因式分解(十字相乘)[上学期]--华师大版
- 格式:pdf
- 大小:1.06 MB
- 文档页数:8
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!第2课时因式分解法1.认识用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.一、情境导入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求出(x+3)(x-5)=0的解吗?二、合作探究探究点一:用因式分解法解一元二次方程【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2+5x=0;(2)(x-5)(x-6)=x-5.解析:变形后方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x(x+5)=0,∴x=0或x+5=0,∴原方程的解为x1=0,x2=-5;(2)原方程转化为(x-5)(x-6)-(x-5)=0,∴(x-5)[(x-6)-1]=0,∴(x-5)(x-7)=0,∴x-5=0或x-7=0,∴原方程的解为x1=5,x2=7.【类型二】利用公式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2-6x=-9;(2)4(x-3)2-25(x-2)2=0.解:(1)原方程可变形为:x2-6x+9=0,则(x-3)2=0,∴x-3=0,因此原方程的解为:x1=x2=3.(2)[2(x-3)]2-[5(x-2)]2=0,[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=0,(7x-16)(-3x+4)=0,∴7x-16=0或-3x+4=0,∴原方程的解为x1=,x2=16743.方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题若a、b、c为△ABC的三边,且a、b、c满足a2-ac-ab+bc=0,试判断△ABC的形状.解析:先分解因式,确定a,b,c的关系,再判断三角形的形状.解:∵a2-ac-ab+bc=0,∴(a-b)(a-c)=0,∴a-b=0或a-c=0,∴a=c或a=b,∴△ABC为等腰三角形.三、板书设计利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
分解因式之十字相乘法我们知道x 2 x 3 =x 5x 6,反过来,就得到二次三项式x25x 6的因式分解形式,即x2 5x x 2 x 3,其中常数项 6 分解成2,3两个因数的积,而且这两个因数的和等于一次项的系数5, 即6=2X 3,且2+3=5。
一般地,由多项式乘法,x a x • b i; = x2亠i a • b x • ab,反过来,就得到2x +(a + b)x + ab = (x+a)(x+b)这就是说,对于二次三项式x2 px q,如果能够把常数项q分解成两个因数a、b的积,并且a+b等于一次项的系数p,那么它就可以分解因式,即x2 px x^ a b x a^ x a x b。
运用这个公式,可以把某些二次项系数为1的二次三项式分解因式。
例1把x23x 2分解因式。
分析:这里,常数项2是正数,所以分解成的两个因数必是同号,而2=1X 2=(-1)(-2),要使它们的代数和等于3,只需取1,2即可。
解:因为2=1X 2,并且1+2=3,所以x2 3x x 1 x 2例2把x^7x 6分解因式。
分析:这里,常数项是正数,所以分解成的两个因数必是同号,而6=1 X 6=(-1) X (-6)=2 X 3=(-2) X (-3),要使它们的代数和等于-7 , 只需取-1 , -6即可。
解:因为6=(-1) X (-6),并且(-1)+(-6)=-7 ,所以x2— 7x 6 = x 亠j 1 :| x 亠j 6 :|二x-1 x_6例3把X2—4X—21分解因式。
分析:这里,常数项是负数,所以分解成的两个因数必是异号,-21 可以分解成-2仁(-1) X 21=1X (-21)=(-3) X 7=3X (-7),其中只需取3与-7,其和3+(-7)等于一次项的系数-4。
解:x2 -4x-21二x①凶-7二X 3 x-7例4把X22X -15分解因式。
解: 因为-15=(-3) X 5,并且(-3)+5=2,所以x2 2X -15=||x ■ -3 X 5=x -3 X 5通过例1八4可以看出,把X^ px q分解因式时:如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同。
华师大一附中初高中数学衔接教材目 录引 入 乘法公式第一讲 因式分解1. 1 提取公因式1. 2. 公式法(平方差,完全平方,立方和,立方差)1. 3分组分解法1. 4十字相乘法(重、难点)1. 5关于x 的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲 函数与方程2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y =ax 2+bx +c 的图象和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用第三讲 三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+;(2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示). (2)由图1.1-3,得 x 2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。