累,可以找出地基沉降过程的具有一定实际应用价值的变形规律,还可以根据路基施工时的实测沉降资料和已取得的经验进行估算,是工程中最为常用的方法。
根据经验沉降预测一般要经过3~6个月恒载(或预压)的观测才能建立。
曲线回归法法是变形预测最常用的方法,德国无碴轨道的经验,认为当曲线回归的相关系数不低于0.92时,所确定的沉降变形趋势是可靠的;当预测的6个月以后的沉降与实际沉降的偏差小于8mm 时,说明预测是稳定的,但要达到准确的预测还要求最终建立沉降预测的时间t 应满足下列条件s(t)/s(t=∞)≥75%式中:s(t): t 时间的沉降观测值; s(t=∞): 预测的总沉降。
通常利用沉降资料进行预测路堤沉降随时间发展的常用方法有以下几种: 1 双曲线法 双曲线方程为:bt a tS S t ++=0 (3.3.2-1)bS S f 10+= (3.3.2-2)式中:t S ——时间t 时的沉降量;f S ——最终沉降量(t =∞);S 0——初期沉降量(t =0);a、b——将荷载不再变化后的3组早期实测数据代入上式组成方程组求得的系数。
沉降计算的具体顺序:(1)确定起点时间(t=0),可取填方施工结束日为t=0;(2)就各实测计算t/(S t-S0),见图3.3.2-1;(3)绘制t与t/(S t-S0)的关系图,并确定系数a,b见图3.3.2-2;(4)计算S t;(5)由双曲线关系推算出沉降S~时间t曲线。
图3.3.2-1用实测值推算最终沉降的方法图3.3.2-2求a,b方法双曲线法是假定下沉平均速率以双曲线形式减少的经验推导法,要求恒载开始实测沉降时间至少半年以上。
《土力学》第六章习题集及详细解答第6章土中应力一填空题1.分层总和法计算地基沉降量时,计算深度是根据应力和应力的比值确定的。
2.饱和土的有效应力原理为:总应力σ=有效应力σˊ+孔隙水压力u ,土的和只随有效应力而变。
地下水位上升则土中孔隙水压力有效应力。
3.地基土层在某一压力作用下,经历时间t所产生的固结变形量与最终固结变形量之比值称为。
二选择题1.对非压缩性土,分层总和法确定地基沉降计算深度的标准是( D )。
(A) ;(B) ;(C) ;(D)2.薄压缩层地基指的是基底下可压缩土层的厚度H与基底宽度b的关系满足( B )。
(A) ;(B) ;(C) ;(D)3.超固结比的土属于( B )。
(A) 正常固结土;(B) 超固结土;(C) 欠固结土;(D) 非正常土4.饱和黏性土层在单面排水情况下的固结时间为双面排水的( C )。
(A) 1倍;(B) 2倍;(C) 4倍;(D) 8倍5.某黏性土地基在固结度达到40%时的沉降量为100mm,则最终固结沉降量为( B )。
(A) 400mm ; (B) 250mm ; (C) .200mm ; (D) 140mm6.对高压缩性土,分层总和法确定地基沉降计算深度的标准是( C )。
(A) ;(B) ;(C) ;(D)7.计算时间因数时,若土层为单面排水,则式中的H取土层厚度的( B )。
(A)一半; (B) 1倍; (C) 2倍; (D) 4倍8.计算地基最终沉降量的规范公式对地基沉降计算深度的确定标准是( C )。
(A) ;(B) ;(C) ;(D)9.计算饱和黏性土地基的瞬时沉降常采用( C )。
(A) 分层总和法; (B) 规范公式; (C) 弹性力学公式;10.采用弹性力学公式计算地基最终沉降量时,式中的模量应取( A )(A) 变形模量; (B) 压缩模量; (C) 弹性模量; (D) 回弹模量11.采用弹性力学公式计算地基瞬时沉降时,式中的模量应取( C )。