运用MiniTAB进行正交试验设计
- 格式:pdf
- 大小:1.04 MB
- 文档页数:12
Minitab在正交设计优选中药提取工艺中的应用第六图书馆
Minitab软件能快捷地进行正交设计,直观、快速、准确地进行数据分析,尤其可对优选工艺进行结果预测.其操作简单、易于掌握、计算精确、兼容性好,值得推广,可应用于中药提取工艺的优选.Minitab软件能快捷地进行正交设计,直观、快速、准确地进行数据分析,尤其可对优选工艺进行结果预测.其操作简单、易于掌握、计算精确、兼容性好,值得推广,可应用于中药提取工艺的优选
.Minitab 正交设计 方差分析 中药炮制 数据处理安徽中医学院学报冯鑫山东大学药学院,山东,济南,2500122007第六图书馆。
利用Minitab进行正交试验设计1.试验设计试验设计可分为单因素问题试验设计与多因素试验设计。
常用的单因素试验设计方法有:对分法、0.618法等等。
常用的多因素试验设计方法有:曲面响应法、全因子试验法、正交试验设计等。
其中正交试验设计法是研究与处理多因素实验的一种科学方法。
利用规格化的表格—正交表,科学地挑选试验条件,合理安排实验。
该方法是在上世纪50年代由日本质量管量专家田口玄一提出的,由于其具有均衡分配、整齐可比的特点,所需工作量小,却可得到全面的试验分析结果,因而得到了广泛的应用,称为国际标准型正交试验法,又称为田口设计。
我国于上世纪70年代由数学家张里千教授经过简化得到了中国型正交试验法。
两者的主要区别在于中国型采用极差分析的方法对试验结果进行评价,计算量小、简单;田口型采用方差分析的方法,可得到因素间相互影响大小的结论。
常用的术语:【试验指标】作为试验研究过程的因变量,常为试验结果特征的量【因素】作试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因【水平】试验中因素所处的具体状态或情况,又称为等级2. 利用Minitab进行正交试验设计a.启动b.创建正交设计表在这里选择3-Level Design,在因素数量上选择4 factors。
选择正交设计试验表,选Design:选择L9_3_4正交表设计:进行因素设计,选择Factor。
对因素名称和水平值进行设定,也可以不进行设定。
在options选项中选择将设计保存于工作表。
点击ok,在工作表区生成所需正交表。
在新的一列加入试验指标-试验结果。
并将试验结果的数据输入。
对试验结果进行分析,选择Analyze Taguchi Design。
出现分析设计对话框。
点击“选择”所要评价的试验指标。
设定分析的“选项”,这里选“望大”。
点击“确定”进行分析,在任务窗口出现均值和信噪比的分析结果,从结果可以看出磨制时间对指标的影响最大。
食品科学研究中实验设计的案例分析——正交设计优选白芨多糖包合丹皮酚最佳工艺以及包合物的鉴定[1]摘要:本实验采用用minitab软件设计L9(34)正交试验优选白芨多糖包合丹皮酚的最佳工艺,结果显示:以丹皮酚和白芨多糖的物料比、反应时间和反应温度为考察指标,得到优化工艺为:物料比1:6、反应时间4h、温度30℃,包封率可达29.38%,收得率74.29%。
关键词:正交设计 minitab1 正交试验因素水平的确定选择丹皮酚与白芨多糖的A物料比(W/W)、B反应时间(h)、C包合温度(℃)三个对试验结果影响较大的因素为考察对象,每个因素各取三个水平(表1)。
采用L9(34)正交试验表进行正交试验。
以所得包合物的收得率和药物包封率为考察指标,确定最佳工艺。
表一正交试验因素水平表水平因素A物料比(w/w)B反应时间(h)C反应温度(℃)1 1:2 2 302 1:43 403 1:64 502 正交试验设计步骤:1 选择统计—>DOE—>田口—>创建田口设计。
2 得出田口设计窗口,在这个窗口中我们可以设计正交试验,本试验选择3水平4因素,其中一个因素作为误差列。
3 点击显示可用设计,进入如下图的窗口,选择L9 2-44 点击“设计”选项,选择L9 3**4,这样我们就得到了L9(34)5 点击“因子”选项,得到如下图窗口,可以对其名称进行设计,如“A”改为“A物料比”6 设计完成,得到如下图的正交试验表7 导入数据(包封率和收得率)8 点击“DOE”—>“田口”—>“分析田口设计”,得到下图9 在响应数据位于栏中选择“包封率”10 在“项”选项中,选中A B C的内容,注意不要选中误差列,按下图进行设计。
11 点击确定,可得出下列的分析数据。
(再按上述8-11,对收得率进行分析,可得出另外一个分析数据)12 点击“统计”—>“方差分析”—>“一般线性模型”13 在“响应”栏中选择“包封率”,在“模型”栏中选择A B C D14 点击确定,得出方差分析数据,如下图。
Minitab实现有交互作用的正交实验的设计与结果分析一、本文概述Overview of this article正交实验设计是一种在多个因素中找出最优组合的高效实验设计方法。
通过正交表,我们可以合理安排实验,使得每个因素在每个水平下都能被充分考察,同时减少实验次数,提高实验效率。
在实际应用中,我们经常遇到有交互作用的因素,即两个或多个因素同时作用时,它们的效果会发生变化。
因此,在正交实验设计中考虑交互作用至关重要。
Orthogonal experimental design is an efficient experimental design method that finds the optimal combination among multiple factors. Through orthogonal tables, we can arrange experiments reasonably so that each factor can be fully examined at each level, while reducing the number of experiments and improving experimental efficiency. In practical applications, we often encounter interactive factors, that is, when two or more factors act simultaneously, theireffects will change. Therefore, considering interaction is crucial in orthogonal experimental design.本文将详细介绍如何在Minitab中实现有交互作用的正交实验设计,并对实验结果进行分析。
Minitab实现正交试验设计Yearmay实验设计在学术研究、工程应用中有着十分广泛的应用。
由于自身的需要,Yearmay 开始了实验设计的学习。
并将学习笔记拿出来与大家分享。
希望与同样在学习的朋友进行交流。
空间地址:/yearmay。
若能得到行家的指正,荣幸之至;若对初学者有些帮助,深感欣慰。
正交试验需要进行以下一些工作:1)明确实验目的2)明确试验指标3)确定因子与水平4)选用合适的正交表,进行表头设计5)列出试验计划6)进行实验和记录试验结果7)数据分析在此以一具体事例,说明如何用minitab实现正交试验设计及分析的。
某化工厂希望寻找提高产品转化率的生产工艺条件。
1)实验目的提高转化率2)试验指标转化率。
转化率越大越好,这一指标是一个望大特性。
3)因子与水平经分析影响转化率的可能因子有三个,相对应的水平见表1表1 因子与水平因子一水平二水平三水平A:反应温度(℃)80 85 90B:反应时间(min)90 120 150C:加碱量(%) 5 6 74)选用正交表和设计表头由于因子均为3水平,故选用三水平正交表。
由正交表每列自由度f列等于各列的水平数减1,两交互作用的自由度等于两因素的自由度的乘积,则因子与交互作用的自由度之和为:fA+ fB + fC = fA+ fB + fC=6据选择正交表的必要条件,其行数n应满足:n>6。
为了避免表头出现混杂现象,并且尽量保证试验次数尽量少。
此例不考虑交互作用,表头设计见表2。
表2 表头设计表头设计 A B C列号 1 2 3 45)列出试验计划试验计划可用minitab帮助实现。
见图1。
图1图2图3图4图56)试验和记录为了减少或避免事先某些考虑不周及环境条件变化所引起的系统误差常采用试验次序随机化,本文采用试验编号随机抽签的方法来进行试验。
并将试验结果记录与C5中。
7)数据分析A)直观分析图6-1图6-2图7图8图9图10图11图12 B)方差分析图13图14图16图 17对于统计模型,必须对统计数据进行独立性检验、正态性检验以及等方差检验。
Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:“全因子试验设计”(full factorial design )的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过2时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作2水平的全因子试验。
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。
但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology ,RSM )是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
利用Minitab进行正交试验设计
1.试验设计
试验设计可分为单因素问题试验设计与多因素试验设计。
常用的单因素试验设计方法有:对分法、0.618法等等。
常用的多因素试验设计方法有:曲面响应法、全因子试验法、正交试验设计等。
其中正交试验设计法是研究与处理多因素实验的一种科学方法。
利用规格化的表格—正交表,科学地挑选试验条件,合理安排实验。
该方法是在上世纪50年代由日本质量管量专家田口玄一提出的,由于其具有均衡分配、整齐可比的特点,所需工作量小,却可得到全面的试验分析结果,因而得到了广泛的应用,称为国际标准型正交试验法,又称为田口设计。
我国于上世纪70年代由数学家张里千教授经过简化得到了中国型正交试验法。
两者的主要区别在于中国型采用极差分析的方法对试验结果进行评价,计算量小、简单;田口型采用方差分析的方法,可得到因素间相互影响大小的结论。
常用的术语:
【试验指标】作为试验研究过程的因变量,常为试验结果特征的量
【因素】作试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因
【水平】试验中因素所处的具体状态或情况,又称为等级
2. 利用Minitab进行正交试验设计
a.启动
b.创建正交设计表
在这里选择3-Level Design,在因素数量上选择4 factors。
选择正交设计试验表,选Design:
选择L9_3_4正交表设计:
进行因素设计,选择Factor。
对因素名称和水平值进行设定,也可以不进行设定。
在options选项中选择将设计保存于工作表。
点击ok,在工作表区生成所需正交表。
在新的一列加入试验指标-试验结果。
并将试验结果的数据输入。
对试验结果进行分析,选择Analyze Taguchi Design。
出现分析设计对话框。
点击“选择”所要评价的试验指标。
设定分析的“选项”,这里选“望大”。
点击“确定”进行分析,在任务窗口出现均值和信噪比的分析结果,从结果可以看出磨制时间对指标的影响
最大。
从分析结果的图表可以看出,最优因素的组合为”磨料规格”为2#,“磨制时间”为12分钟,“磨制速度”为1400转/分,“磨制幅度”为80度。
此外,MiniTAB还提供了,预测田口设计结果的功能
这里,我们选取最优试验水平组合,进行预测,如下图
选定后,就可产生均值和信噪比的预测结果,结果表明,效果极为明显!
最后,是生成试验报告,MiniTAB提供了丰富的功能,可在该区域自己编写,也可将任务窗口和工作表窗口的内容复制过来,生成报告,并可将编写的报告输出或另存为word格式的文件!。