层次分析法(20210228082427)
- 格式:docx
- 大小:51.68 KB
- 文档页数:8
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法一、层次分析法概述层次分析法(Analytic Hierarchy Process )是美国运筹学家T. L. Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多方案或多目标的决策方法,它是一种定性和定量相结合的、系统化的、层次化的分析方法,是一种具有定性分析与定量分析相结合的决策方法,可将决策者对复杂对象的决策思维过程系统化、模型化、数量化。
其基本思想是通过分析复杂问题包含的各种因素及其相互关系,将问题所研究的全部元素按不同的层次进行分类,标出上一层与下层元素之间的联系,形成一个多层次结构。
在每一层次,均按某一准则对该层元素进行相对重要性判断,构造判断矩阵,并通过解矩阵特征值问题,确定元素的排序权重,最后再进一步计算出各层次元素对总目标的组合权重,为决策问题提供数量化的决策依据。
层次分析法特别适用于无结构问题的建模。
自1982年被介绍到我国以来,由于它在处理复杂的决策问题上的实用性和有效性,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价行为科学、军事指挥、运输、农业、教育、人才、医疗、环境保护、冲突求解及决策预报等领域得到了广泛的重视和应用。
二、层次分析法的基本思想基本思想层次分析法的采用先分解后综合的系统思想,整理、综合人们的主观判断,将所要分析的问题层次化,根据问题的性质和要达到的总目标,将问题分解成不同的组成因素,按照因素间的相互关系及隶属关系,将因素按不同层次聚集组合,形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)、中间层(准则层)、最高层(总目标)。
把实际问题转化为分析同层因素间相对重要程度的权重值或相对优劣次序的问题,使定性分析与定量分析有机结合,实现定量化决策。
三、确定权重值的基本原理人们在进行社会、经济以及科学管理领域问题的系统分析中,面临的常常是一个相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法层次分析法(AHP)又称多层次权重分析法,是一种用于定性分析的多目标分析方法。
它能有效地分析指标体系各层次之间排序关系,有效地综合衡量和判断评价者的意图。
适用于多目标、多准则、多因素、难以量化的大型复杂系统,已广泛应用于资源系统分析、建设管理、交通、评标、经济评价等各个社会领域。
层次分析法解决复杂问题的基本思想是:首先,将总目标进行分层,并根据各个指标之间隶属关系和相关影响,将各个指标按不同层次进行分类。
形成指标层、准则层和目标层,然后利用层次分析法,求本各层次的指标对上一层次指标的权重,然后利用最大特征值方法依次归并,最终求出总目标权重系数。
指标越重要,其指标权重系数越大。
因此,层次分析方法的计算需要以下步骤:(1)建立层次结构模型首先,将问题分解为不同的组成部分,并根据各个指标之间的相互影响和隶属关系,对各指标进行分组和组合,形成多层次结构,相对于确定最高层的综合相对重要性系数,即相对优序,系统分析被简化到最底层。
(2)调查问卷设计,对同一层次的指标将进行重要性等级进行两两访问对比,确定其重要性,然后利用比例标度法,。
构成比较判断矩阵。
表1-1 比例标度法Table4-1 Proportional scaling method两指标影响比较相等稍微重要明显重要非常重要极其重要δ1113579(3)调查对象的构成在选择范围上,主要选择具有绿色施工、绿色建筑、节能环保等研究领域的高校专家和学者、建设单位项目管理人员、工程项目施工单位工作人员和涉及环保监督政府人员。
(4)整理分析问卷并构建判断矩阵整理出问卷中的信息,并将问卷中信息进行汇总分析,计算出各因素的要性程度,建立判断矩阵。
见表1-2。
表1-2 各因素相对重要性判断矩阵Table4-2 Relative importance judgment matrixB k B 1 B 2 B n B 1 δ11 δ12 ... δ1n B 2 δ21 δ22 ... δ2n ... ... ... ... ... B nδn1δn2...δnn其中,δij 是对于A k 而言,B i 对B j 的相对重要性的数值表示,δij 是δi 与δj 的比值。
1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。
评价类问题可以用打分解决。
层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。
AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。
在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。
整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。
1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。
(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。
2 层次分析法2.1层次分析法的简单介绍层次分析法(Analytic Hierarchy Process 简称AHP),是20世纪80年代由美国运筹学教授T. L. Satty 提出的一种简便、灵活而又实用的多准则决策方法,它根据问题的性质和要达到的目标分解出问题的组成因素,并按因素间的相互关系将因素层次化,组成一个层次结构模型,然后按层分析,最终获得最低层因素对于最高层(总目标)的重要性权值。
在经营决策中经常会遇到多指标、多方案的综合比较问题, 由于经常出现多个方案互有好坏的情况。
因此要从成百上千个指标、方案中选择最佳的组合方案就成了一个较为麻烦的问题。
在实际应用中,尽管人们还不能解决多个方案的综合比较问题, 但是如果就2个方案之间进行比较还是可以判断出相对好坏的。
于是, 设法在数学上找到1种方法, 使之从多方案比较过渡到两两之间的比较,从而解决多方案比较的问题, 这就是AHP法的基本思想。
2.2层次分析法的基本层次结构第一类:最高层,又称顶层、目标层。
第二类:中间层,又称准则层。
第三类:最底层,又称措施层、方案层。
层次结构图(一)层次之间的支配关系是完全的结构模型层(二) 层次之间的支配关系是不完全的结构模型2.3 判断矩阵设要比较n 个因素)...,,(21n y y y y =对目标z 的影响,从而确定它们在z 中所占的比重,每次取两个因素i y 和j y 用ij a 表示i y 与j y 对z 的影响程度之比,按1~9的比例标度来度量ij a ,n 个被比较的元素构成一个两两比较(成对比较)的判断矩阵.)(n n ij a ⨯=A 显然,判断矩阵具有性质:⎪⎪⎪⎪⎪⎭⎫⎝⎛=A nn n n n n a a aa a a a a a212222111211 ,0>ij a ,1ijji a a =1=ii a )...,2,1,(n j i =所以又称判断矩阵为正互反矩阵(简称正互阵,又称成对比较阵)。
层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。
本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。
一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。
它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。
顶层是目标层,中间层是准则层,最底层是方案层。
2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。
比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。
通过对各因素进行两两比较,得出相对重要性的判断。
3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。
特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。
4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。
一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。
5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。
综合评价值越高,方案越优。
二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。
下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。
2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。
3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。
4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。
层次分析法
层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多因素决策和评估的定量方法。
它由美国运筹学家托斯·L·赛蒂(Thomas L. Saaty)在1970年代提出,并成为了一种广泛应用的决策支持工具。
层次分析法通过将一个复杂的决策问题分解为多个层次和因素,然后利用专家的主观判断,对这些层次和因素进行两两比较和权重分配,最终得出最优选择的方法。
下面是层次分析法的基本步骤:
建立层次结构:确定决策问题的目标和准则,并将其拆分为若干层次,形成一个层次结构。
两两比较:对每个层次的元素进行两两比较,确定它们之间的相对重要性。
比较可以使用数字尺度,通常是一个1到9的比较矩阵,其中1表示相同重要性,9表示极端重要性差异。
构建判断矩阵:将两两比较的结果整理成一个判断矩阵,其中矩阵的元素表示各个元素之间的相对重要性。
计算权重:根据判断矩阵计算权重向量,表示各个元素相对于其上一层次的重要性,通常使用特征向量法进行计算。
一致性检验:对判断矩阵的一致性进行检验,确保专家的判断具有合理的一致性。
综合评价:利用权重向量和层次结构中的数据,进行综合评估和决策选择。
层次分析法在许多领域都有广泛应用,包括工程、管理、市场营销、投资决策等。
它能够帮助决策者在复杂的决策问题中进行系统化的分析和评估,从而提供科学的决策支持。
(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。
”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次。
其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。
准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指标,C层次为方案层元素,也可称为二级指标。
(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2-3所示。
假设有n个元素C1、C2,...,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。
专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A中的各元素a ij表示行指标A i对列指标A j相对重要性的比例标度,则判断矩阵A中指标两两比较的特点有a ij>0,a ij=1,a ij=1/a ji(i ,j=1,2,........n )。
如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要。
层次分析法整个计算过程包括以下五个部分。
(1)建立递阶层次结构应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。
[25]通常,递阶层次结构包括以下三个基本层次:1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的,如:选择最合适的供应商2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂程度增多。
这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。
如果是隶属关系,则需要构建子准则层甚至更下一层准则。
3.措施层:即方案层。
分析解决问题的方案有哪些,并将其作为最底层因素。
(2)构造判断矩阵并赋值1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。
2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度表赋值(见下表)。
表3 重要性标度含义表设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质:1.a ii=12.a ji=1/a ij3.a ij>0(3)层次单排序与检验1.层次单排序利用数学方法将专家填写后的判断矩阵进行层次排序。
层次单排序是将每一个因2素对于其准则的重要性进行排序,实际就是计算权向量。
计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。
A. 计算判断矩阵每一行元素的乘积∏==nj ij i a M 1 (3.2)式中:M i 第i 行各元素的乘积a ij 第i 个元素与第j 个元素的关系比值B. 计算Mi 的n 次方根n i i M W = (3.3)式中:W i 第i 行各元素的乘积的n 次方根M i 第i 行各元素的乘积C. 对向量正规化(归一化处理)∑==ni i ii W W W 1 (3.4)式中:i W 特征向量W i 第i 行各元素的乘积的n 次方根D. 计算判断矩阵的特征根 j nj ij i W a ∑-=1λ (3.5) 式中:λi 第i 个特征根 a ij 第i 个元素与第j 个元素的关系比值W j 第j 个特征向量E. 计算判断矩阵的最大特征根∑=⨯=n i i iW n 1max λλ (3.6) 式中:λmax 最大特征根λi 特征根n 判断矩阵的阶数W 特征向量2. 层次单排序一致性检验需要特别注意:在层层排序中,要对判断矩阵进行一致性检验。
试论现代汉语中的层次分析法
现代汉语分析方法,在分析一个句子或句法结构时,将句法构造的层次性考虑进来,并按其构造层次逐层进行分析,在分析时,指出每一层面的直接组成成分,这种分析就叫层次分析。
层次分析法认为,句子的结构是一层套一层的,在每一层上,除了联合结构等有可能由多个并列词语组成外,其余都能分出两个直接组成成分,所以又叫二分法。
层次分析实际包含两部分内容:一是切分,一是定性。
切分,是解决一个结构的直接组成成分到底是哪些;而定性,是解决切分所得的直接组成成分之间在句法上是什么关系。
层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。
这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
是对难以完全定量的复杂系统做出决策的模型和方法。
层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。
最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。
市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。
层次分析法分析方法简介层次分析法(Analytic Hierarchy Process,简称AHP)是一种常用的多标准决策分析方法,由美国运筹学家托马斯·L·赛蒂尔于20世纪70年代提出。
它通过将复杂的决策问题分解为层次结构,对各层次标准进行定量评估和权重分配,最终得到综合的决策结果。
层次分析法是一种基于专家经验和主观判断的定性与定量相结合的决策方法,适用于复杂的多因素多目标决策问题。
它以一种系统化和结构化的方式帮助决策者进行决策分析,提高决策的科学性和准确性。
方法步骤层次分析法主要包括以下几个步骤:1.建立层次结构:首先,需要将决策问题进行逐层分解,形成一个层次结构模型。
层次结构由目标层、准则层和方案层构成,决策问题从目标层开始,经过准则层逐步分解,最终得到方案层。
目标层表示整个决策问题的目标或要达到的结果,准则层表示实现目标所涉及的关键因素,方案层表示可行的解决方案。
2.构造判断矩阵:在层次结构的每一层中,需要对各个元素之间进行两两比较,得到一个判断矩阵。
判断矩阵的每个元素表示两个层次因素之间的相对重要性。
比较的方式可以是定性的,也可以是定量的。
常用的比较方法有9点量表法和1-9标度法。
3.确定权重向量:通过计算判断矩阵的特征向量,可以得到每个层次因素的权重。
特征向量即为判断矩阵的最大特征值对应的特征向量。
通常需要进行一致性检验,判断矩阵的一致性可以通过一致性指标和一致性比率来衡量。
4.计算综合评估值:根据各个层次因素的权重和方案的评价指标,可以计算得到每个方案的综合评估值。
综合评估值可以表示方案的优劣程度。
5.灵敏度分析:层次分析法可以进行灵敏度分析,通过改变判断矩阵中的比较数据,可以检测到不同因素权重发生变化时对决策结果的影响。
优点和应用范围层次分析法具有以下优点:•结构化:通过将决策问题分解成层次结构,使得问题更加清晰和易于理解。
•定量化:通过构造判断矩阵和计算权重向量,将主观因素定量化,提高了决策的科学性。
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析法层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
缺点:(1)层次分析法的主观性太强,模型的搭建,判断矩阵的输入都是决策者的主观判断,往往会因为决策者的考虑不周、顾此失彼而造成失误。
(2)层次分析法模型的内部结构太过理想化,完全分离、彼此独立的层次结构在实践中很难做到。
(5)层次分析法只能从给定的决策方案中去选择,而不能给出新的、更优的策略。
1.模型的应用用于解决多目标的复杂问题的定性与定量相结合的决策分析。
(1)公司选拔人员,(2)旅游地点的选取,(3)产品的购买等,(4)船舶投资决策问题(下载文档),(5)煤矿安全研究,(6)城市灾害应急能力,(7)油库安全性评价,(8)交通安全评价等。
2.步骤①建立层次结构模型首先明确决策目标,再将各个因素按不同的属性从上至下搭建出一个有层次的结构模型,模型如下图所示。
目标层目标层:表示解决问题的目的,即层次分析要达到的总目标。
通常只有一个总目标。
准则层:表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节。
方案层:表示将选用的解决问题的各种措施、政策、方案等。
通常有几个方案可选。
(1)任一元素属于且仅属于一个层次;任一元素仅受相邻的上层元素的支配,并不是任一元素与下层元素都有联系;(2)虽然对准则层中每层元素数目没有明确限制,但通常情况下每层元素数最好不要超过9个。
这是因为,心理学研究表明,只有一组事物在9个以内,普通人对其属性进行判别时才较为清楚。
当同一层次元素数多于9个时,决策者对两两重要性判断可能会出现逻辑错误的概率加大,此时可以通过增加层数,来减少同一层的元素数。
②构造判断(成对比较)矩阵以任意一个上一层的元素为准则,对其支配的下层各因素之间进行两两比较。
层次分析法(analytichierarchyproce,AHP)一、概述将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上对人的主观判断做定量描述的一种分析方法。
它并不是一种数学模型,而是定量分析与定性分析相结合的典范。
基本步骤:1、将问题概念化,找出研究对象所涉及的主要因素。
2、分析各因素的关联、隶属关系,构造系统的递阶层次结构。
3、对同一层次的各因素关于上一层次中某一准则的重要性进行两两比较,构造判断矩阵。
4、由判断矩阵计算被比较因素对上一层次该准则的相对权重,并进行一致性检验。
5、计算各层次因素相对于最高层次,即系统目标的合成权重,进行层次总排序,并进行一致性检验。
二、基本原理与计算方法(一)递阶层次结构目标层:最高层,只有一个元素准则层:中间层,可以分为若干个层次方案层:最底层,也就是措施层完全层次关系:如果某个元素与下一层次中的所有元素都有关系不完全层次关系:如果某个元素只与下一层次中的部分元素有关系完全层次结构:如果一个递阶层次结构的所有层次都是完全层次关系不完全层次结构:反之主要特征:1.从上到下顺序地存在支配关系(二)判断矩阵的建立在构建出递阶层次结构后,再按照某一准则,对同一层次的元素相对于上一层次的某个元素进行一对一的比较,按标度构造出判断矩阵。
标度形式:绝对标度:常用的重量、体积、长度、温度等剂量单位相对标度:大多数社会经济现象,运用两两比较的方法b1~9的比例标度标度bij含义1表示两个因素相比,具有相同的重要性35792,4,6,8倒数表示两个因素相比,i因素比j因素稍微重要表示两个因素相比,i因素比j因素明显重要表示两个因素相比,i因素比j因素强烈重要表示两个因素相比,i因素比j因素极端重要上述两相邻判断的中值Bij表示j元素与i元素的比较判断,有bij=1/bijAkB1B2...Bi...BnB1a11a21...ai1...an1B2a12a22...ai2...an2.....................Bja1ja2j...aij...anj.....................Bna1na2n...ain...annaij>0aji=1/aijaii=1当元素间的两两比较判断具有传递性时,有aik.akj=aij当对i,j,k=1,2...,n时,上式成立则称该判断矩阵为一致性矩阵;否则判断矩阵为不一致矩阵。
湖南科技学院实验报告
实验内容:
问题描述:某企业由于生产效益好,年底取得一笔利润,领导决定拿出一部分资金分别用于:
(1)为企业员工发年终奖金。
(2)扩建集体福利设施;(3)引进高薪技术人才和设备;为了促进企业的进一步发展,在制定分配方案时,主要考虑的因素有:调动员工的积极性,提高企业质量,改善企业员工的生活条件。
当然上述三个方面都要考虑到,但困难在于,年终奖发多少?扩建集体福利设施支出多
少?拿多少资金用于引进高薪技术人才和设备。
试建立层次分析法模型,提出一个较好的资金分配方案。
层次分析法(Analytic Hierarchy Process )简称AHP法,是美国著名的运筹学家
T. L. Satty于1973年提出的,是一种定性与定量分析相结合的多目标决策分析方法。
AHP 吸收利用行为科学的特点,将决策者的经验判断给予量化,在目标(因素)结构复杂而且缺乏必要的数据情况下,采用此方法较为实用,是系统科学中常用的一种系统分析方法。
从处理问题的类型看,主要是决策、评价、分析、预测等。
AHP g求的递阶层次结构一般由以下三个层次组成:
* 目标层(最高层):指问题的预定目标;
* 准则层(中间层):指影响目标实现的准则;
* 方案层(最低层):指促使目标实现的措施;
合理分配
模型的假设:
(1) 假设这笔资金不会因为发生紧急情况 而被调用。
(2) 假设这笔资金都以供选择方案的形式用于企业的发展。
目标层为乙准则层为C,调动职工积极性、提高企业技术水平、改善职工生活条件分别用
C1、C2、C3来表示,措施层为P ,发奖金、扩建福利事业、引进新设备分别用
P1、P2、P3来
表示。
运用层次分析法建立数学模型,目标层,准则层,方案层分别如下:
合理分配利润
求解过程:
1.构造判断矩阵Z-C
判断矩阵表示在层次结构模型中,针对上一层次某元素来说,本层次有关元素之间相对重要 性的比较。
如果A 层因素中Ak 与下一层次C 中的G ,C 2厂,C n 相关,则判断矩阵可用表示为:
缶
C 12 Gn
C 21
C 22
C 2n
C n2
Gn J
q >0,q "/C jjg
i,j “,2…n ); C j 表示对Ak 而言,C i 对C
j 相对重要性的数值表
示。
此时称A 为正互反矩阵。
当判断矩阵中元素满足 C ij
=
Ck
C kj
(i,j,k 二1,2, ,, ,n )时,
则称判断具有一致性
由于指标的确定和分值的给定带有主观臆断性,为减小主观因素的影响,我们采用
T ・L • Satty 提出的“ 1~9比率标度法”表进行定量评价,其标度含义如表 2所示:
目标层z :
准则层C : 调动积极性cl 提高企业质量C2 改善生活条件c3
方案层p :
发奖金pl 扩建福利设施p2 引进人才和设备p3
其中,
表2重要性标度含义表
求解的特征值:
运用matlab程序:
>> A=[1 1/5 1/3; 5 1 3; 3 1/3 1];
>> C=eig(A)
C =
3.0385
-0.0193 + 0.3415i
-0.0193 - 0.3415i
由matlab可解出入max =3.038,从而W=(0.105 , 0.637 , 0.258) T 由公式得CI=0.019 CR=0.033
用解出特征值入均为
用管理运筹学软件中的层次分析法计算各判断矩阵的权向量:
322,2 1,0.2,0.3333 5,1,3 3,0.3333,1 1,0.2 5,1 1,0.2, 5,1 1,0.3333 3,1
******* 结士果如下*******
准则层权重:(0.1062,0.6334,0.2605);CI=0.0193,CR=0.0333
1 : (0.75,0.25);CI=0,CR=0
2 : (0.1667,0.8333);CI=0,CR=0
3 : (0.6667,0.3333);CI=0,CR=0
总排序权重:(0.0796,0.0265,0.1056,0.5278,0.1737,0.0868);CR=0.03333 对应的特征向量分别为:(0.75 0.25) T
(0.167 0.833) T
(0.667 0.333) T
它们的CI都为零,CR也为零.
根据公式算出各层次方案P对促进企业发展的总排序权值,写于下表右侧
3:
层次单排序是指根据判断矩阵计算对于上一层某元素而言,本层次与之有联系的元素相对重
要性次序的权值。
层次单排序要计算判断矩阵的特征值及其特征向量,记判断矩阵的最大特征值为
'max,与最大特征值相对应的特征向量记为W (向量W要作归一化处理),那么向量W
的分量W
(i)则为相应元素排序的权值。
为检验上面构造的判断矩阵是否合理,还需要对判断矩阵进行一致性检验。
根据层次分析法,判断矩阵的一致性指标CI为:
CI = (' max 一n)(n一1)
其中:’max为判断矩阵的最大特征值。
n为判断矩阵的阶数。
当CI=O时,判断矩阵具有完全一致性,’max - n越大,ci.就越大,那么,判断矩阵的一致性就差。
为判断判断矩阵是否具有满意的一致性,还需要利用判断矩阵的平均随机一致性指标RI。
RI的取值见如下
表7平均随机一致性指标RI值
总排序一致性检验:
CI = a1*cI1+ a2*CI2+a3*CI3 =0.105 x 0+0.637 x 0 +0.258 x 0=0
从而CR= 0v 0.1
4:结论
由上可知,层次总排序结果具有满意的一致性•所以合理利用利润,所考虑的三种方案相对优先排序为:
P3 优于P2,P2优于P1.
利润分配比例为
P3 占53.1%,P2 占27.1 % ,P1 占19.8 % .
本文通过构建利润分配方案的递阶层次结构模型,利用层次分析法来进行利润分配方案
的优选决策。
层次分析法通过定量与定性的有机结合,使得评价结果相对客观、公
平、公正,具有较高的准确性和可操作性。
层次分析法应用的关键在于构造判断矩阵,
由于判断矩阵构造主观性强和一致性不易通过检验等缺点,该过程应当由经验和知识丰
富、判断力强的专家给出,必要时还可以采用群体判断的方式,即采用群体层次分析法
(GAHP来解决实际问题。