数理统计之假设检验
- 格式:pptx
- 大小:1.70 MB
- 文档页数:40
概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
概率论与数理统计教案-假设检验第一章:假设检验概述1.1 假设检验的定义与作用引导学生理解假设检验的基本概念解释假设检验在统计学中的重要性1.2 假设检验的基本步骤介绍假设检验的基本步骤,包括建立假设、选择显著性水平、计算检验统计量、确定决策规则和给出结论1.3 假设检验的类型解释单样本假设检验、两样本假设检验和方差分析等不同类型的假设检验第二章:单样本假设检验2.1 单样本Z检验介绍单样本Z检验的适用场景和条件解释Z检验的计算方法和步骤2.2 单样本t检验介绍单样本t检验的适用场景和条件解释t检验的计算方法和步骤2.3 单样本秩和检验介绍单样本秩和检验的适用场景和条件解释秩和检验的计算方法和步骤第三章:两样本假设检验3.1 两样本t检验介绍两样本t检验的适用场景和条件解释两样本t检验的计算方法和步骤3.2 两样本秩和检验介绍两样本秩和检验的适用场景和条件解释两样本秩和检验的计算方法和步骤3.3 配对样本t检验介绍配对样本t检验的适用场景和条件解释配对样本t检验的计算方法和步骤第四章:方差分析4.1 方差分析的适用场景和条件解释方差分析的适用场景和条件,包括完全随机设计、随机区组设计和析因设计等4.2 方差分析的计算方法介绍方差分析的计算方法,包括总平方和、组间平方和和组内平方和的计算4.3 方差分析的判断准则解释F检验的判断准则和显著性水平的确定第五章:假设检验的扩展5.1 非参数检验介绍非参数检验的概念和适用场景解释非参数检验的计算方法和步骤5.2 假设检验的优化方法介绍自助法和贝叶斯方法等假设检验的优化方法5.3 假设检验的软件应用介绍使用统计软件进行假设检验的方法和技巧第六章:卡方检验6.1 卡方检验的基本概念介绍卡方检验的定义和作用解释卡方检验在分类数据分析中的应用6.2 拟合优度检验解释拟合优度检验的概念和计算方法举例说明拟合优度检验在实际中的应用6.3 独立性检验解释独立性检验的概念和计算方法举例说明独立性检验在实际中的应用第七章:诊断性统计与效果量分析7.1 诊断性统计的概念介绍诊断性统计的定义和作用解释诊断性统计在教学评估中的应用7.2 效果量的计算方法介绍效果量的定义和计算方法解释不同效果量指标的含义和应用7.3 效果量分析的实际应用举例说明效果量分析在教学研究中的具体应用第八章:多重比较与事后检验8.1 多重比较的概念介绍多重比较的定义和作用解释多重比较在实验数据分析中的应用8.2 事后检验的方法介绍事后检验的概念和计算方法解释不同事后检验方法的原理和应用8.3 多重比较与事后检验的实际应用举例说明多重比较与事后检验在实际研究中的应用第九章:贝叶斯统计与贝叶斯推断9.1 贝叶斯统计的基本概念介绍贝叶斯统计的定义和特点解释贝叶斯统计与经典统计的区别9.2 贝叶斯推断的计算方法介绍贝叶斯推断的计算方法和步骤解释贝叶斯推断在实际中的应用9.3 贝叶斯统计软件应用介绍使用贝叶斯统计软件进行数据分析的方法和技巧第十章:假设检验的综合应用与案例分析10.1 假设检验在医学研究中的应用举例说明假设检验在医学研究中的具体应用10.2 假设检验在社会科学研究中的应用举例说明假设检验在社会科学研究中的具体应用10.3 假设检验在商业数据分析中的应用举例说明假设检验在商业数据分析中的具体应用重点和难点解析重点环节1:假设检验的定义与作用假设检验是统计学中的核心内容,理解其定义和作用对于后续的学习至关重要。
假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。
具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。
常用的假设检验方法有u—检验法、t—检验法、X2检验法、F—检验法,秩和检验等。
目录简介假设检验亦称“显著性检验(Test of statistical significance)”,是假设检验用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。
当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。
假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。
在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。
假设检验的思想是,先假设两者相等,即:µ=µ0,然后用统计的方法来计算验证你的假设是否正确。
概率论与数理统计教案-假设检验一、教学目标1. 理解假设检验的基本概念和原理;2. 学会使用假设检验方法对样本数据进行推断;3. 掌握假设检验的类型、步骤和判断准则;4. 能够运用假设检验解决实际问题。
二、教学内容1. 假设检验的基本概念和原理假设检验的定义假设检验的目的是什么假设检验的基本原理2. 假设检验的类型单样本检验双样本检验配对样本检验3. 假设检验的步骤建立假设选择检验统计量确定显著性水平计算检验统计量的值做出判断4. 假设检验的判断准则拒绝域和接受域检验的拒绝准则检验的接受准则5. 假设检验的应用实例应用假设检验解决实际问题实例分析与解答三、教学方法1. 讲授法:讲解假设检验的基本概念、原理、类型、步骤和判断准则;2. 案例分析法:分析实际问题,引导学生运用假设检验方法解决问题;3. 互动教学法:提问、讨论、解答学生提出的问题,促进学生理解和掌握知识;4. 练习法:布置课后作业,让学生巩固所学知识,提高运用能力。
四、教学准备1. 教案、教材、课件等教学资源;2. 投影仪、电脑等教学设备;3. 课后作业及答案。
五、教学过程1. 导入新课:回顾上一节课的内容,引入假设检验的基本概念和原理;2. 讲解假设检验的基本概念和原理,阐述其目的是什么;3. 讲解假设检验的类型,引导学生了解各种类型的假设检验;4. 讲解假设检验的步骤,让学生掌握进行假设检验的方法;5. 讲解假设检验的判断准则,使学生明白如何做出判断;6. 分析实际问题,引导学生运用假设检验方法解决问题;7. 布置课后作业,让学生巩固所学知识;8. 课堂小结,总结本节课的主要内容和知识点。
教学反思:在教学过程中,要注意引导学生理解和掌握假设检验的基本概念、原理和步骤,并通过实际问题让学生学会运用假设检验方法。
要关注学生的学习反馈,及时解答他们提出的问题,提高他们的学习兴趣和积极性。
六、教学评估1. 评估方式:课后作业、课堂练习、小组讨论、个人报告2. 评估内容:学生对假设检验基本概念的理解学生对假设检验类型和步骤的掌握学生对假设检验判断准则的应用学生解决实际问题的能力七、课后作业1. 完成教材后的练习题2. 选择一个实际问题,运用假设检验方法进行分析和解答3. 总结本节课的主要内容和知识点,写下自己的学习心得八、课堂练习1. 例题解析:分析教材中的例题,理解假设检验的步骤和判断准则2. 小组讨论:分组讨论课后作业中的问题,共同解决问题,交流学习心得3. 个人报告:选取一个实际问题,进行假设检验的分析和解题过程报告九、教学拓展1. 假设检验的扩展知识:学习其他类型的假设检验方法,如非参数检验、方差分析等2. 实际应用案例:搜集更多的实际问题,进行假设检验的分析和解答3. 软件操作实践:学习使用统计软件进行假设检验,提高数据分析能力十、教学计划1. 下一节课内容预告:介绍假设检验的扩展知识和实际应用案例2. 学习任务布置:预习下一节课的内容,准备相关问题和建议3. 课后自学计划:鼓励学生自主学习,深入了解假设检验的方法和应用教学反思:在完成本节课的教学后,要关注学生的学习情况,及时解答他们提出的问题,并提供必要的辅导。
数理统计之假设检验概述假设检验是数理统计学中的一个重要方法,用于根据样本数据对总体参数的假设进行推断。
通过对样本数据进行分析,判断总体参数是否符合我们所假设的条件。
本文将从假设检验的基本概念、假设检验的步骤和常见的假设检验方法进行介绍。
假设检验的基本概念假设检验分为原假设和备择假设。
原假设是对总体参数进行的假设,常用符号H0表示。
备择假设是对原假设的否定,常用符号H1或Ha表示。
在进行假设检验时,我们首先设立一个原假设,然后通过对样本数据的分析,对原假设进行推翻或接受。
假设检验的步骤假设检验的步骤一般包括以下几个步骤:1.建立假设:确定原假设H0和备择假设H1。
2.选择显著性水平:显著性水平(α)是在进行假设检验时拒绝原假设的临界点,常用的显著性水平有0.05和0.01。
3.选择检验统计量:根据研究问题和数据类型选择适当的检验统计量。
4.计算检验统计量的值:根据样本数据计算检验统计量的值。
5.做出决策:根据检验统计量的值和显著性水平,判断是否拒绝原假设或接受备择假设。
6.得出结论:根据决策结果得出对总体参数的推断结论。
常见的假设检验方法单总体均值检验单总体均值检验用于检验总体均值是否符合某个给定的值。
假设我们要检验一个药物的剂量对病人的平均生存时间是否有影响,我们可以采用单总体均值检验方法。
双总体均值检验双总体均值检验用于检验两个总体均值是否相等。
假设我们想知道男性和女性的平均身高是否有差异,我们可以使用双总体均值检验方法。
单总体比例检验单总体比例检验用于检验总体比例是否符合某个给定的比例。
假设我们想知道某品牌产品的整体满意度是否达到90%,我们可以采用单总体比例检验方法。
双总体比例检验双总体比例检验用于检验两个总体比例是否相等。
假设我们想知道男性和女性购买某款产品的比例是否相等,我们可以使用双总体比例检验方法。
卡方检验卡方检验用于检验两个或多个分类变量之间的关联性。
假设我们想知道吸烟与患某种疾病是否有关系,我们可以使用卡方检验方法。
数理统计学中的假设检验数理统计学是现代统计学中非常重要的部分,它主要研究如何通过数据来理解自然界的规律。
其中假设检验是其核心内容之一。
什么是假设检验?为什么它如此重要?下面让我们来仔细探讨。
一、假设检验的概念假设检验是指对一个已知的数据样本进行分析,并根据样本推断总体参数的过程。
具体地说,它涉及到两个假设:原假设和备择假设。
原假设指的是我们要检验的假设,一般是由问题的提出者提出;备择假设指的是与原假设相关的另外一种假设。
我们需要对这两个假设进行比较,判断样本的表现是否支持原假设。
如果不支持,那么我们就可以把原假设拒绝,并接受备择假设。
二、假设检验的应用假设检验在各个领域均有广泛的应用,例如医学、金融、政治等。
下面就以医学为例,来说明假设检验的应用。
例如,某个新药对特定疾病的治疗效果进行评估。
原假设是新药的治疗效果和传统药物相同,而备择假设是新药的治疗效果更好。
研究人员会在一定的样本规模内进行临床试验,然后根据试验结果进行假设检验。
如果结果表明新药的治疗效果显著超过传统药物,那么我们就可以拒绝原假设,接受备择假设。
在这个过程中,我们需要考虑到检验结果的可靠性,因此必须计算出显著性水平和P值。
三、假设检验的步骤通常来说,假设检验的步骤可以归纳为以下几步:1. 建立原假设和备择假设原假设通常是问题的提出者对研究对象的一种猜测或假设,而备择假设则是一个相关的假设,通常是对原假设的否定或拓展。
2. 设定显著性水平显著性水平是用于衡量研究结果是否达到了预期的水平。
通常,显著性水平被设定在0.05或0.01水平,也就是说,只有当P值小于0.05时,结果才会被认为是显著的。
3. 计算检验统计量检验统计量是指用来判断样本和原假设之间的差异程度的数值。
通常来说,检验统计量可以从样本中计算出来。
4. 计算P值P值是指在原假设成立的情况下,观察到的样本比当前样本更极端的概率。
通常,我们会根据检验统计量计算P值,并与显著性水平进行比较。
数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数在之前的内容中,我们完成了参数估计的步骤,今天起我们将进⼊假设检验部分,这部分内容可参照《数理统计学教程》(陈希孺、倪国熙)。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:什么是假设检验假设检验是⼀种统计推断⽅法,⽤来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的。
其步骤,其实就是提出⼀个假设,然后⽤抽样作为证据,判断这个假设是正确的或是错误的,这⾥判断的依据就称为该假设的⼀个检验。
假设检验在数理统计中有重要的⽤途,⽐如:橙⼦的平均重量是80⽄,这就是⼀个假设。
我们怎么才能知道它是对的还是错的?这需要我们对橙⼦总体进⾏抽样,然后对样本进⾏⼀定的处理,⽐如计算总体均值的区间估计,如果区间估计不包含80⽄,就认为原假设不成⽴,便拒绝原假设。
当然,由于样本具有随机性,因此我们只是对该假设进⾏检验⽽不是证明,也就是说不论假设检验的结果是接受假设还是拒绝假设,都不能认为假设本⾝是正确的或是错误的。
同时,假设的检验也不是唯⼀确定的,对任何假设都可以有⽆数种⽅案进⾏检验,⽐如上⾯的例⼦,95%的区间估计是⼀种检验,99%的区间估计也可以作为检验,90%的当然也可以,只要事先确定了即可。
总之,要将实⽤问题转化为统计假设检验问题处理,⼀般需要经历以下⼏个步骤:明确所要处理的问题,将其转化为⼆元问题,只能⽤“是”和“否”来回答。
设计适当的检验,规定假设的拒绝域,即拒绝假设时样本X 会落⼊的区域范围(当然也可以是统计量会落⼊的范围,这两个意思是⼀致的)。
抽取样本X 进⾏观测,计算需要的统计量的值。
根据样本的具体值作出接受假设或者否定假设的决定。
以下是假设检验问题的⼀些常⽤概念:零假设即原假设,指的是进⾏统计检验时预先建⽴的假设,⼀般是希望证明其错误的假设,⽤字母H 0表⽰。
这种区分⽅式⽐较⽞乎。