温升对比试验试验报告
- 格式:pdf
- 大小:121.66 KB
- 文档页数:4
导热硅胶片温升报告一、测试目的本测试报告旨在评估导热硅胶片的温升性能,为产品在实际应用中的散热性能提供依据,并为后续的产品优化提供指导。
二、样品描述样品名称:导热硅胶片规格:200mm x 200mm x 1mm颜色:灰色生产厂家:某科技有限公司三、测试设备及方法1. 测试设备:温升测试仪、恒温恒湿箱、热阻测试仪、天平、尺子。
2. 测试方法:a. 将导热硅胶片放置在恒温恒湿箱中,设定温度为25℃、湿度为50%。
b. 使用温升测试仪测量导热硅胶片的表面温度,并记录数据。
c. 使用热阻测试仪测量导热硅胶片的热阻值。
d. 使用天平测量导热硅胶片的重量。
e. 使用尺子测量导热硅胶片的厚度。
四、测试环境及条件1. 温度:25℃2. 湿度:50%3. 测试时间:2小时4. 样品数量:3片5. 散热方式:自然散热6. 环境干净整洁,无强磁场、强电场干扰。
五、测试结果及数据分析分析:根据测试数据,我们可以得出以下结论:1. 导热硅胶片的温升性能较为稳定,温度上升值的变异系数仅为3.64%。
这说明不同样品之间的温升性能差异较小,产品的重复性较好。
2. 导热硅胶片的平均温度上升值为17.33℃,说明其具有良好的散热性能。
在2小时的测试时间内,硅胶片能够有效地将热量传递出去,使得表面温度维持在一个较低的水平。
3. 导热硅胶片的平均热阻值为0.6℃/W,说明其传热性能较好。
在相同条件下,硅胶片的散热效果优于其他同类产品。
4. 导热硅胶片的重量和厚度分别为25g和1.1mm,相对于其他同类产品来说较为轻薄。
这有利于在实际应用中减少占用空间,降低产品的整体重量。
六、结论根据以上测试结果及数据分析,我们可以得出以下结论:本批次的导热硅胶片具有良好的温升性能和传热性能,能够有效地将热量传递出去,使得表面温度维持在一个较低的水平。
同时,该产品相对于其他同类产品来说较为轻薄,有利于在实际应用中减少占用空间和降低产品的整体重量。
因此,本批次导热硅胶片的质量符合设计要求和实际应用需求,可以广泛应用于电子设备中的散热领域。
温升试验不确定度分析报告1. 测量方法样品为可拆线移动式多位插座10A 220V~,拧除插座的底座螺丝,拆开底座,在指定的温度测量点上布上热电偶,如图1所示。
然后盖上底座,重新拧紧螺丝,按照GB 2099.1-2008《家用和类似用途插头插座 第1部分:通用要求》的测试方法对导体温度进行测量,并计算温升结果。
图12. 数学模型温度记录仪是直接读数,模型为12T T T -=∆T ∆—— 温升,℃;2T —— 端子稳定后结束温度,℃;1T —— 结束时环境温度,℃;3. 标准不确定度的A 类评定实验室结束前,对点1的温度进行了10次重复测量,所得数据见表1。
表1 测量结果 ( 单位:℃ ) 序号 1 2 3 4 5 6 7 8 9 10 测量 结果82.78 82.58 82.75 82.53 82.72 82.76 82.69 82.63 82.73 82.661 2根据贝塞尔公式,1)()(1012--=∑=n x x i i i x s 求得标准偏差值为0.082℃。
测量结果的标准不确定度为: n x s x s )()(==0.082/10=0.026℃ 自由度为:119v n =-=4. 标准不确定度的B 类评定4.1 热电偶准确度等级引入的不确定度分量U 2热电偶为J 型精密级,规格书上的误差为0.4T 或±1.5℃,按均匀分布,则其不确定度为:U 2=1.5/3=0.866℃4.2 温度记录仪引入的不确定度分量U 3由校准证书知道,U=0.4℃,k=2,则其标准不确定度为:U 3=U/k=0.4/2=0.2℃4.4 环境温度、通风状态引起的不确定度分量U 4本次试验环境温度、通风状态的误差不超过0.5℃,按均匀分布,则其不确定度为:U 4=0.5/3=0.289℃5. 合成标准不确定度=+++=24232221c U U U U U 0.935℃6. 扩展不确定度的计算U=k ×U C =2×0.935=1.87(℃)7. 不确定度的报告结果扩展不确定度:U=1.87℃(取包含因子k=2,置信概率P=95%)— 完 —。
发电机组温升试验报告模板范文模板1. 引言1.1 概述发电机组温升试验是评估发电机运行过程中的温度变化情况以及检查其散热性能的一项重要测试。
该试验通过模拟实际工作条件,对发电机组在长时间运行时所产生的热量进行测量和分析,从而评估设备在高负载状态下的可靠性和稳定性。
1.2 文章结构本文主要包含以下几个部分:引言、正文、结果与分析、结论和致谢。
其中,引言部分将介绍发电机组温升试验的背景和意义;正文部分将详细描述温升试验方法、测试设备和仪器以及试验步骤;结果与分析部分将总结试验结果并进行进一步的数据分析;结论部分将总结实验得出的结论,并提出建议和展望;最后,致谢部分将感谢参与本次试验过程中给予支持和帮助的人员。
1.3 目的本篇文章旨在提供一份发电机组温升试验报告模板范文,供读者参考。
通过撰写这份模板范文,我们希望能够揭示温升试验的重要性,并介绍试验的基本步骤和方法。
同时,我们将对试验结果进行分析和评价,并提出可能存在的问题和改进方案。
最后,我们将总结试验结论并给出对发电机组温升试验的启示和建议,以及未来进一步研究的方向和展望。
通过这篇文章,读者将能够了解到发电机组温升试验的目的和意义,并获得编写一份完整且高质量的试验报告模板的指导。
2. 正文:2.1 温升试验方法:温升试验是评估发电机组性能和稳定性的重要方法之一。
该实验通过加负载来模拟发电机运行时产生的热效应,测量发电机在工作过程中的温度变化情况,以判断其散热性能。
温升试验一般分为静态负载法和动态负载法。
静态负载法通过在发电机上施加恒定负载,使其长时间运行并稳定下来,在不同的时间间隔内测量并记录温度变化。
动态负载法则通过交替施加不同的负载水平,并根据每个负载周期内的温度变化情况进行测量。
在进行温升试验前,需要事先确定所使用的发电机额定功率和允许最高温度限值。
同时,还应制定合理的测试方案,包括试验持续时间、采样频率以及负载大小等参数。
2.2 温升测试设备和仪器:进行温升试验所需的设备和仪器主要包括以下几个方面:- 发电机组:供电源并输出所需负载;- 负载装置:用于施加恒定或交替负载;- 温度传感器:用于测量不同部位的温度变化;- 数据采集系统:用于实时记录和存储温度数据;- 控制装置:用于控制负载的施加方式和持续时间。
温升试验报告已知被试产品为S9-M-315/10 电压为:10000±5%/400V,电流为:18.19/454.7A,联结组标号为Yyn0, 出厂编号为:5016 空载损耗与负载损耗数据见表1-1表1-1 变压器损耗数据(一)确定试验方案根据被试产品的已知条件及试验设备的状况,确定该产品温升试验方案。
1.该产品温升试验采用短路法,由高压供电,低压方短路。
2.根据损耗的标准值与实测值,确定试验的总损耗为799+3777=4576W,以此总损耗为准,造成与实际运行等效的发热条件。
3.选择试验设备试验电压U=U n e k√P总/P K75℃式中U —温升试验试品供电侧的电压。
U N —供电侧的额定电压;e k —与P总中负载损耗相应的阻抗电压标么值;P总—温升试验实加总损耗(实测的空载损耗与负载损耗之和)P k75℃—实测75℃时的负载损耗;U=10000X4.0%√4576/3777 =440V●试验电流I=I N√P总/P K75℃式中I —温升试验时试品供电侧的电流。
I N —试品供电侧的额定电流;I=18.19X√4576/3777 =20A●试验设备用TSJA-250/0.4的感应调压器作电源。
用QJ23A单臂电桥和QJ44双臂电桥测量试品的高、低压绕组的冷、热态绕组电阻。
(二).准备工作1.拧开管式油位计上盖子,连接相关管道,使油路畅通。
2.按照规定在试验室,油面,散热器进出口放置温度计。
3.测量绕组的冷态电阻,高压侧冷电阻为3.599Ω(AB), 低压侧冷电阻为0.003807Ω(ab),测量时绕组温度为24.1℃4.试验区围好围栏,做好安全防范措施,试送电一小时,观察产品有无局部过热之处.检查线路,短路工具,试品等的发热状态是否正常,仪表指示是否正常,如无异常现象则准备工作结束。
(三).试验过程1.送电后施加总损耗,为了缩短温升试验的时程,采用提高试验电流的方法。
监视并记录油顶层及环境温度。
黄陂站完成荣信变频输出电抗器温升测试2019年11月1日至9日,黄陂站完成了4#压缩机变频器输出电抗器的温升测试。
黄陂站的荣信变频器输出电抗器安装调试工作已经完成,为验证新电抗器能否满足现场使用要求对此电抗器进行72小时带载稳定性实验。
11月1日,压缩机处、管理处、黄陂站相关技术人员和荣信汇科工程师在黄陂站就温升试验方案进行了一致讨论。
首先进行了新、老电抗器参数理论验证,较原来相比,主要有三大不同。
一是电压等级不同。
原电抗器的额定电压2000伏,电抗器本体电位通过绝缘支撑与柜体保持10kv的电**绝缘,电抗器铁芯采用悬浮式设计。
新电抗器的额定电压为10kv,电抗器铁芯接地处理,绕组与铁芯和地之间保持110kv的电**绝缘。
二是绝缘等级不同。
原电抗器的绝缘等级为F 级。
温升限值为100K。
新电抗器的绝缘等级为H级,温升限值为125K。
三是绕组连接方式不同。
原电抗器的2组绕组采用并联方式设计,绕组与进出线主母排有多个连接点。
且进出线主母排之间的电**间隙较小。
新电抗器的2组绕组采用串联设计,绕组两端分别与进出线连接,减少了连接点,增加了进出母排的电**间隙。
进行带载试验前,首先对电抗器本体进行绝缘测试,确认电抗器绝缘性能满足要求。
之后分别在A,B,C三相的电抗器的线圈表面、铁芯表面、铜排搭接处粘贴测温光纤,并将测温光纤引至柜外与光纤测温仪相连。
启动4#压缩机,负载从65%到105%过程中,每提升10%负载,进行一次变频器噪声测试。
运行4小时后,每隔一小时对电抗器柜表面进行测温,取测得最大温度值,并且记录光纤测温仪测得的相关数据。
11月3日完成24小时运行测试,到测试结束电抗器温升没有达到稳定值,电抗器铁芯温度一直持续上升,测温光纤铁芯最高温度为119.2℃。
为了更加全面的测量电抗器温升,72小时测试之前增加了柜内温度、铜排上沿等测试点;为了验证通风量对电抗器温升的影响,经压缩机处同意将通风口滤网拆除。