第四章非惯性系中的质点力学
- 格式:ppt
- 大小:1.69 MB
- 文档页数:34
4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。
在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。
质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。
δF W ¢—表示力F 在质点的相对位移上的元功。
则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。
注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。
例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。
求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。
第四章 经典质点动力学4-1.已知质量为2kg 的质点的运动学方程为22(61)(341)r t i t t j =-+++(国际制单位),求证质点所受合力为恒力.证 对运动学方程求时间导数()d 1264d r v t i t j t==++ 22d d 126d d v r a i j t t ===+ 2(126)=2412(N)F ma i j i j ==⨯++可见质点所受合力为恒力.4-2.已知质量为1kg 的质点,在合力128(N)F t i j =+作用下运动.已知1t =s 时,质点位于2x =m 、0y =处,并以速率3m s 沿y 轴正向运动.求质点运动学方程.解 由mr F =,知12x t =,8y =.可得d 12d x t t = ,d 8d y t =积分 01d 12d xt x t t =⎰⎰ ,31d 8d y ty t =⎰⎰ 求出 266x t =- ,85y t =-再根据 2d (66)d x t t =- ,d (85)d y t t =-再积分 221d (66)d xt x t t =-⎰⎰ ,01d (85)d y ty t t =-⎰⎰ 质点运动学方程为 3266x t t =-+ ,2451y t t =-+4-3.跳水运动员沿竖直方向入水,刚入水时速率为0v ,以入水点为O 点,y 轴竖直向下,运动员入水后浮力与重力抵消,受水的阻力与速度平方成正比,比例系数为k ,求入水后运动员速度随时间的变化规律.解 以运动员为质点,根据牛顿第二定律有 2d d yy v m kv t =- ,即2d d y y v k v t m =- 分离变量并积分 020d d y v t y v y v k t v m =-⎰⎰即可求出 011y k t v v m -= 也可以表示为 00y mv v m kv t=+4-4.跳水运动员由高处下落,设运动员入水后重力与浮力抵消,受水的阻力与速度平方成正比,比例系数0.4k m =(m 为运动员质量).求运动员速率减为入水速率的110时,其入水深度(均为国际制单位).解 以入水点为O 点,y 轴竖直向下,以运动员为质点,根据牛顿第二定律有2d 0.4d yy v m mv t =-做变量变换,得 2d d d 0.4d d d y y y y v v y v v y t y ==- 即 d 0.4d y y v v y=- 分离变量并积分 00100d 0.4d v y y v y v y v =-⎰⎰ 0010ln |0.4v y v v y =- 可知运动员速率减为入水速率的110时,其入水深度ln1004576(m)y ..==.4-5.质量为m 的小球系在一不可伸长的轻绳之一端,可在水平光滑桌面上滑动.绳的另一端穿过桌面上一小孔,握在一人手中使它以匀速率a 向下运动.设初始时绳是拉直的,小球与小孔的距离为R ,初速度在垂直于绳的方向上的分量为0v .试求小球运动和绳子的张力.解 小球m 视为质点,作为研究对象,受力分析如图.以桌面小孔为坐标原点O ,建立极坐标系如图,根据牛顿第二定律,有T N T ma F F mg F =++=在极坐标系中的投影方程为2()T m r r F θ-=- (1)(2)0m r r θθ+= (2)由题意可知 r a =- (3)由(3)式得0d d r tR r a t =-⎰⎰ 所以r R at =-,代入(2)式,得 ()20R at a θθ--= ,即 d ()2d R at a tθθ-= 初始时00R v θ=,即00v R θ=,把上式分离变量且积分 000d 2d d()2tt v R a t R at R at R at θθθ-==---⎰⎰⎰220ln 2ln ln ()R R at R v R R at θ-=-=- 所以 02d d ()v R t R at θθ==- 把上式分离变量且积分 0200d()d ()t v R R at a R at θθ-=--⎰⎰ 所以 0011()v R v t a R at R R atθ=-=-- 小球的运动学方程为r R at =-,0v t R atθ=-.由(1)式得 222220023()()[]()()T v R mv R F m r r mr m R at R at R at θθ=-==-=--4-6.已知质点所受合力为sin cos e tF t i t j k =++,求在0t =到2t π=时间内合力对质点的冲量.(国际制单位.)解 0t =到2t π=时间内合力对质点的冲量为 200d (sin cos e )d t t I F t t i t j k t π==++⎰⎰22000(sin d )(cos d )(d )t t t i t t j e t k πππ=++⎰⎰⎰ 222000(cos |)(sin |)(|)t t i t j e k πππ=-++2(e 1)i j k π=++-(国际制单位)4-7.用棒打击质量为0.5kg 、从西沿水平方向以速率20m 飞来的球,球落到棒的西面80m 处,球上升的最大高度为20m ,打击时间为0.05s ,打击时可略去重力,取210m s g =.求:(1)棒对球的冲量;(2)棒给予球的平均冲力.解 建立坐标系Oxy ,Ox 轴沿水平方向自东向西,Oy 轴竖直向上.先讨论球被棒打击后的运动,球仅受重力,可知2012y y v t gt =- ,0y y v v gt =- 当0y v =时球达到最大高度m 20m y =.根据0010y v t =-求出0010y t .v =,代入202050y v t .t =-得到 22200020010005005y y y .v .v .v =-=因00y v >,略去020y v =-,可求出020m s y v =.进而求出2s t =.由于球沿Ox 方向作匀速率运动,到4s t =时向西运动了80m ,所以020m x v =. 在碰撞中根据动量定理 21I mv mv =- 由于120v i =-,2002020x y v v i v j i j =+=+,所以棒对球的冲量2010(N s)I i j =+⋅平均冲力 2010400200 (N)0.05I i j F i j t +===+∆4-8.从高出枰盘 4.9m h =处,将每个质量m 均为0.02kg 的橡皮泥块,以每秒100n =个的速率注入枰盘,橡皮泥块落入枰盘后均黏附在盘上.以开始注入时为0t =,求10s t =时枰的读数.解 橡皮泥块在下落过程中只受重力,橡皮泥块落入枰盘的速率98(m v .=在橡皮泥块落入秤盘的过程中,对秤盘的平均冲力为(向上为正方向)21()100002[0(9.8)]196(N)F n mv mv ..=-=⨯⨯--=由于橡皮泥块由 4.9m h =处下落,由22119.8 4.922gt t =⨯⨯= 可知下落的时间1s t =.所以10s t =时枰盘内橡皮泥块受到的总重力g (10-1)1009002981764(N)F n mg ...==⨯⨯⨯=因此秤的读数为 g 1961764196(N)F F ..+=+=4-9.对例题4-4-2(见图),判断以下说法的正误:(1)质点对O 点角动量守恒;(2)质点对O '点角动量守恒;(3)质点对z 轴角动量守恒;(4)质点对x 轴角动量守恒.解 (1)摆锤所受合力指向O 点,摆锤所受合力对O 点力矩为零,所以质点对O 点角动量守恒.(2)合力对O'点力矩不为零,质点对O'点角动量不受恒.(3)质点所受合力的作用线过Oz 轴,对Oz 轴合力矩为零,所以质点对Oz 轴角动量守恒.(4)质点对O 点角动量守恒,所以质点对Ox 轴角动量守恒.4-10.在一直角坐标系Oxyz 中,一质点位于点(3m,4m,5m)处,并受一作用力7N 8N 9N F i i i =++,求:(1)力F 对O 点的力矩;(2)力F 对x 轴的力矩.解 345r i j k =++,所以(345)(789)484(N m)O M r F i j k i j k i j k =⨯=++⨯++=-+-⋅4N m x O M M i =⋅=-⋅4-11.在直角坐标系Oxyz 中,质点质量为2kg ,其速度1242(m s )v i j tk -=+-⋅,并已知0t =时位置矢量02(m)r i =.求:(1)质点对O 点的角动量;(2)质点对y 轴的角动量;(3)质点所受合力对O 点和y 轴的力矩.解 因为d d r v t=,d d r v t =,所以00d d r t r r v t =⎰⎰,即 00002(2d )(4d )(2d )t t tr r r i t i t j t t k -=-=+-⎰⎰⎰ 所以 2(22)4r t i tj t k =++- (1) 22[(22)4](242)O L r mv t i tj t k i j tk =⨯=⨯++-⨯+-22218(48)16(kg m s )t i t t j k -=-+++⋅⋅(2) 22148(kg m s )y O L L j t t -=⋅=+⋅⋅(3) d 16(88)(N m)d O O L M t i t j t==-++⋅ d 88(N m)d y y L M t t==+⋅4-12.设质点在Oxy 平面内运动,试判断以下论述是否正确:(1)若质点动量守恒,则对z 轴角动量守恒;(2)若质点对z 轴角动量守恒,则动量守恒;(3)若质点对z 轴角动量守恒,则动量的大小保持不变;(4)若质点对z 轴角动量守恒,则质点不可能作直线运动.解 (1)正确.质点动量守恒,则质点所受合力为零,质点所受合力对Oz 轴力矩为零,所以对Oz 轴角动量守恒.(2)不对.比如,质点在Oxy 平面内、绕O 点做匀速圆周运动,对Oz 轴角动量守恒,但是动量并不守恒.(3)不对.比如例题4-5-2,质点在Oxy 平面内做椭圆运动,它所受的合力是有心力,始终指向O 点,所以对Oz 轴的角动量守恒,但是动量的大小不断变化.(4)不对.在Oxy 平面内做匀速直线运动的质点对Oz 轴角动量守恒.4-13.质量为m 的质点在Oxy 平面内运动,其运动学方程为cos x a t ω=,sin y b t ω=,a 、b 、ω均为常量.求:(1)质点对z 轴的角动量;(2)质点所受对z 轴的合力矩.解 (1)对运动学方程cos sin r a ti b tj ωω=+求时间导数,可得 d sin cos d r v a ti b t j t ωωωω==-+ 所以 (cos sin )(sin cos )O L r mv a ti b tj m a ti b t j ωωωωωω=⨯=+⨯-+22(cos sin )m ab t ab t k mab k ωωωωω=+=z O L L k abm ω=⋅=(2)因z L 为常量,由对Oz 的角动量定理,可知质点所受对Oz 轴的合力矩d 0d z z L M t==4-14.如图,刚性转动系统放在盛有液体的容器内,长为l 的细杆一端固定一质量为m 的小球,另一端垂直地固定于转轴z .小球受液体阻力与小球质量及系统转动角速度的大小成正比,即F km ω=,k 为比例常量.z 轴及细杆的质量及所受阻力均忽略不计,问:经过多长时间系统的角速度的大小变为初始值0ω的1e .解 由题意知z M lkm ω=-,2z L ml ω=,根据d d z z L M t=,得 2d d ml lkm tωω=- 分离变量并积分 d d k t lωω=-⎰⎰ ln k t C lω=-+ 由0t =时0ωω=定出积分常数,0ln C ω=,则 0e kt l ωω-=所以,当0e ωω=时l t k=.4-15.如图所示,小球m 系于不可伸长的轻绳的一端,绳经O 点穿入竖直小管.开始时小球绕管在水平面内做半径为R 的圆周运动,每分钟转120转.由绳的A 端将绳拉入小管,拉绳后小球绕管在水平面内做半径为2R 的圆周运动.求:(1)拉绳以后小球每分钟之转数;(2)拉绳过程中小球对O 点角动量是否守恒?为什么?解 (1)在拉绳过程中,因为小球所受重力与OA 轴平行、绳拉力与OA 轴相交,对OA 轴力矩均为零,所以在拉绳过程中小球对OA 轴角动量守恒02R mvmv R = 拉绳前,每秒转两转,022R v π⋅=.设拉绳后,每秒转n 转,22R n v π⋅=.把04v R π=和v n R π=代入角动量守恒方程,得 42R mn R m R R ππ=⋅ 即可求出拉绳后小球每秒转8n =转,即每分钟480转.(2)因为小球所受合力对O 点力矩不为零,所以小球对O 点角动量不守恒.4-16.试判断以下说法是否正确:(1)静摩擦力一定不做功;(2)滑动摩擦力一定做负功;(3)摩擦力总是阻碍物体运动;(4)运动质点如受摩擦力作用,则能量一定减小.答 均不正确.4-17.试证明2(3sin e )(N)x F x x i =++是保守力.质点在F 作用下由0x =运动到1m x =,试用两种方法计算力F 对质点做的功.解 由于2(3sin e )(N)x F x x i =++在位移d r 中所做元功2d (3sin )(d d d )x F r x x e i xi yj zk ⋅=++⋅++2(3sin e )d x x x x =++3d(cos e )xx x =-+可以表示为只与位置有关的标量函数3()cos e x U x x x =-+的微分,所以此力为保守力.方法一:质点沿Ox 轴由0x =运动到1x =,F 对质点所做的功为 120d (3sin e )d x W F r x x x =⋅=++⎰⎰310(cos e )|x x x =-+ 1cos1e 11=-++-1cos1e =-+ 方法二:因F 为保守力,引入势能3p (cos e )x E U C x x C =-+=--++,则p2p1()W E E =--1cos1e 11=-++-1cos1e =-+4-18.如图,一劲度系数为k 的弹簧,一端固定于A 点,另一端与质量为m 的质点相连.弹簧处于自由伸张状态时,质点位于竖直面与半径为R 的半圆柱面的交界处B .质点在力F 的作用下,由B 点从静止开始运动到光滑半圆柱面的顶点C ,到达C 点时质点速率为C v .求力F 对质点所做的功.解 在质点由B 到C 点的过程中,所受重力和弹簧弹性力为保守力,以B 点为重力势能及弹性势能零点.质点受面的支撑力不做功,设力F 做功为F A .由质点的机械能定理k p k p ()()C C B B F E E E E A +-+=可得 22111[(R)](00)222F C A mv mgR k π=++-+ 2221128C mv mgR k R π=++4-19.接题4-18,质点到达C 点后,力F 被撤除,求质点运动到AB 之间的平衡位置时的速率.解 质点平衡时mg k l =∆,mg l k ∆=,即质点的平衡位置位于B 点下方mg k处. 在质点由C 到平衡位置的过程中,由于所受重力和弹簧弹性力为保守力,受面的支撑力不做功,所以机械能守恒.以B 点为重力势能及弹性势能零点,则()2222211112822C mv mgR k R mv mg l k l π++=-∆+∆ 22222122m g m g mv k k =-+222122m g mv k=- 即可求出质点运动到AB 之间的平衡位置时的速率2222121(2)4C k R mg v v gR m kπ=+++4-20.如题4-15图之装置.设小球质量0.5g m =,初态管外绳长12m l =,绳与竖直方向夹角130θ=,速度为1v .末态绳与竖直方向夹角260θ=,速度为2v .求:(1)1v 、2v ;(2)绳对小球所做的功.解 视小球为质点,受重力W 和绳的张力T F 如图.初态小球做水平圆周运动,合力T F W F =+指向圆轨道圆心,由牛顿第二定律2211111tg sin v v m m mg R l θθ== 所以 21111sin 1298238m s cos 23v l g ..θθ==⨯⨯= 设末态2l l =,小球做水平圆周运动,有22222tg sin v m mg l θθ= ,222222sin cos v l g θθ= 可知 22111212222122sin cos 1cos sin 33v l l v l l θθθθ== (1) 在由初态到末态的过程中,小球所受合力对竖直轴AB 的力矩为零,所以小球对轴AB 的角动量守恒111222sin sin mv l mv l θθ=所以 12222111sin 3sin v l l v l l θθ== (2) (1)(2)⨯得 313213v v = 可求出 13213343m s v v .==2(1)(2)得 313293l l = 13211()080m 93l l .== 由机械能定理,以O 点为势能零点,绳对小球所做的功为k p W E E =∆+∆2221121()(cos30cos60)2m v v mg l l =-+-000805J .=4-21.质量为0.2kg 的小球B 以弹性绳在光滑水平面上与固定点A 相连.弹性绳劲度系数为8N m ,其自由伸张长度为0.6m .小球初位置和速度0v 如图所示.当小球速率变为v 时,它与A 点距离最大且等于0.8m .求初态与末态之速率0v 和v .解 小球在水平面上仅受弹性绳弹性力,弹性力作用线过A ,所以小球在运动过程中对过A 的竖直轴角动量守恒;注意到小球与A 点距离最大时其速度与弹性绳垂直;则004sin3008.mv .mv =小球在水平面内仅受弹性绳弹性力,弹性力为保守力,因此小球在运动过程中机械能守恒,以弹性绳自由伸张时为弹性势能零点;则2220111(0806)222mv mv k ..=+- 所以 04v v = ,22016v v .-=联立求解上述二式即可求出0131m s v .=,033m s v .=.4-22.如图,在升降机内有一和升降机固定的光滑斜面,斜面相对水平方向的倾角为θ.当升降机以匀加速度a 沿竖直方向上升时,质量为m 的物体沿斜面下滑,试以升降机为参考系,求:(1)物体相对升降机的加速度;(2)物体对斜面的压力;(3)物体对地面的加速度.解 以升降机为非惯性参考系,建立与斜面固连的坐标系Oxy 如图.视物体为质点,受重力mg 、支承力N F 和惯性力I F ma =-,物体在非惯性系中的动力学方程为()sin m g a mx θ+=()N cos 0F m g a θ-+=所以,物体相对升降机的加速度()sin a x i g a i θ'==+物体对斜面的压力()NN cos F F m g a j θ'=-=-+ 物体对地面的加速度sin cos ()sin sin cos a a a a i a j g a i g i a j θθθθθ'=+=-+++=+地4-23.如图,一理想定滑轮固定于升降机上,一不可伸长之轻绳跨过滑轮后,两端各悬挂一物体,物体质量为1m 和2m ,12m m ≠.升降机以加速度a 沿竖直方向下降时,试以升降机为参考系,求:两个物体相对地面的加速度及绳内张力.解 以升降机为非惯性参考系,建立与升降机固连的坐标系Ox 如图.视二物体为质点,物体受重力、绳张力和惯性力I11F m a =-、I22F m a =-,在非惯性系中的动力学方程为1T1111m g F m a m x --=2T2222m g F m a m x --=绳不可伸长 12x x =-根据牛顿第三定律 T1T2T F F F ==所以 12211212()()m m g m m a x x m m -+-=-=+ 绳内张力 12T 122()m m F g a m m =-+ 两个物体相对地面的加速度为1221122111212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=+=++ 1221211121212()()()2m m g m m a m m g m a a a x i ai i i m m m m -+--+=+=-=++ 4-24.如图所示有一绕竖直z 轴以角速度k ωω=作匀角速度定轴转动的光滑水平大转台.在距z 轴R 的A 处立一竖直杆,杆端有一长度为l 的不可伸长的轻绳,绳末端挂一质量为m 的小球.当绳与竖直杆夹角θ保持不变时,以转台为参考系,求θ与ω的关系.解 以转台为非惯性参考系,视小球为质点,小球受重力mg ,绳的拉力T F ,惯性离心力It F ,2It (sin )F m R l ωθ=+.小球在非惯性系中受三个力平衡,水平方向的平衡方程为2(sin )tan m R l mg ωθθ+=所以 12tan ()sin g R l θωθ=+ 4-25.接题4-24,有人试图从O 点以初速0v 沿台面抛出一小球,而使小球沿转台上的直线OA 运动,此人的目的能否达到?试在转台参考系中加以说明.解 以转台为非惯性参考系,小球相对于转台具有速度,所以小球除受重力、支持力和惯性离心力以外,还受科里奥利力作用.由于科里奥利力与小球运动方向垂直,所以小球不可能沿转台上的直线OA 运动.(第四章题解结束)。
第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。
在理论力问题的简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。
非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
非惯性系中的“弹簧双振子模型”浙江省海盐元济高级中学(314300) 王建峰 魏俊枭一、“弹簧双振子模型”的含义如图一所示,质量分别为m A 和m B 的两物块A 和B ,A 、B 可视为质点,用一根劲度系数为k 的轻质弹簧连接起来,放在光滑水平面上,弹簧原长为0l 。
可以将A 、B 和弹簧组成的系统装置称为“弹簧双振子模型”。
该模型在近几年的全国中学生物理竞赛中屡屡出现,从反馈情况来看失分是相当严重的。
究其原因它不但涉及力与运动、动量与能量等物理知识,而且物理过程复杂、运动情景难以想象,对学生分析、解决问题的能力提出了较高的要求。
因此,帮助学生认清该模型的特点,掌握分析该模型的一般方法,并能够适当地变式处理此类问题,无疑对参加全国中学物理竞赛有很大的帮助。
二、非惯性系中的“弹簧双振子模型”牛顿运动定律不成立的参照系称为非惯性系。
非惯性系相对惯性系必然做加速运动或旋转运动。
为了使牛顿运动定律在非惯性中也能使用,可人为地引入一个惯性力。
如果非惯性系相对惯性系有平动加速度a ,那么只要认为非惯性系中的所有物体都受到一个大小为ma 、方向与a 的方向相反的惯性力,牛顿运动定律即可成立。
如果非惯性系相对惯性系有转动加速度,也可引进惯性离心力和科里奥利力,这两个力不仅与非惯性系的转动角速度有关,还与研究对象的位置和运动速度有关,在此对转动情况不作讨论。
下面就“弹簧双振子模型”在非惯性系(只有平动加速度)中的运动规律作一些简单探讨。
[情景]:如图二所示,在一个劲度系数为 k 的轻质弹簧(两端绝缘)分别拴着荷质比为AA mq 与荷质比为BBm q 的两个带正电的小球,且AAmq =BBm q ,系统置于光滑水平面,处在水平的匀强电场中,电场强度为E ,A 端用细线拴住,系统处于静止状态,此时弹簧长度为l ,弹簧原长0l 。
现将细线烧断,试确定A 、B 在任意时刻的所处位置。
(A 、B 两球的相互作用力忽略不计)[解析]:①以质心为参考系(质心系),则质心C 是静止的,连接A 、B 的弹簧仍可以看成两断,左边一段原长为01l m m m lBA B AO+=,劲度系数为kmm m BAB+;右边一段原长为01l m m m lBA A BO+=,劲度系数为kmm mAAB +;振动周期都是)(2BABA mmk m m T+=π。
惯性力与非惯性系摘要惯性力是非惯性系中的非真实力,本文证明了在非惯性系中将惯性力视为真实力计入后,惯性系下的所有力学规律在非惯性系下都能成立。
当惯性力做功与路径无关时,可以引入惯性力势能,引入惯性力势能并计入系统总机械能后,机械能守恒体系中的条件与结论也仍然成立。
关键字:非惯性系; 惯性力; 惯性力势能ABSTRACTInertia force is unreal power in non-inertia system. It proves in this article that when inertia force is added as real power in non-inertia system, all the mechanical laws which apply in inertia system also do in non-inertial system. When inertia force’s doing work has nothing to do with path, potential energy can be brought in. The conditions and conclusions still apply in the system of conservation of mechanical energy when it adds potential energy to the total mechanical energy.Keywords:Non-inertial; Inertia; Inertial force potential energy1非惯性系与惯性力我们在描绘物体的运动状态时,称选作参照场的物体或物体群,为参照系。
又因为牛顿第一定律又称为惯性定律。
所以凡适用用牛顿定律的参照系都可以称作惯性参照系。
从伽俐若相对性原理中还得到:相对于惯性参照系作匀速直线运动的参照系来说,其力学过程是完全等价的。
非惯性系中质点的动能定理及机械能守恒条件
《非惯性系中质点的动能定理及机械能守恒条件》
一、定义非惯性系
非惯性系,它是一个概念,是一种由外力,而不是任何物理量引起的系统。
它比惯性系精确地描述了物体运动轨迹和其改变的规律,以及它们在时间和空间上之间的关系。
只有当外力作用在小质点上时,才能说它处于非惯性系中。
二、质点动能定理
质点动能定理是物理学中的一条重要定理,它指出在某个特定的非惯性系中,质点的动能大小只与物体的速度而不取决于它的质量。
即:质点的动能可以表达为:E=ΔTμv ,其中E表示动能,ΔT表示时间周期,μ表示质量,v表示速度。
由此可知,在非惯性系中,质点的动能仅与质点的速度有关,与质点质量无关。
三、机械能守恒条件
机械能守恒条件是经典力学中的一条重要定理。
它指出,在非惯性系中,机械能是非常重要的物理概念,当物体进行匀变运动时,机械能的变化率是等于从外力中定义的功多少,这是机械能守恒条件的定义。
它可以表达为:W=ΔE,其中W表示功,ΔE表示机械能的变化量。
由此可见,在特定的非惯性系中,机械能始终保持守恒。
四、结论
非惯性系中,质点的动能定理和机械能守恒条件表明,物体运动轨迹和其改变的规律取决于外力,其中只有一些力使物体的动能和机械能保持守恒。
这对描述和解释物理学中的物理现象有着巨大的重要作用,也为后续的研究提出了重要的理论参考。
包头师范学院本科毕业论文论文题目:非惯性系中动力学问题的讨论院系:物理科学与技术学院专业:物理学姓名:王文隆学号: 0809320007指导教师:鲁毅二〇一二年三月摘要综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。
介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。
最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。
关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律AbstractAnd under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department.Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply目录引言 (5)1非惯性系概述 (6)1.1非惯性系 (6)1.2 惯性力 (6)2 动力学方程 (7)2.1 质点动力学方程 (7)2.2 拉格朗日方程 (8)3 能量问题 (9)4 应用研究举例 (9)5 研究展望 (10)参考文献 (11)致谢 (12)非惯性系中动力学问题的讨论引言实际工程中有许多系统处于非惯性系内工作 ,如航空航天、天文和外星空探索等领域的许多转子系统。