有理数近似数
- 格式:doc
- 大小:72.00 KB
- 文档页数:2
2022-2023学年华东师大版七年级数学上册《第2章有理数2.14近似数》教学设计一. 教材分析华东师大版七年级数学上册第2章《有理数》中的2.14节主要介绍了近似数的概念及其求法。
近似数是在实际应用中经常使用的一种数值,它与准确数相比,精度较低,但便于计算和应用。
本节内容通过实例让学生了解近似数的概念,掌握求近似数的方法,以及了解近似数在实际生活中的应用。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的基本概念和运算方法,对数的概念有一定的了解。
但求近似数的方法和实际应用可能较为陌生,需要通过实例分析和练习来掌握。
此外,学生可能对数学在实际生活中的应用有一定的好奇心和求知欲。
三. 教学目标1.了解近似数的概念,知道近似数在实际生活中的应用。
2.掌握求近似数的方法,能运用这些方法解决实际问题。
3.培养学生的数学思维能力和实际问题解决能力。
四. 教学重难点1.近似数的概念及其在实际生活中的应用。
2.求近似数的方法。
五. 教学方法采用讲授法、案例分析法、练习法、小组讨论法等,结合多媒体教学手段,以学生为主体,教师为指导,通过实例分析和练习,让学生掌握近似数的概念和求法,以及了解其在实际生活中的应用。
六. 教学准备1.教学课件:制作有关近似数的课件,包括实例和练习题目。
2.教学素材:收集一些实际问题,用于案例分析。
3.练习题:准备一些有关近似数的练习题目,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“一辆汽车的速度为60km/h,问这辆汽车每小时行驶多少米?”让学生思考近似数在实际生活中的作用。
2.呈现(15分钟)介绍近似数的概念,讲解求近似数的方法,如四舍五入法、进一法、去尾法等,并通过实例进行分析。
3.操练(15分钟)让学生分组进行练习,运用所学的近似数方法求解实际问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)针对学生练习中的共性问题进行讲解,加深学生对近似数概念和方法的理解。
1.7 近似数1.准确数与近似数的意义(1)准确数(精确数)是与实际完全符合的数如七年级(1)班的人数是45人,一个单位的车辆数是29辆等,45和29就是准确数.近似数是与实际非常接近的数.如我国约有13.4亿人口,地球半径约为6.37×106m等.这里的13.4亿和6.37×106都是近似数.(2)产生近似数的主要原因①“计算”产生近似数,如除不尽,有圆周率π参加计算的结果等;②用测量工具测出的量一般都是近似数,如长度、重量、时间等;③不容易得到,或不可能得到准确数时,只能得到近似数,如调查池塘中鱼的尾数,结果就只能是一个近似数;④由于不必要知道准确数而产生近似数.【例1】下列各题中的数据,哪些是精确数?哪些是近似数?(1)某字典共有1 234页;(2)我们班级有97人,买门票大约需要800元;(3)小红测得数学书的长度是21.0厘米.分析:(1)字典的页数是不需要估计的或测量的,有多少页是固定的,所以1 234是一个精确数;(2)一个班级的人数是不需要估计的,而是确定的,所以97是一个精确数,买门票大约需要800元是一个估计值,所以800是一个近似数;(3)测量的结果都是近似的,所以21.0是一个近似数.解:(1)1 234是精确数;(2)97是精确数,800是近似数;(3)21.0是近似数.2.精确度(1)误差近似值与准确值的差,叫做误差,即误差=近似值-准确值.误差可能是正数,也可能是负数,误差的绝对值越小,近似值就越接近准确值,也就是近似程度越高.(2)精确度近似数与准确数的接近程度,通常用精确度表示.近似数一般由四舍五入法取得,四舍五入到某一位,就说这个近似数精确到那一位.如一个近似数M精确到十分位后的近似值是3.4,那么这个近似数M的取值范围是:3.35≤M<3.45.具体地做法是一个近似数要求精确到哪一位,只要从它的下一位四舍五入即可,按要求求近似数不能连续从末位向前四舍五入.如将数3.0246四舍五入到百分位,应从4开始四舍五入得3.02,而不是从6开始得3.03.【例2】用四舍五入法,按要求对下列各数取近似值:(1)38 063(精确到千位);(2)0.403 0(精确到百分位);(3)0.028 66(精确到0.000 1);(4)3.548 6(精确到十分位).分析:四舍五入要按题目要求精确到哪一位,然后确定这一位后面的数字是“舍”,还是“入”,只能四舍五入一次.(1)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.精确到某一位时,应看它的下一位数字,若不小于5,则进一,否则舍去,另外最后一位是0的近似数不要将0去掉,否则精确度就变了.解:(1)38 063=3.806 3×104≈3.8×104;(2)0.403 0≈0.40;(3)0.028 66≈0.028 7;(4)3.548 6≈3.5.3.精确度的确定一个近似数四舍五入到哪一位,我们就说这位数精确到哪一位.(1)普通数直接判断.(2)科学记数法形式(形如a×10n).这类数先还原成普通数,再看a最右边的数字在什么数位上,在什么数位上就是精确到什么数位.(3)带有“文字单位”的近似数,在确定它的精确度时,分两种情况:当“文字单位”前面的数是整数时,则近似数精确到“文字单位”,当“文字单位”前面的数是小数时,则先将近似数还原成原来的数,再看最右边的数字的位置.【例3】(1)已知数549 039用四舍五入法得到的近似数是5.5×105,则所得近似数精确到().A.十位B.千位C.万位D.百位(2)某种鲸的体重约为1.36×105 kg.关于这个近似数,下列说法正确的是().A.精确到百分位B.精确到个位C.精确到百位D.精确到千位(3)12.30万精确到().A.千位B.百分位C.万位D.百位解析:(1)5.5×105精确到小数点后第一位,而5.5×105=550 000,小数点后第一位在万位上,所以精确到万位.(2)1.36×105kg最后一位的6表示6千.(3)12.30万还原成原来的数是123 000,所以精确到的数位是百位,故选D.答案:(1)C(2)D(3)D4.求近似数的范围如果一个数x的近似数为a,那么x可能取值的范围是:a-M≤x<a+M,如近似数1.20所表示的准确数x的取值范围是1.20-0.005≤x<1.20+0.005,即1.195≤x<1.205;又如近似数4.7×103所表示的准确数x的取值范围是4 700-50≤x<4 700+50,即4 650≤x<4 750.析规律如何求近似数的取值范围求近似数的取值范围时,只要把原近似数加上(减去)精确到的最后一个数位的半个单位即可得到近似数的取值范围.【例4】若k的近似值为4.3,求k的取值范围.分析:一个数的近似值为4.3,表明这个近似值是精确到十分位的近似数.十分位上的数字3是由下一位即百分位上的数字四舍五入得到的,如果百分位上的数字是0,1,2,3,4中的任意一个,根据四舍五入取近似值的方法,应该把百分位上的数字舍去,那么就要求k的十分位上的数字必须是3,才能保证近似数是4.3.若k的百分位上的数字是5,6,7,8,9中的任意一个,根据四舍五入取近似值的方法,应该把百分位上的数字去掉后,在十分位的数字上加1,那么就要求k的十分位上的数字必须是2,才能得到近似数4.3.综上所述,k只能取大于或等于4.25且小于4.35之间的数,才能保证得到精确到0.1的近似值是4.3.解:∵4.3-0.05≤k<4.3+0.05,∴4.25≤k<4.35.5.近似数在现实生活情境中的运用近似数的取法通常有以下几种:①四舍五入法,如,教室的宽度是6.025米,若要四舍五入到百分位即为6.03米;若要四舍五入到十分位即为6.0米;若要四舍五入到个位即为6米.②去尾法,如做一套西服需2.5米的面料,若现有47米的布料,问能做多少套衣服.由计算知可做18.8(套),想想看,这现实吗?而事实上,这里的尾数0.8就只能舍去了,而不能用四舍五入法,这种舍去尾数的方法叫做去尾法.③进一法,如现有100吨砂石,每辆卡车载重8吨,若要求一次运完应需几辆卡车?由计算可得12.5(辆),这里显然应需13辆卡车,因此就必须把十分位上的5进上去,这种方法就是进一法.上面的三种近似数的表示方法都各有用途,应根据具体问题具体运用,不能盲目取舍.【例5-1】全班51人参加100米短跑测验,每6人一组,问至少要分几组?分析:由于51÷6=8(组)……3(人),即分成8组后还剩下3人,所以采用进一法,分成9组.解:51÷6=8(组)……3(人),8+1=9(组),所以至少要分9组.【例5-2】一辆汽车要装4只轮胎,50只轮胎能装配几辆汽车?分析:由于50÷4=12(辆)……2(只),即能装配12辆汽车后还剩下2只轮胎,所以采用去尾法,能装配12辆汽车.解:50÷4=12(辆)……2(只),所以能装配12辆汽车.【例5-3】一根方便筷子的长,宽,高大约为0.5 cm,0.4 cm,20 cm,估计1 000万双方便筷子要用多少木材?这些木材要砍伐半径为0.1米、高10米(除掉不可用的树梢)的大树多少棵?(精确到个位)分析:长方体的体积公式V=abc,圆柱的体积公式V=πr2h.解:一双筷子的体积为2×0.4×0.5×20=8 (cm3),1 000万双筷子的体积为1 000×10 000×8=8×107 cm3=80 (m3),一棵大树的体积为π×0.12×10≈0.314 (m3),1 000万双筷子要砍伐大树的棵数为80÷0.314≈255.。
七年级数学上册第2章有理数的运算2.7近似数说课稿(新版浙教版)一. 教材分析《七年级数学上册》第2章主要讲述有理数的运算。
在这一章节中,学生将学习近似数的概念及其运算方法。
近似数在实际生活中有着广泛的应用,如购物时的找零、测量时的误差等。
教材通过实例引入近似数的概念,让学生理解近似数的重要性,并通过具体的运算方法,让学生掌握如何进行近似数的计算。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和运算方法,对于新生而言,他们对数学的学习兴趣和积极性较高,但部分学生在运算过程中容易出错,对运算规律的理解不够深入。
因此,在教学过程中,需要关注学生的学习情况,引导学生发现运算规律,提高运算准确性。
三. 说教学目标1.知识与技能:让学生掌握近似数的概念,学会进行近似数的计算,能运用近似数解决实际问题。
2.过程与方法:通过观察、实践、总结等环节,让学生发现近似数的运算规律,提高运算能力。
3.情感态度与价值观:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的合作意识。
四. 说教学重难点1.重点:近似数的概念及其运算方法。
2.难点:近似数的运算规律及其在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究近似数的运算规律。
2.利用多媒体课件,展示近似数的运算过程,提高学生的学习兴趣。
3.分组讨论,让学生在合作中交流思想,共同解决问题。
4.实例分析,让学生感受近似数在实际生活中的应用。
六. 说教学过程1.导入:通过实例引入近似数的概念,让学生感受近似数在实际生活中的重要性。
2.新课讲解:讲解近似数的定义及其运算方法,引导学生发现运算规律。
3.课堂练习:安排适当的练习题,让学生巩固所学知识,提高运算能力。
4.小组讨论:分组讨论近似数在实际问题中的应用,培养学生解决实际问题的能力。
5.总结提升:总结本节课所学内容,强调近似数的运算规律及其应用。
七. 说板书设计板书设计要清晰、简洁,突出重点。
2例1、计算:(1)35;(2)(—2)4;(3)—()原式的区别14、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?五、探究创新乐园1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求20200220012000aa a a +++的值。
一、复习引入:1.什么叫乘方?说出103,―103,(―10)3、a n的底数、指数、幂。
2. 把下列各式写成幂的形式:32×32×32×32; ⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫⎝⎛-23;-23×23×23×23;32222⨯⨯⨯。
3.计算:101,102,103,104,105,106,1010。
由第3题计算:105=10000,106=1000000,1010=10000000000,左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n 次幂表示较大的数,比如一亿,一百亿等等。
又如像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法。
(1)10= 0100,n 恰巧是1后面0的个数;(2) 10= 0100,比运算结果的位数少1(1)把下面各数写成10的幂的形式:1000,100000000,100000000000(2)指出下列各数是几位数:10,10,10,10知识结构1、用科学记数法表示下列各数:1. 近似数3.0的精确数1.能力培养、按一定的规律排列的一列数依次为:我的感悟和收获:。
科学计数法
科学计数法的表示形式为:),101(10为整数n a a n <≤⨯
例1:(1)28000用科学计数法表示为: (2)0.00028用科学计数法表示为:
分析总结:先确定a 值,然后看把原数变为a ,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数的绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数。
考点一:用科学计数法表示绝对值较大的数
(1)1000000 (2)5730000 (3)-123000
(4)-178.1 (5)8911.2
考点二:用科学计数法表示绝对值较小的数
(1)0.0025 (2)0.000000941
(3)0.000001 (4)0.981
考点三:讲科学计数法表示的数还原
(1)6.18×10-3 (2)-2×10-3
(3)1.8×105 (4)-1.67×103
注意:当a 为1时,可以省略不写。
近似数
知识点:(1)与准确数字接近的数是近似数,精确到哪一位则最后一位在哪一位 上。
(2) 大于10的数字可先用科学计数法表示,再取近似值。
(3)有效数字是指从数值的左边第一个不为0的数字起,一直数到这个 数字结束。