电容式测厚传感器设计
- 格式:doc
- 大小:226.50 KB
- 文档页数:8
简述差动式电容测厚传感器系统的工作原理
差动式电容测厚传感器系统是一种常用于测量金属或非金属材料厚度的传感器系统。
其工作原理基于电容原理,通过测量电容的变化来确定材料的厚度。
以下将详细介绍差动式电容测厚传感器系统的工作原理。
差动式电容测厚传感器系统由两个电容传感器组成,分别位于测量物体的两侧。
当测量物体放置在传感器之间时,两个电容传感器之间会形成一个电容器。
此时,传感器系统通过外部电路施加一个交变电压信号。
随着电压信号的施加,电容器中的电荷会发生变化。
传感器系统会测量这种电荷的变化,从而确定电容器的电容值。
由于电容值与电容器的几何形状以及介质的介电常数有关,因此可以通过测量电容值来推断出材料的厚度。
在传感器系统工作过程中,其中一个电容传感器被称为激励电容器,用于产生电场,另一个电容传感器被称为测量电容器,用于测量电容值。
激励电容器产生的电场会穿过测量物体,而测量电容器则测量电场的变化情况。
通过比较激励电容器和测量电容器的电容值,传感器系统可以确定材料的厚度。
由于测量电容器受到测量物体两侧的影响,因此差动式电容测厚传感器系统能够消除环境因素对测量结果的影响,提高
测量的准确性和稳定性。
总的来说,差动式电容测厚传感器系统通过测量电容的变化来确定材料的厚度,利用两个电容传感器之间的差异性来消除环境因素的影响,从而实现精确的厚度测量。
这种传感器系统在工业领域具有广泛的应用,可以帮助生产过程中对材料厚度进行实时监测和控制。
电容式传感器检测非金属厚度(麻洪星制作1020911105 )摘 要:介绍了均匀介质中环形电容器的推导公式,分析其测厚范围,绘制理论曲线;并利用它对非金属介质的厚度进行检测,绘制实验曲线;将理论与实验曲线进行比较,得知用该方法检测非金属的厚度具有可行性,其测量的厚度范围为0~20cm,测量精度为2.5mm1 技术原理结构简单的平行板电容器和环形电容器理论上都可以作为厚度检测用传感器,但选择环形电容器来进行检测,主要是因为环形电容器检测的精度要高于平行板电容器。
这是因为环形电容式传感器极板间的相对封闭性使得电场线的损失要少一些,平行板电容式传感器极板的开放性使得其电场线的损失相对要多些,性能不如环形的稳定。
这也是对检测非金属介质厚度的电容装置提出的一定要求1.1 环形电容式传感器检测厚度的基本原理检测厚度的环形电容式传感元件如图1所示,由图可知,当被测非金属放于环形电容极板上方后,有2个主要因素影响电容量的变化[2],即非金属厚度及其介电常数,为达到测量非金属厚度的目的,希望介电常数在较大的范围内是常数。
这里,选择的非金属介质为A3纸。
在室温下,纸的相对介电常数约为5,基本保持不变。
为了增加检测的精度,应尽量缩小检测纸张之间的间隙,并且,在读取电容值时,使身体尽可能远离电容器。
电容传感器具有温度稳定性好、结构简单、精度高、响应快、线性范围宽和实现非接触式测量等优点。
近年来,由于电容测量技术的不断完善,微米级精度的电容测微仪已是一般性产品,电容测微技术作为高精度、非接触式的测量手段广泛应用于科研和生产加工行业。
电容传感器最常用的形式为平行平板电容器,物理学上用下式描述:即电容器的电容值C 与极间距h成反比,与极板面积S和介电常数成正比。
对于变极距型传感器,测量中被测物与大地连接,单极式电容传感器与之形成一个电容器,此电容器接入开环放大倍数为A 的运算放大器反馈回路中,由此得到其原理公式:式中:为电容式精密测微仪的电压输出;为标准参比电容;为信号源标准方波输出信号;S为传感器测头有效端面面积;为传感器测头的有效待测电容;h为传感器与被测物体之间的距离系统结构三、电容测厚传感器在板材轧制装置中的应用。
厚度传感器的工作原理和电容相关的基本原理1. 厚度传感器的概述厚度传感器是一种用于测量物体厚度或间隙距离的装置。
它广泛应用于工业生产、材料检测、机械加工等领域。
厚度传感器可以通过不同的原理来实现测量,其中之一就是基于电容的原理。
2. 电容的基本原理在解释厚度传感器的工作原理之前,我们先来了解一下电容的基本原理。
电容是指两个导体之间由于存在电荷而形成的电场储能能力。
在一个简单的平行板电容器中,当两个平行金属板之间施加电压时,会在两个金属板之间形成一个均匀且稳定的电场。
这个电场会导致两个金属板上出现等量但异号的静电荷。
根据库仑定律,两个带有静电荷Q1和Q2、距离为d的导体之间存在一个力F,与他们之间距离和静电荷量成正比。
这个力可以表示为:F = k * (Q1 * Q2) / (d^2)其中k是一个常数,称为库仑常数。
当电荷量增加或者距离减小时,这个力也会增加。
根据电场的定义,电场强度E等于施加在电荷上的力F除以电荷的大小Q。
所以,对于一个平行板电容器来说,电场强度E可以表示为:E =F / Q = k * Q / (d^2) / Q = k / d^2从上面的公式可以看出,电场强度与两个金属板之间的距离成反比。
当距离减小时,电场强度增加。
3. 厚度传感器的工作原理基于上述对电容基本原理的了解,我们可以进一步解释厚度传感器的工作原理。
厚度传感器通常由两个金属板或导体组成。
当传感器放置在待测物体或间隙之间时,传感器中的金属板与物体或间隙之间形成了一个微小的空气隙缝。
根据第2点所述的电容基本原理,在两个金属板之间形成了一个稳定且均匀的电场。
这个电场会受到介质(待测物体或间隙)产生的影响。
当待测物体或间隙与传感器中的金属板之间的距离发生变化时,电场强度也会随之变化。
根据电容基本原理,当距离减小时,电场强度增加;当距离增加时,电场强度减小。
厚度传感器利用这种原理来测量物体的厚度或间隙的距离。
通过测量电容中的电场强度变化,可以推断出物体或间隙与传感器金属板之间的距离变化。
电容厚度传感器的工作原理电容厚度传感器是一种常见的用于测量物体厚度的传感器。
它可以通过测量电容的变化来确定物体的厚度,广泛应用于自动化控制和质量检测等领域。
在本文中,我将介绍电容厚度传感器的工作原理及其在实际应用中的重要性。
让我们来了解一下电容的基本概念。
电容是一个衡量两个导体之间储存电荷能力的物理量。
它由两个导体之间的绝缘材料(也称为电介质)分隔而成。
当两个导体上施加电压时,电子会聚集在它们之间的电介质上,形成一个电场。
当电介质的厚度发生变化时,电容也会相应地发生变化。
这是因为电场的强度与电介质的厚度成反比。
当物体的厚度改变时,电介质的厚度也会随之改变,从而导致电容的变化。
接下来,我将深入探讨电容厚度传感器的工作原理。
电容厚度传感器通常由两个平行的导电板和一个电介质组成。
当物体被放置在导电板之间时,物体的厚度会影响电容的值。
在电容厚度传感器中,导电板被连接到电源。
当物体被放置在导电板之间时,电介质的厚度会改变电容的值。
这是因为物体的厚度会改变电场的形状和强度。
当物体较薄时,电场会扩散到更大的区域,电容的值会增加。
当物体较厚时,电场会更加集中,电容的值会减小。
利用这种原理,我们可以通过测量电容的变化来确定物体的厚度。
在实际应用中,电容厚度传感器被广泛应用于自动化控制和质量检测等领域。
在制造业中,它可以用于测量零件的厚度,以确保产品符合规格要求。
在自动化生产线中,电容厚度传感器可以用于检测物体的位置和变形,以实现自动控制和调整。
电容厚度传感器在无损检测领域也扮演着重要的角色。
通过将传感器安装在材料表面上,可以非侵入地测量材料的厚度和变形情况。
这对于评估材料的完整性和质量至关重要,尤其是对于金属、陶瓷等材料来说。
电容厚度传感器通过测量电容的变化来确定物体的厚度。
它们由导电板和电介质组成,通过改变电场的形状和强度来实现对物体厚度的测量。
电容厚度传感器在自动化控制和质量检测等领域具有重要的应用性,可以提高生产效率和产品质量。
第三章 电容式传感器电容测量技术近几年来有了很大进展,它不但广泛用于位移、振动、角度、加速度等机械量的精密测量,而且,还逐步扩大应用于压力、差压、液面、料面、成分含量等方面的测量。
由于电容式传感器具有一系列突出的优点:如结构简单,体积小,分辨率高,可非接触测量等。
这些优点,随着电子技术的迅速发展,特别是集成电路的出现,将得到进一步的体现。
而它存在的分布电容、非线性等缺点又将不断地得到克服,因此电容式传感器在非电测量和自动检测中得到了广泛的应用。
第一节 电容式传感器的工作原理和结构 一、基本工作原理电容式传感器是一种具有可变参数的电容器。
多数场合下,电容是由两个金属平行板组成并且以空气为介质,如图3—1所示。
由两个平行板组成的电容器的电容量为dAC ε=(3—1)式中ε——电容极板介质的介电常数。
A ——两平行板所覆盖面积; d ——两平行板之间的距离; C ——电容量当被测参数使得式(3—1)中的d 、A 和r ε发生变化时,电容量C 也随之变化。
如果保持其中两个参数不变而仅改变另一个参数,就可把该参数的变化转换为电容量的变化。
因此。
电容量变化的大小与被测参数的大小成比例。
在实际使用中,电容式传感器常以改变平行板间距d 来进行测量,因为这样获得的测量灵敏度高于改变其他参数的电容传感器的灵敏度。
改变平行板间距d 的传感器可以测量微米数量级的位移,而改变面积A 的传感器只适用于测量厘米数量级的位移。
二、变极距型电容式传感器由式(3—1)可知,电容量c 与极板距离d 不是线性关系,而是如图3—2所示的双曲线关系。
若电容器极板距离由初始值do 缩小d ∆,极板距离分别为do 和do-d ∆,其电容量分别为C0和C1,即0d AC ε=(3—2)⎪⎪⎭⎫⎝⎛∆-⎪⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛∆-=∆-=2020********d d d d d A d d d Add AC εεε(3—3)当Ad 《Ju 时,1…菩*1,则式(3—3)可以简化为 一W一一这时c1与AJ 近似呈线性关系,所以改变极板距离的电容式传感器注注是设计成Ad 在极小的范围内变化。
基于电容传感器的薄膜厚度测量系统设计作者:宋美杰来源:《教育教学论坛》2016年第19期摘要:本文分析了测厚系统的测量原理,并对整个测量系统的硬件组成进行了介绍,最后对系统进行整体测试。
结果表明,该系统测量薄膜厚度可以达到很好的测量效果,具有很高的应用价值。
关键词:薄膜厚度;测量系统;电路设计中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)19-0173-02一、引言随着包装、印刷等行业的快速发展,各行业对高质量薄膜的需求与日俱增,厚度均匀性是塑料薄膜产品的重要指标。
因此,设计一种实现薄膜厚度在线监测的高精度检测系统,对薄膜的高质量生产具有重要意义。
在多种无损检测中,鉴于电容测厚法具有结构简单、动态响应好、灵敏度高、适应性强等优点,本设计采用德国AMG公司的CAV414电容给传感器,设计了一套薄膜厚度在线监测系统。
二、测厚系统设计(一)测厚系统原理框图薄膜测厚系统的整体结构框图如图1所示。
电容传感器测量电路可以得到与厚度相关的电压值。
再经信号检测处理电路送入A/D转换器,MCU控制着信号的采集及数据处理算法的实现,送入微处理器进行处理后就可以得到当前的薄膜厚度,并送到显示部分进行显示,控制部分可以实现人机的交互,要想实现对不同薄膜材料的厚度测量,只需设置不同的介电常数即可。
三、系统各个硬件模块设计(一)精密信号源电路设计1.精密信号源电路。
对于一个容性网络,如需在电容上产生特定的电抗,需先设计一个精密信号源电路,产生交流激励信号。
本系统设计了基于AD9850的信号发生电路。
其电路原理图如图2所示。
2.正弦信号放大电路。
AD9850电流输出端仅支持最大幅度为1.5V左右的输出信号。
因此,为保证激励信号的输出电压幅度足够大,足够强驱动能力,需要设计电压信号放大和阻抗匹配电路。
为减少噪声干扰本设计采用两级放大,如图3所示。
电容式触摸传感器设计技巧触摸传感器已经被广泛使用很多年了。
但近期混合信号可编程器件的发展,让电容式触摸传感器已成为各种消费电子产品中机械式开关的一种实用、增值型替代方案。
典型的电容式传感器覆盖层的厚度为3mm或更薄。
随着覆盖层厚度的增加,手指触摸的传感将变得越来越困难。
换句话说,伴随着覆盖层厚度的增加,系统调整过程将必须从科学向艺术发展。
为了说明如何制作一个能够提升目前技术极限的电容式传感器,本文所述的实例中选用玻璃覆盖层的厚度为10mm。
玻璃使用简单,随处可见,而且是透明的,所以你可以看到下面的感应垫。
玻璃覆盖层还可直接应用于白色家电。
手指电容任何电容式触摸传感系统的核心都是一组与电场相互作用的导体。
人体皮肤下面的组织中充满了传导电解质---这是一种有损电介质。
正是手指的这种导电特性使得电容式触摸传感成为可能。
简单的平行板电容器有两个导体,这两个导体之间隔着一层电介质。
该系统中的大部分能量直接聚集在电容器极板之间。
少许能量会泄露到电容器极板以外的空间,而由这些泄露能量所形成的电场叫做边缘场。
制作实用电容式传感器的部分难题在于需要设计一套印刷电路板轨线,来将边缘场引导到用户易接近的有效感应区域中。
平行板电容器不是这种传感器模式的理想选择。
当把手指放在边缘电场的附近时,电容式传感系统的导电表面积会增加。
由手指所产生的额外电荷存储容量,就是我们所知的手指电容CF。
在本文中,无手指触摸时的传感器电容用CP来表示,意指寄生电容。
关于电容式传感器人们常有这样的误解:为了使系统正常工作,手指必须接地。
实际上,手指之所以被传感是因为它带有电荷,而与其是否悬空或接地完全无关。
传感器的PCB布局图1显示了一块PCB的顶视图,该PCB应用了本设计案例中的一个电容式传感器按键。
图1:PCB顶视图。
这个按键的直径为10mm,相当于一个??指尖的平均尺寸。
为该演示电路而组装的PCB带有4个按键,其中心相隔20mm。
如图1中所示,接地平面也位于顶层。
二、国内外有关本选题研究的动态与现状
前景展望
板厚控制技术及其理论的发展经历了由粗到细、由低到高的发展过程。
上世纪三十年代以前,板带轧机厚度控制一直属于人工操作阶段,这一阶段的轧机装机水平很低,厚度控制是以手动压下或简单的电动压下移动锟缝为主。
自三十年代以来,到六十年代进入常规自动调整阶段,该阶段中轧制理论的发展和完善为板带的轧机厚度控制奠定了基础。
第三阶段是六十年代到八十年代的计算机控制阶段。
这一阶段主要形成了计算机控制ACG系统,它能最大限度的消除系统不利影响,在各部分独立工作的同时,充分发挥综合优势,使系统更加完善。
第四阶段是八十年代到现在,板厚控制技术向着大型化,高速化,连续化的方向发展。
这一阶段已将板厚控制技术的全部过程溶于计算机网络控制的过程自动化级和基础自动化级。
两方面的不断追求合在一起,开发出高精度、无人操作的厚度自动控制系统。
三、主要设计思路
设计方案1
如图所示电容测厚仪电路
1、传感器结构
】
(1)、传感器上下两个极板与金属板上下表面间构成电容传感器,如下图所示
(2)、原理
当两个极板间没有放入被测物体是,两个极板间电容量为
(1)
而当两个极板间放入被测物体后,电容量发生变化,如上图所示,电容分C1和C2、C3, 总电容量为
(2)
》
式中,S为极板覆盖面积;
d为两极板间距离;
d1为被测物体上侧到上极板间距离;
d2为被测物体厚度;
d3为被测物体下侧到下极板间距离;
E1为被测物体上侧到上极板间的介电常数;
E2为被测物体的介电常数;
E3为被测物体下侧到下极板间的介电常数;
:
由于,d1+d3=d-d2,且当E1=E3时,式(2)还可以写为
(3)
因此,在极板面积S,极板间距离d,介电常数E1、E2、E3确定时,电容量的大小就和被
测物体的厚度有关。
2、电桥式电路
将电容传感器接入交流电桥作为电桥的一个臂(另一臂为固定电容)或两个相邻臂,另两个臂可以是电阻或电容或电感,也可以是变压器的两个二次线圈。
其中另两个臂是紧耦合,电感臂的电桥具有较高的灵敏度和稳定性。
'
ΔC=C1-C0 (4)
Uo=Ui*(C1-C0)/C0 (5)
因此,由输出电压的大小即可的出电容量C1的大小。
(4)、A\D转换
经过放大、整流、差放电路的输出电压信号在A\D转换器中进行模拟信号到数字信号的转换。
(5)¥
(6)、单片机
经过A\D转换后的数字信号通过单片机数码显示,显示在数码管上。
至此,输出电压信号通过放大、整流、差放电路、A\D转换和单片机厚即可显示板材的厚度。
由输出电压信号,即可得出两极板讲放入被测物体后电容变化的电容量。
而后,即可得到被测物体的厚度。
设计方案2
1、运算放大器式电路
将电容传感器接于放大器反馈回路,输入电路接固定电容。
构成反相放大器。
能克
服变极距型电容式传感器的非线性。
;
由此可得到放入被测物体后电容变化的电容量。
2、显示电路
(1)、放大、整流、差放
经过运算放大器后得到的输出电压经过放大、整流、差放后得到稳定的输出电压。
(2)、A\D转换
>
经过放大、整流、差放后得到稳定的输出电压信号在A\D转换器中进行模拟信号到数字信号的转换,变为易读的数字信号。
(3)、单片机显示
经过A\D转换后的数字信号在单片机中数码管显示。
至此,输出电压信号通过放大、整流、差放电路、A\D转换和单片机厚即可显示板材的厚度。
由输出电压信号,即可得出两极板讲放入被测物体后电容变化的电容量。
而后,即可得到被测物体的厚度。