静定桁架和组合结构受力分析
- 格式:ppt
- 大小:2.46 MB
- 文档页数:68
3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。
截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。
桁架结构的受力特点桁架结构是一种由杆件和节点组成的结构体系,其受力特点主要包括以下几个方面:桁架结构的主要受力形式是轴力和剪力。
在桁架结构中,杆件主要承受拉力或压力,即轴力;而在节点处则会产生剪力。
这种受力形式使得桁架结构具有较好的受力性能,能够有效地承受水平和垂直方向的荷载。
桁架结构的受力是通过节点传递的。
节点是桁架结构中连接杆件的部分,所有的受力都会通过节点传递到其他杆件上。
这种传递方式使得整个结构在受力均匀分布的同时,也能够有效地减小结构的变形,提高结构的稳定性。
桁架结构的受力是相对集中的。
由于桁架结构中的杆件都是直线排列的,受力主要集中在杆件的两端和节点上。
这种受力特点使得桁架结构具有较高的刚度和承载能力,适用于大跨度的建筑和桥梁结构。
桁架结构的受力是相对静定的。
在桁架结构中,杆件的数量和节点的位置都是确定的,结构的受力状态也可以通过静力平衡来计算和分析。
这种相对静定的受力状态使得桁架结构在设计和施工过程中更加可控,能够确保结构的安全性和稳定性。
桁架结构的受力是相互协调的。
在桁架结构中,各个杆件和节点之间的受力是相互协调的,通过合理的设计和构造可以使得结构整体受力均衡,达到最佳的受力状态。
这种相互协调的受力特点使得桁架结构在实际工程中得到广泛应用,成为大跨度结构的常见形式。
桁架结构具有轴力和剪力为主要受力形式、受力通过节点传递、受力相对集中、受力相对静定以及受力相互协调等特点。
这些受力特点使得桁架结构具有较好的受力性能和稳定性,适用于各种大跨度建筑和桥梁工程中。
在设计和施工过程中,需要充分考虑这些受力特点,确保结构的安全可靠。
实验十 静定桁架结构设计与应力分析实验一、 实验目的1. 了解静定桁架结构的受力特点与工程应用。
2.测定静定桁架不同搭接方式中各杆件的轴力,进一步掌握电测法。
3. 通过实验结果与理论计算的比较分析,认识工程杆件受力的多因素影响。
二、 实验仪器设备与工具1. 材料力学组合实验台2. 桁架设计杆件、连接件,加载附件等3. A XL 2118系列静态电阻应变仪4. 游标卡尺、钢板尺及扳手等三、 实验原理与方法利用实验台配套的杆件和连接件,搭接一个7节点静定悬臂桁架或12节点的静定简支桁架,说明它们的工程背景;测量各杆件的应变,计算所受的轴力;选择“节点法”和“截面法”计算各杆的轴力并和实测结果对比。
在试验台直角刚架的立柱上设有3个安装支座位,其中下方的两个为桁架搭接准备。
实验台提供两个沿±45°和0°方向开槽的半圆形支座,等角度分布的8槽口梅花形连接盘及与之匹配的两种长度的桁架杆件。
将半圆形支座安装在立柱上,调整并固定刚架上的两个水平调整螺栓,使得刚架不能转动,便可从支座开始一次搭接不同结构和节点数量的悬臂桁架。
由于上部支座位到下一个支座位的距离刚好为下边两个支座间距的两倍,配合这个支座的使用,可以设计处更多形式的悬臂桁架,图1所示为其中的两种形式。
图1 悬臂桁架结构示意图 图2 简支桁架结构示意图F12345678F图4 简支桁架计算简图图3 悬臂桁架计算简图F21345678910F(2)FFFF345678910131415161718192021(1)FFFF12345678910131415161718192021如果联合使用左右两个刚架,并将悬臂刚架固定端约束适当解除,便可设计出各种形式的简支梁桁架或屋架,如图2所示。
为了克服试件的初弯曲和连接件的约束影响,在每根桁架杆中间的两侧贴有两个应变片,测量时取两个应变片的平均值为杆件的应变值。
加载时,要将刚架推到合适的位置并进行固定。
第五章静定桁架和组合结构在结点荷载作用下,桁架中杆件只受轴力(无弯矩无剪力),截面应力均匀分布,故材料性能可得到充分发挥。
组合结构是由两种受力特性不同的杆件(梁式杆和链杆)组成,能发挥这两类杆件的各自优势。
本章主要讨论了桁架的特点、分类和求解方法(结点法、截面法及其联合应用),以及静定组合结构的分析计算。
第一节桁架结构的特点及类型一、桁架的特点梁式杆在荷载作用下,产生的内力主要为弯矩,这会导致截面上的应力分布是很不均匀的(图5-1(a))。
弹性设计时,一般是以某截面的最大应力来决定整个构件的断面尺寸,因而材料强度不能得到充分利用。
桁架结构是由直链杆组成的铰接体系(图5-1(b)),当荷载只作用在结点上时,各杆只有轴力(拉力或压力),截面上应力是均匀分布的,故材料性能可得到充分的发挥。
因此,桁架结构较梁式结构具有更大的优势:(1)材料应用较为经济,自重较轻,是大跨度结构常用的一种形式;(2)可用各种材料制造,如钢筋混凝土、钢或木材均可;(3)结构体型可以多样化,如平行弦桁架、三角形桁架及梯形桁架等形式;(4)施工方便,桁架可以整体制造后吊装,也可以在施工现场高空进行杆件拼装。
图5-1 梁和桁架受力性能比较(a)梁式杆及截面应力分布(b)桁架及应力分布桁架结构在工程实际中有广泛的应用。
如图5-2(a)所示轻型钢屋架和图5-2(b)所示某钢桁架桥等,都是典型的桁架结构实例。
二、桁架的计算简图理想桁架各杆只有轴力(拉力或压力),没有弯矩和剪力,且两端轴力大小相等、方向相反、作用在同一直线上,习惯称为二力杆。
这一受力特点反映了实际桁架结构的主要工作形态。
而实际桁架结构中,如钢筋混凝土桁架的结点是浇铸的,钢桁架使用结点板把各杆焊接在一起的。
这些节点都有一定的刚性,并不是理想铰结点。
同时,杆件也不可能绝对平直,荷载也不可能完全作用在结点上。
这导致实际桁架中杆件内力除轴力外,还有附加的弯矩和剪力对轴力的影响,但这种影响是次要的。
3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。
这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。
实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。
但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。
因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。
(2)各杆的轴线都是直线并通过铰的中心。
(3)荷载和支座反力都作用在铰结点上。
通常把符合上述假定条件的桁架称为理想桁架。
3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。
因此,桁架中的所有杆件均为二力杆。
在杆的截面上只有轴力。
3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。
(图3-14b)(3)复杂桁架:不属于前两类的桁架。
(图3-14c )3.4.2桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法一一适用于计算简单桁架。
截面法一一适用于计算联合桁架、简单桁架中少数杆件的计算。
联合法——在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。
解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。