4.已知,如图,∠1=∠ACB,∠2=∠3, FH⊥AB于H.问CD与AB有什么关系? 【解析】CD⊥AB. 理由如下: 因为∠1=∠ACB, 所以DE∥BC, 所以∠2=∠DCB, 又因为∠2=∠3,所以∠3=∠DCB,故CD∥FH, 因为FH⊥AB,所以CD⊥AB.
1.(2012·连云港中考) 如 图, 将三角尺 的直角顶点放在直线a上,a∥b,∠1=50°, ∠2=60°,则∠3的度数为( ) (A)50° (B)60° (C)70° (D)80° 【解析】选C.依题意,∠3=180°-∠1-∠2=180°-50°- 60°=70°.
2.如图,AB∥CD,EF∥GH,∠1=55°,则 下列结论中,错误的是( ) (A)∠2=125° (B)∠3=55° (C)∠4=125° (D)∠5=55° 【解析】选C.因为AB∥CD,EF∥GH,∠1=55°, 所以∠5=55°,所以∠4=55°,∠3=55°,∠2=125°,故C项错误.
【规律总结】 平行线的性质与判定的区别与联系
1.区别:(1)性质:根据两条直线平行,证角的相等或互补. (2)判定:根据两角相等或互补,证两条直线平行. 2.联系:它们都是以两条直线被第三条直线所截为前提;它们的 条件和结论是互逆的. 3.总结:已知平行用性质,要证平行用判定.
【跟踪训练】
1.(2012·衡阳中考)如图,直线a⊥直线c,
【解析】因为∠1+∠2=240°,∠1=∠2, 所以∠2=120°,又b∥c,所以∠3=180°-120°=60°. 答案:60°
5.如图,已知AC∥DE,∠D=70°,CD平分∠ACE,求∠E的度数.
【解析】因为CD平分∠ACE(已知), 所以∠ACD=∠ECD=1 ∠ACE(角平分线的性质).