静定桁架和组合结构
- 格式:ppt
- 大小:1.87 MB
- 文档页数:62
一、绪论 (略)二、平面体系机动分析1. 自由度概念和计算自由度公式{ )2(3W r h m +-=,或)(2W r b j +-= } ;2. 弄清楚0W ≤与几何不变体系的关系(必要不充分条件);3. 熟记几何不变体系三个组成规则;(刚片,链杆,二元体,虚铰等概念)4. 灵活运用组成规则进行体系的判别(常变,瞬变,几何不变无多余联系,几何不变有多余联系 );5. 了解超静定结构的几何构造特征。
(几何不变有多余联系)三、静定梁和静定刚架1. 会选取隔离体,列平衡方程;(最最基本的东东)2. 熟练掌握截面法求任意截面内力;3. 熟记由直线杆件内力微分关系式(S F dx dM = , )(x q dxdF s -= )判断各区段的内力图形状特征;4. 了解线弹性体的叠加原理,掌握由叠加法作区段的弯矩图;5. 内力图作图的标准和要求;6. 能对多跨结构区分基本部分和附属部分,清楚各部分之间力的相互传递;7. 静定刚架结构内力的表示方法,灵活运用刚结点力矩平衡方程和刚结点投影平衡方程;8. 快速准确地作出静定多跨梁或静定刚架的弯矩图;9. 会利用已知的弯矩图做剪力图,利用已知的剪力图求支座反力或轴力;10. 熟记静定结构的主要性质(静力解答唯一性,无荷载则无内力等)。
四、静定拱1. 拱结构各部分名称;2. 三铰拱结构支座反力的计算,内力(主要是弯矩)计算;3. 了解静定拱受力特点;4. 了解合理拱轴线的概念,清楚常见荷载情况下三铰拱合理拱轴线形式。
五、 平面静定桁架和组合结构1. 桁架各部分名称;2. 结点类型以及特点;3. 零杆的概念和零杆数目的确定;(注意对称结构在对称或反对称荷载作用下某些杆件可判别为零杆)4. 用结点法和截面法求静定桁架中某些指定杆件的轴力;5. 组合结构中梁式杆弯矩和链杆轴力计算。
六、结构位移计算1. 变形和位移的区别;2. 虚功的概念;(力状态,位移状态)3. 变形体系虚功原理的表述(内力虚功=外力虚功);4. 单位荷载法,如何虚拟单位荷载?5. 图乘法的公式、适用条件、注意事项;6. 运用图乘法计算结构的位移;7. 灵活运用静定结构发生支座位移时的位移计算公式(C F R ⨯-=∆∑k ),8. 了解功的互等定理及其推论。
第五节静定结构的内力分析四、静定平面桁架静定桁架是由若干根直杆在其两端用铰连接而成的静定结构。
在结点荷载作用下,桁架各杆均为只受轴力的二力杆。
静定桁架架内力分析的一般步骤是先求支座反力,再计算杆件内力。
计算杆件内力(轴力)的基本方法是结点法和截面法。
1 .节点法和截面法截取析架的结点为隔离体,利用各结点的静力平衡条件来计算各杆件内力的方法,称为结点法。
对每一结点,可列出两个独立的投影平衡方程进行解算。
桁架计算中的截面法与其他结构计算的截面法原理相同。
截面法截取的隔离体上的各力(包括荷载、反力和杆件轴力)通常组成一个平面任意力系,因此只要未知力不多于三个,就可直接由三个平衡方程求出各未知力。
截面法中的平衡方程可以是力矩方程,也可以是投影方程。
【例 3 一18 】求图3 一47 (a )所示桁架 1 、2 杆的内力。
该桁架是从一个基本铰接三角形ACF 开始,依次增加二元体FGC 、FDC 、GHD 、GED 、HIE 、H 刀E 和IJB 所组成,这种桁架称为简单桁架。
对于简单桁架,在求出支座反力后,如果采用结点法,则按照撤除二元体的顺序依次选取结点(本例可按J , I , B , H , E , G , D , C 顺序取),即可顺利求出所有杆件的内力。
本例只需求两根指定杆件的内力,为简化计算,可以联合应用结点法和截面法。
利用结点法,由结点I 可直接求出腹杆IE 的内力,再由结点 E 可求得1 杆的内力。
有了 1 杆的内力,在该杆所在节间截开,利用截面法可求得 2 杆的内力。
( 1 )求支座反力由整体结构的∑M A=0和∑M B=0 ,可得由∑Y=0校核计算无误。
(2 )求2 杆内力取出结点I (图 3 -47b ),根据∑Y=0,有再取结点E (图3 -47c ),由∑Y=0得(3 )求1 杆内力作截面m-m,并取左半部分为隔离体(图3 -47 d),根据∑Y=0。
有结点法和截面法是析架内力计算的通用方法。
5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。
二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。
采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。
计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。
结点法一般适用于求简单桁架中所有杆件轴力。
2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。
T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。
X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。
K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。
若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。
Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。
若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。
对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。