动态元件
- 格式:ppt
- 大小:533.00 KB
- 文档页数:26
动态元件第 1 节动态元件一、电容元件电容器是由两块金属极板,中间隔以绝缘介质(如空气、云母、绝缘纸、电解质等)组成,当电容器的两块金属极板之间加以电压时,两块极板上就会聚集等量异性的电荷( charge ),从而建立起电场,储存电场能量,当外加电压撤掉后,极板上的电荷可继续存在,因此,电容器是一种能储存电荷的元件。
但是,实际的电容器由于存在介质损耗和漏电流,极板上的电荷会慢慢地消失,时间越长,电荷越少。
1 、伏安特性本章讨论的电容元件,是在忽略了介质损耗和漏电流等因素之后的理想化模型。
电容元件( capacitor )的电路符号如图 5.1-1 ( a )所示。
库伏特性为其中,电荷量 q 的单位是库仑( coulomb ,简称 C ); C 称为电容元件的电容量,简称电容( capacitance ),单位是法拉( farad ,简称 F ),常用的单位还有微法( uF ),纳法( nF )皮法( pF )等,它们之间的换算关系为电容电压与电流取非关联参考方向时,电容元件的伏安关系为电容元件的特性1 、动态性电容上的电流与电压呈微分关系,即任一时刻电容上的电流取决于该时刻电压的变化率,而与该时刻电压本身无关。
电压变化越快,电流也就越大,即使某时刻的电压为 0 ,也可能有电流;如果电容两端电压为直流电压( DC voltage ),即电压不随时间的变化而变化,那么电容上就无电流通过,这时电容相当于开路,所以,电容具有隔直流作用。
电容元件的特性1 、动态性电容上的电流与电压呈微分关系,即任一时刻电容上的电流取决于该时刻电压的变化率,而与该时刻电压本身无关。
电压变化越快,电流也就越大,即使某时刻的电压为 0 ,也可能有电流;如果电容两端电压为直流电压( DC voltage ),即电压不随时间的变化而变化,那么电容上就无电流通过,这时电容相当于开路,所以,电容具有隔直流作用。
3 、储能性电容元件吸收的瞬时功率为若,表明电容吸收电能,电容处于充电( charge )状态;若,表明电容释放电能,电容处于放电( discharge )状态。
第1章检测题一、填空题(每空1分)1、电源和负载的本质区别是:电源是把其它形式的能量转换成电能的设备,负载是把电能转换成其它形式能量的设备。
2、实际电路中的元器件,其电特性往往多元而复杂,而理想电路元件的电特性则是单一和确切的。
3、电力系统中构成的强电电路,其特点是大电流、大功率;电子技术中构成的弱电电路的特点则是小电流、小功率。
4、从元件上任一时刻的电压、电流关系上来看,电阻元件为即时元件,电感元件为动态元件,电容元件为动态元件;从能量关系来看,电阻元件为耗能元件,电感元件为储能元件,电容元件为储能元件。
5、线性电路中各支路上的电压和电流均具有叠加性,但电路中的功率不具有叠加性。
6、电流沿电压降低的方向取向称为关联方向,这种方向下计算的功率为正值时,说明元件吸收电能;电流沿电压升高的方向取向称为非关联方向,这种方向下计算的功率为正值时,说明元件吸收电能。
7、理想电压源和理想电流源均属于无穷大功率源,因此它们之间是不能等效互换的。
实际电压源模型和电流源模型等效互换时,它们的内阻不变,等效电压源的电压U S=I S R I,等效电流源的电流值I S=U S∕R U。
8、电源向负载提供最大功率的条件是电源内阻与负载电阻的数值相等,这种情况称为阻抗匹配,此时负载上获得的最大功率为U S2/4R S。
9、电压是产生电流的根本原因。
电路中任意两点之间电位的差值等于这两点间电压。
电路中某点到参考点间的电压称为该点的电位,电位具有相对性。
10、线性电阻元件上的电压、电流关系,任意瞬间都受欧姆定律的约束;电路中各支路电流任意时刻均遵循KCL定律;回路上各电压之间的关系则受KVL定律的约束。
这三大定律是电路分析中应牢固掌握的三大基本规律。
二、判别正误题(每小题1分)1、用理想电路元件及其组合模拟实际电路器件的方法称为电路建模。
(对)2、元件上的电压、电流参考方向关联时,一定是负载。
(错)3、大负载是指在一定电压下,向电源吸取电流大的设备。
电路理论辅导资料六主 题: 第三章 线性动态电路的时域分析(第1-3节) 学习时间: 2015年11月2日--11月8日 内 容:一、本周知识点及重难点分布表6-1 本周知识点要求掌握程度一览表序号学习知识点要求掌握程度本周难点了解熟悉 理解 掌握 1 电容元件 ★ 2 电感元件★ 3 换路定律与初始值的计算★☆二、知识点详解【知识点1】电容元件电容元件、电感元件称为“动态元件”,包含他们的电路称为动态电路。
动态电路是“有记忆”的。
1、电容器和电容元件电容器:因介质不理想存在导电和损耗。
电容元件:实际电容器的理想化模型。
定义:如果一个二端元件,在任一时刻其存储的电荷与其两端电压之间的关系可用u-q 平面上的一条曲线来确定,则此二端元件称为电容元件。
若该曲线为u-q 平面上的一条过原点的直线,则此电容元件称为线性、非时变电容元件。
2、电容元件的伏安关系qC u= 单位:法拉(F )-61μF 10F =,121pF 10F -=伏安关系:d d d d q u i C t t== 图6-1 电容元件的库伏特性稳态直流电路中,u 不随时间变化,0I =,电容相当于开路,有隔直作用。
①0d d >tu 时,电流流向电容正极板,电容充电;②0dd<tu时,电流从电容正极板流出,电容放电。
电容的电压不能发生突变。
假设电容电压突变,则电流为无穷大值,即:∞→=tuCidd因实际中电容上存储的电荷量不可能发生突变,图6-2 电容元件的符号故电容的电流恒为限制,电容电压不能突变。
3、电容的储能u i、为关联参考方向下:()()()()()ttutCut i tutpdd==①0>p:电容吸收功率,将电能转换成电场能②0<p:电容释放功率,将电场能转换成电能从t~∞-时间内电容上存储(释放)的能量为:()()()()()()()()()()∞--====⎰⎰⎰-∞-∞-222121ddddd CutCuuuCuCuptWuuttξξξξξξξξξξ若电容从零开始充电,即()0=∞-u,则:()()212W t Cu t=表明:电容在某时刻的储能值,只取决于该时刻的电容电压值,与电流无关。
第二篇 动态电路的时域分析第五章 电容元件与电感元件● 电容元件 ● 电容的VCR● 电容电压的连续性质与记忆性质 ● 电容的储能 ● 电感元件 ● 电感的VCR● *电容与电感的对偶性 状态变量学 习 目 标本章重点:理解动态元件L 、C 的特性,并能熟练应用于电路分析。
一.动态原件包括电容元件和电感元件。
电压电流关系都涉及对电流、电压的微分或积分。
电路模型中出现动态元件的原因:1)有意接入电容器或电感器,实现某种功能;2)信号变化很快时,实际器件已不能再用电阻模型表示。
二.电阻电路与动态电路1.电阻电路是无记忆性(memoryless )即时的(instantaneous);2.动态电路(至少含有一个动态元件的电路 )在任一时刻的响应与激励的全部过去历史有关。
注:电阻电路和动态电路均服从基尔霍夫定律。
动态电路分析与电阻电路分析的比较电阻电路动态电路组成 独立源,受控源,电阻 电感,电容 (独立源,受控源,电阻)特性 耗能 贮能(电能,磁能) ——贮能状态 电路方程 代数方程微分、积分(一阶、 二阶)VCRi R u =⎰∞-==tc cd i c u dt du ci ) (1 ττ§5.1 电 容 元 件一、电容元件的基本概念电容器是一种能储存电荷的器件电容元件是电容器的理想化模型是一个理想的二端元件。
图形符号如右所示:u q C =电容的SI 单位为法[拉], 符号为F;1 F=1 C /V常采用微法(μF )皮法(pF )作为其单位。
F pF F F 126101101--==μ§5.2 电 容 的VCR一、电容元件的VCR ——电压表示电流1.当电容上电压与电荷为关联参考方向时,电荷q 与u 关系为:q(t)=Cu(t) C 是电容的电容量,亦即特性曲线的斜率。
2.当u 、i 为关联方向时,据电流强度定义有:dt du C dt dCu dt dq t i ===)(非关联时:表明:在某一时刻电容的电流取决于该时刻电容电压的变化率。