酶的作用机制和酶的调节
- 格式:ppt
- 大小:4.81 MB
- 文档页数:99
第十章酶的作用机制和酶的调节目的和要求:理解、掌握酶活性部位的相关概念和特点;掌握酶催化高效性的相关机理;了解几种酶的催化机制,理解结构和功能的适应性;了解酶活性的调节方式,掌握酶活性的别构调节、可逆共价调节和酶原激活调节方式及生物代谢中的作用。
一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。
结合部位:专一性催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分;组成酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分酶活性部位的基团:亲核性基团,丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。
酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。
2、特点⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法1、酶分子基团的侧链化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。
⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。
⑶亲和标记:利用底物类似物和酶活性部位的特殊亲和力将酶加以修饰标记来研究酶活性部位的方法。
修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合,相应的试剂称“活性部位指示剂”。
胰凝乳蛋白酶和胰蛋白酶,TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。
第10章酶的作用机制和酶的调节第10章酶的作用机制和酶的调节教学目的:掌握酶的活性部位结构与功能、酶活性的别构调节、酶原激活,了解酶高效性原因教学重点:酶活性部位的结构与功能及酶的活性的别构调节教学难点:酶活性的别构调节教学方法:多媒体教学内容:一、酶的活性部位及确定方法(一)酶活性部位概念及特点1、酶的活性中心(活性部位):指酶分子中的表面有一个必需基团比较集中、并构成一定空间结构的微小区域。
酶活性中心的基团,按其功能可分为结合基团和催化基团。
活性中心的基团都是维持酶活性的必需基团,2、酶活性部位的共同点:(1)酶活性部位仅占酶体积的很小一部分,通常只占整个酶分子体积的1~2%,酶分子是大分子物质,由很多氨基酸构成,而活性部位仅由几个氨基酸残基组成催化部位一般由2~3个氨基酸残基组成。
结合部位氨基酸残基数目,不同的酶有所不同。
可能是一个,也可能是多个。
(2)酶的活性部位具有三维结构,构成酶活性中心的基团,可位于同一条肽链上,也可位于不同的肽链上,在一级结构上可能相距甚远,但在空间结构上位置必须相互靠近;酶的空间结构受物理或化学因素影响时,酶的活性部位可能会遭破坏,酶会失活。
(3)活性中心的结合基团与底物专一性结合,这需要活性部位的基团精确排列。
活性部位具有一定的柔韧性,活性部位的结构并不是与底物的结构正好互补。
在酶与底物结合过程中,酶活性中心的构象在底物的诱导下可发生形变,然后嵌合互补形成中间产物,而底物在酶活性中心的诱导下也可发生形变,变的易与酶结合,有时是两者的构象同时发生变化后才互补契合(诱导契合学说)。
(4)酶活性部位位于酶分子表面的一个裂缝内,底物分子或底物分子的一部分结合到裂缝中,裂缝内的非极性基团较多,形成一个疏水环境,提高与底物的结合能力,也有极性的氨基酸残基,以便与底物结合并催化底物发生反应。
(5)底物通过较弱的次级键与酶结合。
组成酶活性中心的氨基酸残基,常见的有:组氨酸、赖氨酸、天冬氨酸、谷氨酸、丝氨酸、半胱氨酸和酪氨酸3、研究酶活性部位的方法(1)共价修饰(2)亲和标记法(3)切除法(4)X射线晶体结构分析法二、酶促反应机制(一)基元催化的分子机制:酶的催化作用包括若干基元催化。
酶的作用和调控酶是一种生物催化剂,可以加速化学反应的速率,而且在反应过程中自身不发生改变。
酶在生物体内起着极其重要的作用,参与了几乎所有的生物反应,包括新陈代谢的调节、信号传导、DNA复制等等。
本文将重点讨论酶的作用和调控机制。
一、酶的作用酶具有高度特异性,只能催化特定的底物。
它们通过在底物分子上形成暂时的键合,降低活化能,从而使反应速率增加。
酶的作用主要可以从以下几个方面来理解。
1. 催化底物转化酶可以催化底物转化为产物,如淀粉酶能将淀粉分解为葡萄糖单元,蛋白酶能加速蛋白质的降解,而核酸酶能剪切DNA链。
这些反应都是通过酶与底物的特定结合来实现的。
2. 降低活化能酶可以通过形成酶-底物复合物来降低反应的活化能。
这是因为酶能够在底物的特定位置形成特定的电荷分布或空间结构,从而使底物分子更容易发生化学反应。
3. 提高反应速率由于降低了反应的活化能,酶可以使反应速率大大增加。
一般来说,酶催化的反应速率比非酶催化的速率快几百到几百万倍。
二、酶的调控为了维持生物体内的稳态,酶的活性需要得到严格调控。
酶的调控可以分为两类:遗传调控和非遗传调控。
1. 遗传调控遗传调控是通过改变酶的基因表达水平来调控酶的活性。
这可以通过以下几种方式实现。
a. 转录调控转录调控是通过调控酶基因的转录来控制酶的产量。
这可以通过激活或抑制酶基因的转录因子来实现。
转录因子是一类能够结合到基因启动子上的蛋白质,它们可以增强或抑制酶基因的转录,从而影响酶的产量。
b. 翻译调控翻译调控是通过调控酶基因的转录产物的翻译过程来调控酶的产量。
这可以通过调控转录产物的稳定性或翻译速率来实现。
例如,一些miRNA可以与转录产物相互作用,从而降解转录产物或阻止其翻译。
c. RNA剪接调控RNA剪接调控是通过调控基因转录产物的剪接方式来调控酶的活性。
不同的剪接方式会生成不同的转录产物,从而影响酶的功能。
2. 非遗传调控非遗传调控是通过调控已存在的酶分子的活性、稳定性或定位来调控酶的活性。