新人教版七年级数学第二章整式的加减--杨绍军
- 格式:ppt
- 大小:2.24 MB
- 文档页数:5
人教版七年级数学上册第二章《整式的加减》说课稿一. 教材分析《人教版七年级数学上册》第二章《整式的加减》是学生在初中阶段首次接触整式运算的内容。
在此之前,学生已经学习了有理数、实数等基础知识,对加减法、乘除法等运算有了初步的认识。
本章内容旨在让学生掌握整式的加减运算法则,培养学生的运算能力和逻辑思维能力。
教材从简单的整式加减法开始,逐步引导学生理解和掌握整式加减的运算规律。
通过大量的例题和练习题,使学生能够在实际运算中灵活运用所学知识。
此外,教材还注重引导学生发现规律,总结方法,提高运算效率。
二. 学情分析七年级的学生在学习本章内容时,已经有了一定的数学基础,对运算有一定的认识。
但同时,学生在这一阶段正处于从小学到初中的过渡期,学习习惯、思维方式都需要进行调整。
因此,在教学过程中,教师需要关注学生的学习习惯和思维方式的培养。
学生在学习本章内容时,可能会遇到以下问题:1.对整式的概念理解不清晰,容易混淆整数和整式。
2.对整式加减的运算规律理解不深,不能灵活运用所学知识。
3.运算过程中,容易忽视符号的变化,导致计算错误。
三. 说教学目标1.知识与技能目标:使学生理解和掌握整式的加减运算法则,能够熟练地进行整式的加减运算。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生发现整式加减的运算规律,培养学生的运算能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的乐趣。
四. 说教学重难点1.教学重点:整式的加减运算法则。
2.教学难点:整式加减过程中,符号的变化和运算规律的运用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究整式加减的运算规律。
2.运用多媒体教学手段,生动展示整式的加减过程,帮助学生理解和记忆。
3.采用小组合作学习的方式,培养学生的团队合作意识和沟通能力。
六. 说教学过程1.导入:通过简单的整数加减法引出整式的加减法,激发学生的学习兴趣。
人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
人教版数学七年级上册《第二章整式的加减》教案一. 教材分析人教版数学七年级上册《第二章整式的加减》是学生在学习了有理数、一元一次方程等知识后,进一步学习代数的基础。
这一章主要介绍整式的加减运算法则,通过学习,学生能够掌握整式的加减运算,并为后续的函数、方程等知识的学习打下基础。
本章内容贴近学生的生活实际,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了有理数、一元一次方程等基础知识,具备了一定的逻辑思维能力。
但是,对于整式的加减运算,学生可能还存在着一定的困难,因此,在教学过程中,需要注重引导学生理解整式的加减运算法则,通过具体的例子,让学生能够熟练地进行整式的加减运算。
三. 教学目标1.知识与技能:理解整式的加减运算法则,能够进行简单的整式加减运算。
2.过程与方法:通过实例,培养学生的观察、分析、归纳能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:整式的加减运算法则。
2.难点:整式加减运算的灵活应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究,培养学生的动手操作能力和独立思考能力。
六. 教学准备1.教学素材:教材、多媒体课件、练习题。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物时找零、制作标语等,引导学生发现这些问题都可以用整式的加减来解决,从而激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减运算法则,通过具体的例子,让学生理解并掌握整式的加减运算。
3.操练(10分钟)让学生分组进行练习,互相讨论,教师巡回指导。
在此过程中,教师要注意发现学生的错误,并及时进行纠正。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解,让学生进一步巩固整式的加减运算。
5.拓展(10分钟)引导学生思考:如何将整式的加减运算应用到实际问题中?让学生举例说明。
第三课时 整式的加减(1)一、教学目标(一)学习目标1.理解并掌握整式的加减运算法则.2.能根据题意准确列出式子,在经历字母表示数量关系的过程中,提高分析、解决问题的能力.3.能利用整式的加减运算法则准确熟练的进行整式的化简,并能说明其中的算理.(二)学习重点会进行整式的加减运算,列式表示实际问题中数量关系.(三)学习难点列式表示实际问题中数量关系,去掉括号前是负因数的括号.二、教学设计(一)课前设计1.预习任务(1)整式的加减运算的法则:一般地,几个整式相加减,如果有括号就先 去括号 ,然后再 合并同类项 .2.预习自测(1)小马虎做得四道合并同类项题:①3322=-x x ;②325a b ab +=;③33x x +=;④30.7504mn mn -+=,他做对了( ). A.1道 B.2道 C.3道 D.4道【知识点】合并同类项.【解题过程】解:①合并时系数相加,字母和字母的指数不变,故错;②不是同类项不能合并,故错;③不是同类项不能合并,故错;④系数是互为相反数的同类项合并为0,故对.【思路点拨】根据合并同类项的法则逐一判定.【答案】A.(2)多项式22232b ab a +-与多项式2232b ab a -+的差是( ).A .225ab b -B . 245ab b-+ C .225ab b -- D .245ab b - 【知识点】整式的加减. 【解题过程】解:(22232b ab a +-)-(2232b ab a -+)=222223223a ab b a ab b -+--+=245ab b -+所以A.C.D 都是错的,故B 对.【思路点拨】根据题意建立式子,去括号合并同类项可得.【答案】B.(3)一个多项式加上342-+x x 得7252+-x x ,则这个多项式是 .【知识点】整式的加减.【解题过程】解:(7252+-x x )-(342-+x x )=2252743x x x x -+--+=24610x x -+【思路点拨】根据题意建立式子,去括号合并同类项可得,注意两个多项式都要分别作为整体加括号.【答案】24610x x -+.(4)一个篮球的单价为a 元,一个足球的单价为b 元(b >a ),小明买了6个篮球和2个足球,小国买了5个篮球和3个足球,小明比小国少( ).A.(b a -)元;B.(a b -)元; C .(b a 5-)元 ; D.(a b -5)元.【知识点】列式表示数量关系.【解题过程】解:(53)(62)a b a b +-+=5362a b a b +--=b a -,故选B.【思路点拨】根据题意建立式子,去括号合并同类项可得,注意两个多项式都要分别作为整体加括号.【答案】B.(二)课堂设计1.知识回顾(1)合并同类项法则是什么?依据是什么?(2)去括号法则是什么?它的依据是什么?(3)去括号时应注意哪些事项?2.问题探究探究一 整式的加减运算●活动① (整合旧知,整式加减的法则)化简:(1) (23)(54)x y x y +--;(2) (87)(45)a b a b ++-.师问:整式的化简实际就是什么的运算?生答:去括号,合并同类项【设计意图】通过学生练习,初步认识到整式的加减运算通常就是先去括号,再合并同类项 探究二 ★▲●活动① (大胆操作,探究列式表示数量关系)笔记本的单价是x 元,圆珠笔的单价是y 元,小红买3本笔记本,2支圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本和圆珠笔,小红和小明共花费多少钱?师启发、引导学生用不同的方法列式表示小红和小明共花费的钱,学生独立思考,然后展示交流.方法一:小红买3本笔记本,花去3x 元,2支圆珠笔花去2y 元,小红共花去(32x y +)元,小明买4本笔记本花去4x 元,3支圆珠笔花去3y ,小明共花去(43x y +)元,所以他们一共花去[](32)(43)x y x y +++元.方法二:小红和小明买笔记本共花了(34)x x +元,买圆珠笔共花了(23)y y +元,所以买笔记本和圆珠笔共用了[](34)(23)x x y y +++元.【设计意图】让学生探索解题的不同方法,明白从不同的角度看问题可以得到不同的式子,从而拓展学生的思维,提高分析问题的能力.●活动② (集思广益,实际问题中整式的加减)师追问:如果求小明比小红多花多少元?请列出式子.生答:(43x y +)-(32x y +)师追问:这两个多项式分别是两个整体,最好带上括号,如果不带括号会出现什么错误?生答:符号上的错误,如4332x y x y +-+.归纳:当列式解决实际问题中的数量关系时,一般要将多项式看成整体带上括号,从而保证符号不错.【设计意图】让学生注意列式表达数量关系时,实际问题中的数量关系都应该看成整体带上括号,这样有利于准确列出式子.●活动③ (反思过程,发现整式加减的法则)如何进行整式的加减呢?学生自己独立尝试.师问:通过上面的学习,你能得到含有括号的整式的加减的运算法则吗?学生举手抢答.总结:一般地,几个整式相加减,如果有括号就先去括号,然后合并同类项.【设计意图】总结整式加减的运算法则,培养学生的观察、归纳和表达能力.探究三 (整式的加减运算)★▲●活动① (基础性例题)师问:整式的加减运算法则是什么?生答:几个整式相加减,如果有括号就先去括号,然后合并同类项.师问:我们运用它可以解决什么问题?生答:整式的化简.例1 化简:(1))721(4)312(322---+-x x x x ; (2)22243(2)4xy x y x y xy x y xy ⎡⎤----+⎣⎦.【知识点】去括号法则.【解题过程】解:(1))721(4)312(322---+-x x x x=226394228x x x x -+-++=28525x x ++(2)22243(2)4xy x y x y xy x y xy ⎡⎤----+⎣⎦=2224(324)xy x y x y xy x y xy ---++=2224324xy x y x y xy x y xy --+--=2224324x y x y x y xy xy xy ---+-+=28x y xy --【思路点拨】根据整式的加减法则,先去掉括号,再合并同类项,含有多重括号的,先去掉小括号,再去掉中括号,最后去掉大括号,如果括号内有同类项的可以先合并再去掉括号,特别注意去括号时一定弄清括号前的符号.【答案】(1)28525x x ++;(2)28x y xy --. 师追问:(1)中去第二个括号时是把括号前的因数看成“-4”分配进去,还可以怎么做? 生答:还可以把“-”留在括号外,只把“4”分配进去后,再去括号即可.总结:去括号时,可以把括号前的符号看成性质符号与括号前因数看成一个整体,利用乘法分配律和有理数的乘法法则去括号,也可以把括号前的因数先分配到括号里,再根据括号前的符号去掉括号.练习:(1)22222253(42)2xy xy xy x y x y xy ⎡⎤---+-⎣⎦;(2)()()2222222a b a b a c bc a c ⎡⎤---+⎣⎦).【知识点】去括号法则.【解题过程】解:(1)原式=2222225(342)2xy xy xy x y x y xy --++-=222225(2)2xy xy x y x y xy --++-=22222522xy xy x y x y xy +-+-=22222522xy xy xy x y x y +--+=25xy(2)原式=2222(242)a b a b a c bc a c ----=222(252)a b a b a c bc ---=222252a b a b a c bc -++=2252a b a c bc -++【思路点拨】根据整式的加减法则,先去掉括号,再合并同类项,含有多重括号的,先去掉小括号,再去掉中括号,最后去掉大括号,如果括号内有同类项的可以先合并再去掉括号,特别注意去括号时一定弄清括号前的符号.【答案】(1)25xy ;(2)2252a b a c bc -++.【设计意图】让学生能熟练准确运用合并同类项法则和去括号法则进行整式的化简. 例2:做大小两个长方体纸盒,尺寸如下(单位:cm). 长 宽 高 小纸盒a b c 大纸盒1.5a 2b 2c(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?【知识点】整式表示数量关系.【解题过程】解:根据题意:小纸盒的用料(222)ab ac bc ++ 2cm ;大纸盒的用料(686)ab bc ac ++ 2cm .(1)做这两个纸盒共用料(222)ab ac bc +++(686)ab bc ac ++=222686ab ac bc ab bc ac +++++=(8810)ab ac bc ++2cm .(2)大纸盒比小纸盒多用料(686)(222)ab bc ac ab ac bc ++-++=686222ab bc ac ab ac bc ++---=(464)ab bc ac ++2cm .【思路点拨】先根据题意把大小纸盒分别用料用整式表示出来,再列出式子,去括号,合并同类项化简即可.【答案】(1)(8810)ab ac bc ++2cm ;(2)(464)ab bc ac ++2cm .练习:如图,大正方形的边长为a ,小正方形的边长为2,求阴影部分的面积.【知识点】整式表示数量关系.【数学思想】数形结合思想.【解题过程】解:由图知BDC DCEF BEF S SS S =+- =21112(2)2(2)222a a a +⨯+-⨯+ =212a 【思路点拨】阴影面积割补为三角形BCD 面积+梯形DCEF 面积-三角形BEF 面积.【答案】212a . 【设计意图】使学生熟悉利用整式的加减解决实际问题过程中,应该注意的问题就是要把多项式看成整体添括号,提高学生的解决实际问题的能力.●活动2 (提升型例题)例3.某公司计划砌一个形状如图(1)的喷水池,后有人建议改为如图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?【知识点】整式表示数量关系.【数学思想】数形结合思想.【解题过程】解:设大圆直径为d ,周长为,图(2)中三个小圆的直径分别是1d ,2d ,3d ,周长分别是1l ,2l ,3l ,123()l d d d d ππ==++=123d d d πππ++=123l l l ++则图(1)中一个大圆周长与图(2)中三个小圆周长的和相等,即两种方案所用材料一样多. 改为n 个小圆12()n l d d d d ππ==+++ =12n d d d πππ+++ =12n l l l +++.则图(1)中一个大圆周长与图(2)中n 个小圆周长的和相等,即两种方案所用材料一样多. 【思路点拨】设出大圆的直径为d ,周长为,图(2)中三个小圆的直径分别是1d ,2d ,3d ,周长分别是1l ,2l ,3l ,利用周长公式即可得到两种方案需要的材料一样多.【答案】一样.练习:如图所示,四边形ABCD 和四边形ECGF 都是正方形. (1)写出表示阴影部分面积的整式;(2)求当a=4时,阴影部分的面积是多少?【知识点】整式表示数量关系.【数学思想】数形结合思想. 【解题过程】解:(1) 2221188(8)22S a a a =+--⨯+ =222184322a a a +--- =214322a a -+ (2)当4a =,2144432242S =⨯-⨯+=. 【思路点拨】(1)阴影部分面积可视为大小正方形减去空白部分(即ABD ∆和BFG ∆),把对应的三角形面积代入即可得214322S a a =-+; (2)直接把a=4代入(1)中可求出阴影部分的面积.【答案】(1)24322a a -+;(2)24. 【设计意图】使学生能准确的列式解决简单的实际问题,并能在特定字母的值的情况下正确求代数式的值.3.课堂总结知识梳理(1)整式的加减法则:几个整式相加减,如果有括号就先去括号,然后合并同类项.(2)括号前是“负因数”时注意:去掉括号和括号前的符号,括号内的每一项都要改变符号,分配时不要漏乘括号里的项.(3)整式的加减解决实际问题时注意:多项式一定要作为整体添括号,避免符号错误. 重难点归纳(1)括号前是“负因数”时注意:去掉括号和括号前的符号,括号内的每一项都要改变符号,分配时不要漏乘括号里的项.(2)整式的加减解决实际问题时注意:多项式一定要作为整体添括号,避免符号错误.。
新世纪教育网精选资料 版权全部 @新世纪教育网第二章整式的加减复习课(2)使用者:丁泽军教课目的 :⑴ 知识目标:理解掌握单项式、多项式及其次数、系数、整式等观点,弄清它们之间的差别和联系; 理解同类项的观点, 掌握归并同类项的方法, 掌握去括号时符号的变化规律,能正确地进行同类项的归并和去括号。
⑵ 能力目标:在正确判断、正确归并同类项的基础上,进行整式的加减运算;能剖析实质问题中的数目关系,并会列出整式表示。
⑶ 感情目标:经过师生共同的活动,使学生在学会沟通和反省的过程中,成立知识体系。
教课要点:归并同类项和去括号 教课难点:⑴ 去括号时,括号中符号的办理 ⑵ 从实质问题中列出代数式 教课过程:一、 知识回首(师:下边以几道题为基础对《整式的加减》这一课题进行复习) 1. 填空题272xy2⑴ 单项式-5 的系数是________, 它 是 _________ 次 单 项 式 ; 3 π r 系 数 是_________, 次数是 _________.⑵ 多项式 2a-5ab 2-1 是______次_______项式 , 最高次项的系数是___________, 常数项是________________.1 2x+y⑶25m-n,此中单项式有代 数 式 3a +1-2a,,0.3,x,πa7___________________________, 多 项 式 有 _________________________________, 整 式 有_________________________________.⑷ 多项式 6a 2-5a+3 与 5a 2+2a-1 的差是 ________________________________⑸ 一个三位数 , 百位数字是a, 十位数字是百位数字的 3 倍 , 个位数字是十位数字的一半, 则这个三位数是 ________________2. 选择题⑴ 在以下各单项式中,不是同类项的是()A、 -1x2y 和 -yx 2 B 、-3 和 100 C 、 - x2 yz 和 xy 2z D 、 -abc 和5 bac22⑵ (广东省荆门市中考题) 单项式4x a+b y a-1与 3x2y 是同类项,则a-b 的值是()A、 2B、 0C、 -2D、 1(2分钟后,填空题⑷、⑸,选择题⑵让3 生板演解答过程,大多数学生达成后,师提问学生,给出各问题的答案,并说明所用到的知识点。
第二章 整式的加减2.2 整式的加减 第2课时 整式的加减学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.重点:熟练进行整式的加减运算.难点:能根据题意列出式子,表示问题中的数量关系.一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变. 2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是.二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元;小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式加减运算的基础是__________、_____________,运算结果仍是____________.三、自学自测1.求单项式24xy2xy,2-的和.5x y,22x y-,22.求2x xy467+-的差.x xy-+与231一、要点探究探究点1:整式的加减合作探究:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加可得: + = .结论:这些和都是_________的整数倍.做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.你又发现什么规律了吗?例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a -c).议一议:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式 2453x x -+ 与多项式 2273x x -+- 的和与差.练一练:求上述两多项式的差.总结归纳:1. 几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式加减实际上就是:去括号、合并同类项.3. 对于运算结果,常将多项式按某个字母(如 x )的降幂(升幂)排列. 探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:整式加减解决实际问题的一般步骤:(1)根据题意列代数式;(2)去括号、合并同类项;(3)得出最后结果.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x .【能力提升】有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.已知一个多项式与的和等于,则这个多项式是( ) A .B .C .D .2.长方形的一边长等于3a+2b,相邻边比它大a-b,那么这个长方形的周长是( )A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-4 5.已知,,则=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?1232+-=a a A 2352+-=a a B BA 32-思路:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究合作探究:10a+b 10b+a 10a+b 10b+a 11a+11b= 11(a + b) 结论:这些和都是 11 的倍数.议一议:整式的加减运算,去括号、合并同类项解: (1)原式=7a+b. (2)原式=4a-2b.2 解:4-5x2+3x +(-2x+7x2-3)=4-5x2+3x-2x+7x2-3=(-5x2+7x2)+(3x-2x)+(4-3)=2x2+x+1.练一练:-5x2+3x -(-2x+7x2-3)=4-5x2+3x+2x-7x2+3=(-5x2-7x2)+(3x+2x)+(4+3)= -12x2+5x+7.3 解:小红买笔记本和圆珠笔共花费 (3x + 2y) 元,小明买笔记本和圆珠笔共花费 (4x + 3y) 元.小红和小明一共花费(单位:元)(3x + 2y)+ (4x + 3y) = 7x+5y,则小红与小明一共花费(7x+5y)元.另解:小红和小明买笔记本共花费 (3x + 4x) 元,买圆珠笔共花费 (2y + 3y) 元.小红和小明一共花费(单位:元)(3x + 4x) + (2y + 3y) = 7x + 5y.4 解:小纸盒的表面积是 ( 2ab+2bc+2ac ) cm²;大纸盒的表面积是( 6ab+ 8bc+ 6ca ) cm²(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(6ab+ 8bc+ 6ca )=8ab+10bc+8ac.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=4ab+6bc+4ac.【能力提升】解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与a的取值无关,所以即使把a抄错,最后的结果都会一样.当堂检测1.A2.A3.D4.C5. -9a2+5a-46. 18. 设大圆半径为R,小圆半径依次为r1,r2,r3,则图(1)的周长为4πR,图(2)的周长为2πR+2πr1+2πr2+2π r3=2πR+2π(r1+ r2+ r3),因为2 r1+2 r2+2 r3=2R,所以r1+ r2+ r3=R,因此图(2)的周长为2πR+2πR=4πR.这两种方案,用材料一样多.将三个小圆改为n个小圆,用料还是一样多.第11页共11页。
2.2 整式的加减课题: 2.2 整式的加减——合并同类项(2)课时第2课时教学设计课标要求掌握合并同类项的法则,能进行简单的整式的加法和减法的运算。
教材及学情分析本节课选自人教版数学七年级上册第二章第二节第一课时的内容,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式、有理数运算以及合并同类项的基础上,对合并同类项法则的灵活运用。
教材当中有三个例题,由易到难,如果作为一课时的内容,内容较多,而且合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是后面学习解方程、解不等式的基础,因此单独作为一个课时的内容。
本节课的重点与难点即为熟练的合并多项式中的同类项。
在前面的学习中,学生已经掌握有理数的运算,具备一定的运算能力,也知道了合并同类项的法则,这些知识对本节课的学习有着铺垫作用。
并且七年级学生刚步入初中,表现欲望较强,因此在课堂中教师尽可能多给学生展示的机会,增强他们学习数学的自信心。
但七年级的认知水平,抽象概括能力和迁移能力都有待提高,因此在学习过程中需要老师引导才能理解相关知识。
课时教学目标在学习了合并同类项法则的基础上,结合具体的例题,熟练运用法则合并多项式中的同类项,将整式化简,理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
培养观察、分析、以及解决问题的能力。
逐步形成主动探究、合作交流的意识和严谨治学的学习态度。
重点熟练的合并多项式中的同类项难点熟练的合并多项式中的同类项,并解决相关问题提炼课题进一步巩固合并同类项的方法。
教法学法指导独立思考、讲练结合、自主探究教具准备ppt课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课完成口算题,并回顾同类项的概念和合并同类项的法则昨天的课上我们学习了什么是同类项以及合并同类项的方法,你还记得吗?尝试口算:(1)3x+5x=_______.(2)-4a2+2a2=______.(3)x2y-2x2y=_____.(4)2x+5x-3x=_____.你还记得什么是同类项么?合并同类项的法则呢?借助口算题回顾同类项的概念和合并同类项的法则,为后面利用合并同类项解决问题做铺垫教学过程分析多项式的特点,观察老师的解题过程,尝试独立完成第三题分析题意,观察老师的解题过程,尝试独立完成第三题例题讲解:本节课是对合并同类项法则的运用,故以例题居多。