先进板料成形技术与性能
- 格式:doc
- 大小:26.00 KB
- 文档页数:5
无模成形技术简介1.引言无模成形是以计算机为主要手段,利用多点成形或增量成形的方法,实现板料的无模具塑性成形的先进智能化制造技术。
金属板料成形在制造业中有着十分重要的地位,该技术广泛应用于航空航天、船舶工业、汽车覆盖件和家电等生产行业,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。
而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。
为此,国内外许多学者都在致力于板料塑性成形新技术的研究,努力实现金属板料快速高效的柔性冲压和无模成形,以适应现代制造业产品快速更新的市场竞争需要。
2.研究概况国内外许多学者都对板料塑性成形新技术进行了大量的研究,从无模多点成形和数字化渐进成形到喷丸成形、爆炸成形、激光热应力成形和激光冲击成形等,并取得了一定的成果。
2.1 无模多点成形无模多点成形是利用高度可调节的数控液压加载单元(基本群体)形成离散曲面,来替代传统模具进行三维曲面成形的方法,是一种多点压延加工技术。
此法特别适合于多品种小批量生产,体现了敏捷制造的理念。
目前已在高速列车流线型车头制作、船舶外板成形、建筑内外饰板成形及医学工程等领域,得到广泛应用。
与传统模具成形方法相比,其主要区别就是他具有“柔性”,可以在成形前也可在成形过程中改变基本体的相对位移状态,从而改变被成形件的变形路径及受力状态,以达到不同的成形效果。
图2-1 为传统模具成形与多点成形的比较。
图 2-2 为多点模具成形的过程。
图 2-1 模具成形与多点成形的比较图 2-2 多点模具成形过程20 世纪 70 年代,日本造船界开始研究多点成形压力机,并成功应用于船体外板的曲面成形。
此后许多学者为开发多点成形技术进行了大量的探讨与研究,制作了不同的样机,但大多只能进行变形量较小的整体变形。
吉林大学李明哲等人对无模多点成形技术进行了较为系统的研究,已自主设计并制造了具有国际领先水平的无模多点成形设备,2002 年底,李教授组建了产学研实体:长春瑞光科技有限公司。
高强度钢板的两种热成形技术强度钢板热成形技术有间接成形和直接成形两种工艺。
间接成形工艺可成形具有复杂形状的零部件,预成型后可进行加工;直接成形工艺节省时间、能源。
强度钢板热成形技术是同时实现汽车车体轻量化和提高碰撞安全性的最新技术。
目前,欧、美、日等各大汽车生产厂商已成功地将高强度钢热成形技术应用汽车构件的生产中,经济效益显著,有效地提高了市场竞争力。
目前国内仅有几家公司从国外引入生产线,耗资十分巨大,国内汽车厂家成本负担很大。
国内众多汽车公司正在迫切寻求用该项技术来铸造汽车冲压件。
但是,该项技术和装备被几家国外公司所垄断,设备价格十分昂贵。
因此,热成形零件的价格也远高于普通冷成形件,导致国内目前仅有少数厂家在高档轿车上采购这种高强度冲压件,远远满足不了国内汽车行业的市场需要。
针对上述情况,大连理工大学与长春伟孚特汽车零部件有限公司联合开发出国内第一条具有完全自主知识产权的高强度钢板热成形批量连续生产线。
高强度钢板热成形技术是集落料、加热、防氧化、冲压、淬火冷却、切形和喷丸处理等为一体的综合制造系统,是体现机械加工、电控和材料化工紧密交叉的国际前沿高新技术。
热成形连续加热炉要保证板料加热到设定的温度充分奥氏体化,同时避免没有防氧化涂层板料的高温氧化脱碳,这决定了热成形连续加热炉与其他加热炉相比应具有独特的核心技术。
成形有间接成形和直接成形两种工艺。
热成形间接成形工艺是指板料先经过冷冲压进行预成形,然后加热到奥氏体化温度,保温一段时间后放到具有冷却系统的模具里进行最终成形及淬火。
热成形间接成形工艺的优点如下:(1)可以成形具有复杂形状的车内零部件,几乎可以获得目前所有的冲压承载件。
(2)板料预成形后,后续热成形工艺不需要过多考虑板料高温成形性能,可以确保板料完全淬火得到所需要的马氏体组织。
(3)板料预成形后可以进行修边、翻边、冲孔等工艺加工,避免板料淬火硬化后加工困难问题。
热成形直接成形工艺是指板料加热到奥氏体化温度保温一段时间后直接放到具有冷却系统的模具里进行成形及淬火。
板料冲压成形性能及冲压材料板料的冲压成形性能板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。
具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。
冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。
下面分别讨论。
(一)成形极限在冲压成形中,材料的最大变形极限称为成形极限。
对不同的成形工序,成形极限应采用不同的极限变形系数来表示。
例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。
这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。
依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。
冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。
因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。
归纳起来,大致有下述几种情况:1.属于变形区的问题伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。
压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。
2.属于非变形区的问题传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。
也分为两种情况:1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。
2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。
非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。
Harbin Institute of Technology实践环节实验报告课程名称:金属板材成型性能测试与评价院系:材料科学与工程学院学生:孙巍学号:哈尔滨工业大学实践环节-杯突实验报告一、实验目的1、学习确定板材胀形性能的实验方法;2、了解金属薄板试验机的构造及操作。
二、实验内容将板材用模具压好,冲头以一定的速度冲压板材,直至板材出现裂缝为止三、实验原理板材的冲压性能是指板材对各种冲压加工方法的适应能力。
目前,有关板材冲压性能的试验方法,概括起来可分为直接试验和间接试验两类。
而直接试验法又包括实物冲压试验和模拟试验两种。
模拟试验,即把生产实际存在的冲压成形方法进行归纳与简化处理,消除许多过于复杂的因素,利用轴对称的简化了的成形方法,在保证实验中板材的变形性质与应力状态都与实际冲压成形相同的条件下进行的冲压性能的评定工作。
为了保证模拟试验结果的可靠性与通用性,规定了十分具体的关于实验用工具的几何形状与尺寸、毛坯的尺寸、实验条件。
杯突实验是目前应用较多,而且具有普遍意义的模拟试验方法之一。
杯突实验时,借助杯金属薄板试验机进行。
用一规定的球状冲头向夹紧于规定球形凹模内的试样施加压力,直至试样产生微细裂纹为止,此时冲头的压入深度称为材料的杯突深度值。
板材的杯突深度值反映板材对胀形的适应性,可作为衡量板材胀形、曲面零件拉深的冲压性能指标。
四、实验设备及用具试验机一台、杯突实验模具、游标卡尺、深度尺等。
五、实验步骤1、先了解金属薄板试验机的结构、原理和操作方法,了解各按钮的作用;2、装好模具;3、把试样清洗干净,在试样与冲头接触的一面和冲头球面上涂上润滑油,把试样放在下模上。
4、将下模向上提起,压好试样。
按下压边按钮,设定压边力。
5、按中心活塞上行按钮,注意观察试样。
当试样圆顶附近出现有能够透光的裂缝时,迅速停止。
6、将下模向下移动,然后将冲头向下移动,取出试件。
7、实验完毕后,将模具拆下。
实践环节-拉深实验报告一、实验目的1、了解拉深过程中拉深系数(或毛坯直径)、润滑、压边圈、凸凹模间隙、拉深高度等因素对拉深件质量的影响。
板料成形技术的原理板料成形技术是一种将金属或非金属板料通过应用力、热量或化学反应等方式,使其发生形状改变的加工方法。
它是金属成型技术的重要分支之一,广泛应用于汽车、航空航天、电子通信、建筑等领域。
板料成形技术的原理可以归纳为以下几个方面:1. 弹性变形原理弹性变形原理是指在加载作用下,板料发生弹性变形而不会发生永久性变形或断裂。
在板料成形过程中,利用材料自身的弹性回复性能,通过施加外力使其发生形状改变。
这种原理适用于一些薄板的成形,如冲压、弯曲等工艺。
2. 塑性变形原理塑性变形原理是指在加载作用下,板料发生永久性变形而不恢复到原来的形状。
在板料成形过程中,通过施加足够大的应力使板料发生塑性变形,以获得所需的形状。
这种原理适用于深冲、拉伸、压缩等工艺。
塑性变形原理的关键在于控制加载过程中的应力和变形,以避免板料过度塑性变形而引起断裂。
3. 热变形原理热变形原理是指通过加热板料使其塑性增加,然后再施加力量使其发生塑性变形。
板料的塑性与温度密切相关,一般情况下,热变形温度要低于材料的熔点,以避免熔化。
热变形可以改变材料的结构和性能,扩大塑性变形范围,提高板料的成形性能。
热变形原理适用于复杂形状的成形,如热深拉、热冲压等工艺。
4. 化学反应原理化学反应原理是指通过在板料表面产生化学反应,改变板料的表面性质从而达到成形的目的。
常用的化学反应方法有电镀、化学腐蚀等。
通过这些方法,可以在板料表面形成一层新的物质,改变其摩擦、润滑、耐蚀性等性能,以便进行成形。
总之,板料成形技术的原理主要包括弹性变形、塑性变形、热变形和化学反应。
不同的板料成形工艺根据材料的特性和形状要求,选择适合的原理和方法进行成形。
通过合理控制成形参数和工艺流程,可以实现对板料的精确成形,满足不同工业领域对于各种复杂形状的需求。
板料的力学性能与成形性能汽车车身钣金件生产过程中,经常遇到一些不明具体原因的停台,我们将其中的一些归类为材料停台:比如说,这一拍料生产时很顺利,一换另一拍料板料就缩径拉裂、四处开花。
但是,我们并不清楚材料哪里出了问题。
我们明眼就能看出的板料问题:如板料脏、有杂物(灰尘、料屑、皮带上的杂物等)、板料锈蚀和夹杂、坑包和棱子。
但是这和板料内部的性能并没有太大的关系。
那么,板料的力学性能包括哪些方面,它们具体指什么,与板料的成形有什么关系呢?厂家提供的质量说明书中包含的内容有:①卷料的基本尺寸、重量;②化学成分;③室温拉伸试验得到的力学性能参数;④镀层重量。
其中,力学性能参数包括屈服强度(yield strength,87版国标为σs,2002版国标为R eL)、抗拉强度(tensile strength,87版国标为σb,2002版国标为R eM)、延伸率(elongation,87版国标δ,现用国标为A)、垂直轧制方向的应变硬化指数(n)、塑性应变比(R,也叫厚向异性系数)这五个参数。
这些力学性能参数都是通过取垂直板材轧制方向取样后,进行单向拉伸试验后得到的。
因此,在了解这些力学性能参数之前,先讨论一下拉伸试验是有必要的。
进行拉伸试验后,可以得到载荷—行程曲线,经过转换后得到一条应力—应变曲线。
应力的概念类似于压强,是指单位面积上力的大小。
工程应变指试样在单位长度上的变形相对于原长度的百分比。
下图是产生微量变形时的应力—应变曲线。
板料在开始产生塑性变形前,先产生弹性变形。
对于目前车间使用的钢板、铝板,均没有像低碳钢那样的屈服台阶,所以我们一般取产生0.2%应变时的应力为板材的屈服强度。
我们把整个成形过程中的最大应力(也是缩颈开始产生时的应力)称为抗拉强度。
断裂时试样的伸长比例,称为板料的延伸率。
屈服应力大小直接影响冲压力及成形后回弹量大小。
在相同工艺条件下,低的屈服强度板材成形后回弹量小,形状更稳定。
钢板热冲压新技术介绍一、本文概述随着汽车工业的快速发展,对汽车零部件的性能要求日益提高,特别是在安全性、轻量化和节能减排方面。
钢板热冲压技术作为一种先进的金属成形工艺,以其独特的优势在这些领域发挥着重要作用。
本文旨在全面介绍钢板热冲压新技术,包括其基本原理、工艺流程、设备配置、材料选择以及应用领域等方面的内容。
通过深入了解钢板热冲压新技术,可以为汽车工业及其他相关领域的技术进步和创新发展提供有益的参考和借鉴。
二、传统钢板热冲压技术概述传统钢板热冲压技术,也被称为热成形或热压成形,是一种广泛应用于汽车制造业的金属成形工艺。
该技术主要利用高温下金属材料的良好塑性,通过在红热状态下对钢板进行冲压,以实现复杂形状和高强度构件的制造。
在传统的钢板热冲压过程中,钢板首先被加热到奥氏体相变温度以上,使其具备足够的塑性。
随后,在高温条件下,钢板被迅速转移到冲压模具中,利用模具的压力和形状,使钢板发生塑性变形,从而得到所需的形状和尺寸。
完成冲压后,零件通过淬火和回火等热处理工艺,获得高强度和高硬度的马氏体组织。
传统钢板热冲压技术的优点在于能够制造出高强度、高刚度的复杂形状零件,这些零件在汽车工业中广泛应用于车身结构、底盘部件以及安全系统等关键部位。
该技术还能够实现零件的轻量化,降低整车的能耗和排放。
然而,传统钢板热冲压技术也存在一些局限性。
高温操作对设备和模具的材料要求较高,增加了制造成本。
热冲压过程中需要精确控制加热温度、冲压速度和冷却速率等参数,以确保零件的质量和性能。
由于热冲压过程中金属材料的流动性和成形性受温度影响较大,因此对于一些形状复杂或尺寸精度要求较高的零件,制造难度较大。
随着科技的不断进步和汽车工业的发展,传统钢板热冲压技术也在不断创新和完善。
目前,研究人员正致力于探索新型加热方式、优化冲压工艺参数以及开发高性能的模具材料等方面的工作,以期进一步提高热冲压技术的成形精度、生产效率和经济效益。
三、钢板热冲压新技术介绍随着现代工业的快速发展,钢板热冲压技术作为一种先进的金属成型工艺,正日益受到业界的广泛关注和应用。
板料成形有限元分析的发展综述摘要:在参阅和分析大量有关文献的基础上,对有限元法的产生和弹塑性有限元的发展进行了总结,特别是对当前应用广泛的板料成形有限元数值模拟在国内外的发展概况和发展趋势进行了详尽的剖析,为深入了解板料成形有限元的发展提供了有益的参考。
关键词:板料成形;数值模拟;有限元法;有限元分析;弹塑性引言有限单元法是工程计算领域的一种主要的数值计算方法,其基本思想就是将连续区域上的物理力学关系近似地转化为离散规则区域上的物理力学方程。
它是一种将连续介质力学理论、计算数学和计算机技术相结合的一种数值分析方法。
此方法由于其灵活、快捷和有效,已迅速发展成为板料冲压成形中求解数理方程的一种通用的数值计算方法。
有限元法源于40年代提出的结构力学的矩阵算法。
“有限元法”这一术语是R.W.Clough于1960年在论文“The finite element method in plane stress analysis”中首次提出来的,他用这种方法首次求解了弹性力学的二维平面应力问题。
1963年,Besseling证明了有限元法是基于变分原理的Ritz法的另一种形式,从而使Ritz分析的所有理论基础都适用于有限元法,确认了有限元法是处理连续介质问题的一种普遍方法。
板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性等三非线性问题的计算,难度很大。
随着非线性连续介质力学理论、有限元法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。
从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际的应用。
1 弹塑性有限元分析研究发展概况有限元法建立之初,只能处理弹性力学问题,无法应用于金属塑性成形分析。
1965年Marcal提出了弹塑性小变形的有限元列式求解弹塑性变形问题,揭开了有限元在塑性加工领域应用的序幕。
1968年日本东京大学的Yamada推导了弹塑性小变形本构的显式表达式,为小变形弹塑性有限元法奠定了基础。
但小变形理论不适于板料冲压成形这样的大变形弹塑性成形问题,因此人们开始致力于研究大变形弹塑性有限元法。
1970年美国学者Hibbitt等首次利用有限变形理论建立了基于Lagrange格式(T.L格式)的弹塑性大变形有限元列式。
1973年Lee 和Kabayashi提出了刚塑性有限元法。
1973年Oden等建立了热-弹粘塑性大变形有限元列式。
1975年Mcmeeking建立了更新Lagrange格式(U.L格式)的弹塑性大变形有限元列式。
1978年Zienkiewicz等提出了热耦合的刚塑性有限元法。
1980年Owen出版了第一本塑性力学有限元的专著,全面系统地论述了材料非线性和几何非线性的问题。
至此,大变形弹塑性有限元理论系统地建立起来了。
2 板料成形有限元数值模拟国内外研究发展概况在有限元法用于金属塑性成形分析之前,人们主要是用实验分析方法来了解金属的塑性成形性能,为设计提供依据。
例如Keeler提出的成形极限图(FLD-Forming Limit Diagram)概念描述了板料在发生颈缩前所能承受的最大局部塑性变形,并得到广泛应用。
有限元法在板料成形中的应用始于70年代,最初是从分析简单的轴对称问题开始。
1973年,Lee提出刚塑性有限元法,并把这一方法用于分析冲压成形问题,这是人们第一次用有限元方法来模拟冲压成形过程。
随后,Iseki等用弹塑性增量型有限元法模拟了液压胀形过程。
1976年,Wifi基于轴对称理论,用弹塑性增量型有限元法模拟了圆形坯料在半球凸模下的胀形和深拉伸过程。
1977 年,在美国通用汽车公司召开的一个关于板料成形过程力学分析的研讨会上,Kabayashi用刚塑性有限元法模拟了板料液压胀形和半球形凸模作用下的拉延过程。
自此,板料冲压成形数值模拟沿着这两篇文章开创的道路发展起来。
1978 年,Wang基于非线性薄壳理论采用弹塑性全Lagrange方法对一般形状的冲压成形问题进行了分析,Onate基于非牛顿流体的流动理论,用粘塑性有限元法分析了非轴对称情形下的胀形和拉延过程。
1980年,Oh首先比较了冲压成形过程的刚塑性有限元解和弹塑性有限元解,然后用刚塑性有限元法对成形中的拉延过程进行了分析。
1985年,Toh采用板壳单元的刚塑性有限元法分析了三维方盒形件的拉延过程。
1986年,Yang建立了平面塑性各向异性的刚塑性有限元列式。
1988年,板料成形数值模拟在实用性方面取得了较大的进步。
Nakamachi用弹塑性有限元法对方盒形拉延件进行了分析,取得了和试验一致的结果。
美国的Tang用弹塑性壳单元方法分析了车门板的成形过程。
1989年,在NUMIFORM会议上,Honecker给出了油盒成形过程的数值模拟结果,并描述了成形过程中可能出现的起皱情况。
此后,板料成形过程的数值模拟在汽车工业领域的研究成为了热点。
进入90年代后,板料成形分析向CAD/CAE/CAM一体化方向发展,开发了“虚拟制造系统”(Virtual Manufacturing System),同时有限元的显式积分算法也逐步进入板料成形领域,并把理论研究逐步推向了实际。
随着板料成形有限元数值模拟研究的发展,大量的研究工作不断在有关国际会议和刊物上发表。
为了促进板料成形模拟技术的研究和发展应用,除了传统的塑性成形数值模拟国际会议NUMIFORM(Numerical Simulation of Metal Forming Process)外,国际上还发起了定期召开的国际板料成形数值模拟会议(International Conference on Numerical Simulation of Metal Forming Processes),简称NUMISHEET,迄今已举办过五届。
在国内,板料成形数值模拟研究起步于80年代末。
1987年上海交通大学的曾宪章对刚塑性有限元在金属塑性成形中的应用作了比较深入的研究,对杯-杯复合挤压及杆-杆复合挤压时的金属变形规律作了详细的探讨,并在微机上完成了一个以轴对称工件冷挤压工艺数值模拟为主的刚塑性有限元程序。
同年,华中理工大学的李尚健等人推广了Kirchhoff提出的刚塑性变形时外力边界与相对速度有关的广义变分原理,给出了刚塑性变分原理的新形式,对刚塑性有限元中的约束进行了分析,对两种不同摩擦条件下的镦粗过程进行了分析计算。
1990年,北京航空航天大学的熊火轮采用ADINA程序模拟了宽板的拉延、液压胀形以及汽车暖风罩的成形过程。
由于ADINA程序主要适用于非线性结构计算分析,处理接触边界的能力有限,不能直接用来模拟板料成形过程,所以文中采用了一种“分步修正法”处理板料成形过程中的动态接触问题。
1991年,华中理工大学的董湘怀采用薄膜三角形单元,建立了用于板料成形分析的有限元模型,编制了盒形零件和机油收集器的成形过程分析的程序。
吉林工业大学的胡平等建立了可合理反映塑性变形导致材料模量软化,并能描述由正交法则向非正交法则光滑过渡的弹塑性有限变形的拟流动理论。
柳玉起等利用胡平等提出的理论,将各种非经典本构模型引入弹塑性大变形有限元法中,基于HILL的各向异性屈服理论,采用Mindlin曲壳单元对方盒拉伸成形过程突缘起皱现象进行了模拟。
哈尔滨工业大学郭刚采用大变形弹塑性有限元法对直壁类冲压零件的成形过程以及破裂现象进行了分析,建立了相应的有限元数值模拟系统。
湖南大学的李光耀开展了板料成形过程的有限元显式程序的开发研究,并基于主仆接触算法和Hill各向异性屈服准则对S形轨与汽车挡泥板等标准考题进行了模拟研究。
徐康聪利用有限元数值模拟技术对汽车车身覆盖件的冲压成形过程进行了分析,对其中的几何形体描述、材料非线性和接触算法等进行了系统的研究,并提出了并环设计概念以及并行设计方法。
此外,上海交通大学阮雪榆采用库仑摩擦模型和常剪力模型模拟了圆形板料在半球形冲头的拉胀成形和柱状冲头下的成形过程。
进入90年代后期以来,大批关于板料成形数值模拟研究的论文在国内涌现,其中既有基于独立开发有限元软件的基础性研究成果,也有利用现有商业专业软件的应用实例,并且板料成形数值模拟技术也开始由高校和实验室走向企业。
3 板料成形有限元分析方法的发展趋势纵观当今国际上CAE有限元分析软件的发展情况,可以看出有限元分析方法的发展趋势主要体现在以下几个方面:3.1 与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。
为了满足工程师快捷地解决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/E、Solidworks、AutoCAD等)的接口。
有些CAE软件为了实现和CAD软件的无缝集成而采用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD 软件(如Unigraphics、SolidWorks、SolidEdge)实现真正无缝的双向数据交换。
3.2更为强大的网格处理能力有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。
由于结构离散后的网格质量直接影响到求解时间及求解结果的正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。
自动六面体网格划分是指对三维实体模型程序能自动地划分出六面体网格单元,现在大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。
对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切地希望自动六面体网格划分功能的出现。
自适应性网格划分是指在现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。
对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。
自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。