人教版七年级数学上册第一章 有理数近似数
- 格式:ppt
- 大小:3.48 MB
- 文档页数:4
人教版七年级数学上册 各章节知识点梳理第一章、有理数知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
简单1、下列句子中的数,是近似数的是()A.某市有中学106所B.我国有34个省级行政单位C.七年级三班男生23人,女生21人D.一双没洗的手,带有各种细菌80000万个【分析】根据近似数的定义,它只是一个大约数据,根据答案直接得出即可.【解答】A.某市有中学106所,106,这是一个确切的数据,故此选项错误;B.我国有34个省级行政单位,34,这是一个确切的数据,故此选项错误;C.七年级三班男生23人,女生21人,23,21,这都是一个确切的数据,故此选项错误;D.一双没洗的手,带有各种细菌80000万个,这只是一个近似数,故此选项正确.故选D.2、由四舍五入法得到的近似数6.8×103,下列说法中正确的是()A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字【分析】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.【解答】个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.故选C.3、据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×106【分析】根据近似数、有效数字的意义和科学记数法的计数方法逐一分析得出答案即可.【解答】A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意.故选:C.4、下列说法错误的是()A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D选项的说法正确.故选B.5、下列说法正确的是()A.近似数0.010只有一个有效数字B.近似数4.3万精确到千位C.近似数2.8与2.80表示的意义相同D.近似数43.0精确到个位【分析】一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位.【解答】A、近似数0.010的“1”后面有一个0,所以,它有两个有效数字;故本选项错误;B、近似数4.3万的3位于千位,所以近似数4.3万精确的了千位;故本选项正确;C、近似数2.8精确到了十分位,2.80精确到了百分位,所以它们表示的意义不一样;故本选项错误;D、近似数43.0的“0”位于十分位,所以它精确到了十分位;故本选项错误.故选B.6、我们的数学课本的字数大约是21.1万字,这个数精确到()位.A.千位B.万位C.十分位D.千分位【分析】根据近似数的精确度求解.【解答】21.1万精确到千位.故选A.7、0.00020080有效数字的个数为()A.9 B.8 C.4 D.5 【分析】根据有效数字的定义求解.【解答】0.00020080有效数字为2、0、0、8、0.故选D.8、森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.对于这个近似数,下列说法正确的是()A.精确到十分位,有3个有效数字B.精确到个位,有10个有效数字C.精确到千万位,有3个有效数字D.精确到千万位,有11个有效数字【分析】先把28.3亿用科学记数法表示出来,再找出有效数字和精确度即可.【解答】28.3亿=2.83×109,精确到千万位,有3个有效数字;故选C.9、有理数3.645精确到百分位的近似数为()A.3.6 B.3.64 C.3.7 D.3.65 【分析】把千分位上的数字5进行四舍五入即可.【解答】3.645≈3.65(精确到百分位).故选D.10、1.0149精确到百分位的近似值是()A.1.0149 B.1.015 C.1.01 D.1.0【分析】根据近似数的定义即最后一位数字所在的数位就是精确度,利用四舍五入法取近似值即可.【解答】1.0149精确到百分位的近似值是1.01,故选C.11、有理数100 467保留三个有效数字后的近似数是()A.100 B.1.00×105C.100 000 D.1.0046×105【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,它的有效数字的个数只与a有关,而与n的大小无关.【解答】有理数100 467保留三个有效数字后的近似数是1.00×105.故选B.12、2014年6月止,高新区(滨江)实现地区生产总值279.8亿元,比去年增长11.5%.近似数279.8亿是精确到()位.A.十分B.千C.万D.千万【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】279.8亿中最后一位8表示8千万,则精确到千万位.故选:D.13、由四舍五入得到近似数8.01×10-2,精确到()A.0.0001 B.0.001 C.0.01 D.10【分析】数字1在万分位上,所以8.01×10-2精确到0.0001位.【解答】近似数8.01×10-2精确到0.0001位.故选A.14、下列说法正确的是()①近似数7.4与7.40是一样的;②近似数8.0精确到十分位;③近似数9.60精确到百分位;④由四舍五入得到的近似数6.96×104精确到百分位.A.4个B.3个C.2个D.1个【分析】①的精确度不一样,7.4精确到十分位,7.40精确到百分位;②近似数8.0精确到十分位;③近似数9.60精确到百分位;④近似数6.96×104精确到百位.【解答】①7.4精确到十分位,7.40精确到百分位,故错误;②③正确;④近似数6.96×104精确到百位,有3个有效数字,故错误.故选C.15、下列说法中正确的是()A.近似数3.10与近似数3.1的精确度一样B.近似数3.1×103与近似数3100的精确度一样C.近似数3.10与近似数0.310都有三个有效数字D.将3.145精确到百分位后,有四个有效数字【分析】根据有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关对各选项分析判断后利用排除法.【解答】A、近似数3.10的精确度时百分位,近似数3.1的精确度是十分位,不相同,故本选项错误;B、近似数3.1×103有2个有效数字,近似数3100有四个有效数字,故本选项错误;C、近似数3.10有三个有效数字,近似数0.310有三个有效数字,有效数字的个数相同,故本选项正确;D、3.145精确到百分位后,所得3.15近似数有三个有效数字,故本选项错误.故选:C.16、近似数12.30万精确到()A.千位B.百分位C.万位D.百位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】12.30万=123000,而3后的第一个0在百位上,则精确到了百位.故选D.难题1、我们知道地球的半径大约为6.4×103千米,下列对近似数6.4×103描述正确的是()A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字【分析】将近似数的科学记数法变形为普通计数法,找出4在百位上,且从左边第一个不为0的数字起,到精确的数位百位为止,数字的个数即为有效数字的个数.【解答】∵近似数6.4×103=6400,∴4在百位上,且有2个有效数字,则近似数6.4×103描述精确到百位,有2个有效数字.故选:C2、下列数据中,不是近似数的是()A.某次地震中,伤亡10万人B.吐鲁番盆地低于海平面155mC.小明班上有45人D.小红测得数学书的长度为21.0cm【分析】根据近似数与精确数的意义分别进行判断.【解答】A、某次地震中,伤亡10万人中的10为近似数,所以A选项错误;B、吐鲁番盆地低于海平面155m中的155为近似数,所以B选项错误;C、小明班上有45人中45为精确数,所以C选项正确.D、小红测得数学书的长度为21.0cm中的21.0为近似数,所以D选项错误;故选C.3、对于近似数3.07万,下列说法正确的是()A.精确到0.01 B.精确到百分之一C.有两个有效数字D.精确到百位【分析】近似数3.07万中3表示3万,是万位,因而最后一位7是百位.这个数的有效数字是3,0,7共三个.【解答】根据分析得:近似数3.07万精确到百位.故选D.4、0.3998四舍五入到百分位,约等于()A.0.39 B.0.40 C.0.4 D.0.400 【分析】把0.399 8四舍五入到百分位就是对这个数百分位以后的数进行四舍五入.【解答】0.399 8四舍五入到百分位,约等于0.40.故选B.5、对于由四舍五入法得到的近似数4.601万,下列说法正确的是()A.它精确到千分位B.它精确到0.01C.它精确到万位D.它精确到十位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】最后一10是十位,因而精确到十位.故选D.6、下列近似数有3个有效数字的是()A.0.033 B.0.20万C.1.60×102D.1.6×103【分析】根据有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,对各选项分析判断后利用排除法.【解答】A、0.033有3、3共2个有效数字,故本选项错误;B、0.20万有2、0共2个有效数字,故本选项错误;C、1.60×102有1、6、0共3个有效数字,故本选项正确;D、1.6×103有1、6共2个有效数字,故本选项错误.故选C.7、把0.697按四舍五入法精确到0.01的近似值是()A.0.6 B.0.7 C.0.67 D.0.70 【分析】首先确定精确到哪一位,然后按要求四舍五入即可得到答案;【解答】∵0.697中0.01是指9所表示的数位,且7>5∴把0.697按四舍五入法精确到0.01的近似值是0.70,故选D.8、下列说法:①任何一个有理数的绝对值都是正数;②绝对值等于它的相反数的数一定是非正数;③3.804用四舍五入精确到百分位是3.80;④单项式2a2b的系数是2,次数也为2;⑤有理数可以分为正有理数、负有理数和零.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据绝对值的意义对①②进行判断;根据近似数的精确度对③进行判断;根据单项式的系数与次数的定义对④进行判断;根据有理数的分类对⑤进行判断.【解答】任何一个有理数的绝对值都是非负数,所以①错误;绝对值等于它的相反数的数一定是非正数,所以②正确;3.804用四舍五入精确到百分位是3.80,所以③正确;单项式2a2b的系数是2,次数为3,所以④错误;有理数可以分为正有理数、负有理数和零,所以⑤正确.故选C.9、如果a是b的近似值,那么我们把b叫做a的真值.若用四舍五入法得到的近似值是32,则下列各数不可能是其真值的是()A.32.01 B.31.51 C.31.99 D.31.49 【分析】把四个数进行四舍五入精确到个位即可得到答案.【解答】32.01≈32;31.51≈32;31.99≈32;31.49≈31.故选D.10、近似数1.30所表示的准确数A的范围是()A.1.25≤A<1.35 B.1.20<A<1.30C.1.295≤A<1.305 D.1.300≤A<1.305【分析】近似值是通过四舍五入得到的:精确到哪一位,只需对下一位数字进行四舍五入.【解答】根据取近似数的方法,得1.30可以由大于或等于1.295的数,0后面的一位数字,满5进1得到;或由小于1.305的数,舍去1后的数字得到,因而1.295≤A<1.305.故选C.11、近似数6.00×105精确到()A.十分位B.百分位C.百位D.千位【分析】科学记数法的数,要看一下a中的最后一个数字实际在什么位,即精确到了什么位.【解答】6.00×105=600 000,原数中的最后一位有效数字0,在600 000中处于千位,即精确到了千位.故选D.12、用四舍五入法得到的a的近似数为4.60,则这个数a的范围是()A.4.60≤a≤4.64B.4.55≤a≤4.65C.4.595≤a<4.605 D.4.595<a<4.605【分析】近似值是通过四舍五入得到的:精确到哪一位,若下一位数字大于或等于5,则应进1;若下一位数字小于5,则应舍去.【解答】根据取近似数的方法,得4.60可以由大于或等于4.595的数,9后面的一位数字,满5进1得到;或由小于4.605的数,舍去1后的数字得到.因而4.595≤a<4.605.故选C.13、下列各选项正确的是()A.0.10(精确到0.1)B.0.05(精确到十分位)C.5.5万(精确到千位)D.1.205×107(精确到0.001)【分析】根据近似数和有效数字的定义分别对每一项进行分析即可.【解答】A、0.10(精确到0.01),故本选项错误;B、0.05(精确到百分位),故本选项错误;C、5.5万(精确到千位),故本选项正确;D、1.205×107(精确到万位),故本选项错误;故选C.14、资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值()A.精确到亿位B.精确到百分位C.精确到千万位D.精确到百万位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】∵27.39亿末尾数字9是百万位,∴27.39亿精确到百万位.故选:D.15、近似数4.80所表示的精确数n的范围是()A.4.795≤n<4.805 B.4.70≤n<4.90C.4.795<n≤4.805D.4.800≤n<4.805【分析】利用四舍五入法并根据近似数的定义可进行判断.【解答】由于近似数4.80精确到了百分位,所以它所表示的准确数必须至少精确到千分位,且符合四舍五入法的要求,则需4.795≤n<4.805.故选A.16、小惠测量一根木棒的长度,由四舍五入得到的近似数为2.8米,则这根木棒的实际长度的范围是()A.大于2米,小于3米B.大于2.7米,小于2.9米C.大于2.75米,小于2.84米D.大于或等于2.75米,小于2.85米【分析】根据四舍五入的定义即可求解.【解答】当原数的十分位是7时,则百分位上的数一定大于或等于5;当原数的十分位上的数字是8时,百分位上的数字一定小于5.因而这根木棒的实际长度的范围是大于或等于2.75米,小于2.85米.故选D.17、有下列说法:①任何无理数都是无限小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④0除以任何数都得0⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A.1 B.2 C.3 D.4 【分析】根据无理数的定义对①进行判断;根据实数与数轴上点的一一对应关系对②进行判断;根据绝对值的意义对③进行判断;根据近似数的精确度对⑤进行判断.【解答】无理数都是无限不循环小数,所以①正确;数轴上的点与实数一一对应,所以②错误;绝对值等于本身的数是0或正数,所以③错误;0除以任何非0的数都得0,所以④错误;近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,所以⑤正确.故选B.。
人教版七年级数学上册知识点总结第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 例:把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,76正整数集{ …}; 非负整数集{ …}; 自然数集{ …}; 非负数集{ …} 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 例:数轴上与表示-2的点的距离为三个单位的点有_ _个, 他们分别表示的有理数是 _和_ _。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。
人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。