九年级上相似三角形同步练习
- 格式:docx
- 大小:637.75 KB
- 文档页数:4
4.3 相似三角形一、选择题(共8小题)1. 如图所示,△ABC∽△CBD,CD=2,AC=3,BC=4,那么AB的值等于( )A. 5B. 6C. 7D. 42. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值为( )A. 7B. 5C. 7或5D. 无数个3. 如图所示,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A. 5B. 8.2C. 6.4D. 1.84. 已知△ABC和△DEF相似,且△ABC的三边长为3,4,5,如果△DEF的周长为6,那么△DEF中某条边的边长不可能是( )A. 1.5B. 2C. 2.5D. 35. 如图所示,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )A. (6,0)B. (6,3)C. (6,5)D. (4,2)6. 如图所示,在钝角三角形ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B止,动点E从点C出发到点A止,点D运动的速度为1 cm/s,点E运动的速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )A. 3 s或4.8 sB. 3 sC. 4.5 sD. 4.5 s或4.8 s7. 已知△ABC的三边长分别为2,6,2,△AʹBʹCʹ的两边长分别为1和3,如果△ABC与△AʹBʹCʹ相似,那么△AʹBʹCʹ的第三边长应该是( )A. 2B. 22C. 62D. 338. 如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )A. AB2=BC⋅BDB. AB2=AC⋅BDC. AB⋅AD=BD⋅BCD. AB⋅AD=AD⋅CD二、填空题(共6小题)9. 已知△ABC的三边分别是4,5,6,与它相似的△AʹBʹCʹ的最长边为12,则△AʹBʹCʹ的周长是.10. 如图所示,在△ABC中,AB=8,AC=6,D是线段AC的中点,点E在线段AB上,且△ADE∽△ABC,则AE=.11. 如图所示,∠ACB=∠ADC=90∘,AB=5,AC=4,若△ABC∽△ACD,则AD=.12. 如图所示,在△ABC中,∠C=90∘,AC=3,BC=6,D为BC中点,E是线段AB上一动点,若△BDE∽△BAC,则BE=.13. 如图所示,在长方形ABCD中,AB=4,AD=3,E是AB边上一点(不与点A,B重合),F是BC边上一点(不与B,C重合).若△DEF和△BEF是相似三角形,则CF=.14. 如图所示,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若x△OCD∽△ACO,则直线OA的表达式为.三、解答题(共6小题)15. 如图所示,AD=2,AC=4,BC=6,∠B=36∘,∠D=107∘,△ABC∽△DAC.求:(1)AB 的长.(2)CD 的长.(3)∠BAD 的大小.16. 如图所示,在 △ABC 中,AD 平分 ∠BAC 交 BC 于点 D ,点 E ,F 分别在 AB ,AC 上,BE =AF ,FG ∥AB 交线段 AD 于点 G ,连接 BG ,EF .(1)求证:四边形 BGFE 是平行四边形;(2)若 △ABG ∽△AGF ,AB =10,AG =6,求线段 BE 的长.17. 如图所示,已知 △ABG ∽△FBD ,F 是 AB 的中点,求证:BD CD =AE EC .18. 如图所示,点 C ,D 在线段 AB 上,△PCD 是等边三角形,且 △ACP ∽△PDB .(1)求 ∠APB 的大小 ⋅(2)说明线段 AC ,CD ,BD 之间的数量关系.19. 如图所示,已知,在平面直角坐标系中有四点:A (―2,4),B (―2,0),C (2,―3),D (2,0),设 P 是 x 轴上的点,且 PA ,PB ,AB 所围成的三角形与 PC ,PD ,CD 所围成的三角形相似,请求出所有符合上述条件的点 P 的坐标.20. 如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a,b,c(a>b>c),△A1B1C1的三边长分别为a1,b1,c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a,b,c和a1,b1,c1都是正整数,并加以说明;(3)若b=a1,c=b1,问:是否存在△ABC和△A1B1C1使得k=2 ?请说明理由.答案1. B2. C3. D4. D5. B6. A7. A8. A9. 3010. 9411. 16512. 65513. 53或3214. y=2x15. (1)∵△ABC∽△ADC,∴ABAD =BCAC,即AB2=64,∴AB=3.(2)∵△ABC∽△ADC,∴BCAC =ACDC,即64=4DC,∴CD=83.(3)∵△ABC∽△ADC,∴∠CAD=∠B=36∘,∠BAC=∠D=107∘,∴∠BAD=∠BAC+∠CAD=107∘+36∘=143∘.16. (1)∵FG∥AB,∴∠BAD=∠AGF.∵∠BAD=∠GAF,∴∠AGF=∠GAF,AF=GF.∵BE=AF,∴FG=BE.∵FG∥BE,∴四边形BGFE为平行四边形.(2)BE=3.6.17. ∵△ABG∽△FBD,∴∠G=∠BDF.∴DF∥AG.∵F是AB的中点,∴DF是△ABG的中位线.∴BD=DG.又∵DF∥AG,∴DGCD =AEEC.∴BDCD =AEEC.18. (1)因为△PCD是等边三角形,所以∠PCD=60∘.所以∠ACP=120∘.因为△ACP∽△PDB,所以∠APC=∠B.所以∠APC+∠CPB=∠B+∠CPB.所以∠APB=∠ACP=120∘.(2)因为△ACP∽△PDB,所以AC:PD=PC:BD.所以PD⋅PC=AC⋅BD.因为△PCD是等边三角形,所以PC=PD=CD.所以CD2=AC⋅BD.19. 设OP=x(x>0).(1)如图 1 所示,若点P在AB的左边,有两种可能:①若△ABP∽△PDC,则PB:CD≡AB:PD,∴(x―2):3=4:(x+2),解得x=4.∴点P的坐标为(―4,0).②若△ABP∽△CDP,则AB:CD=PB:PD,∴4:3=(x―2):(x+2),解得x=―14.不存在.(2)如图 2 所示,若点P在AB与CD之间,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(x+2):(2―x),解得x=2.7∴点P的坐标为,0.②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(2―x)=(x+2):3,方程无解.(3)如图 3 所示,若点P在CD的右边,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(2+x):(x―2).∴x=14.∴点P的坐标为(14,0).②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(x―2)=(x+2):3,∴x=4或x=―4(舍去).∴点P的坐标为(4,0).综止所述,点P的坐标为,0,(14,0),(4,0),(―4,0).20. (1)∵△ABC∽△A1B1C1,且相似比为k(k>1),∴aa1=k,∴a=ka1.又∵c=a1,∴a=kc.(2)取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2.此时aa1=bb1=cc1=2,∴△ABC∽△A1B1C1且c=a1.(3)不存在这样的△ABC和△A1B1C1.理由如下:若k=2,则a=2a1,b=2b1,c=2c1,又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c.∴b=2c.∴b+c=2c+c<4c=a,而b+c>a,故不存在这样的△ABC和△A1B1C1,使得k=2.。
《25.3 相似三角形》同步练习一、基础过关 1.如图,正五边形是由正五边形经过位似变换得到的,若,则下列结论正确的是( )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F2.若△ABC ∽△A ′B ′C ′,相似比为1∶2,则△ABC 与△A ′B ′C ′的面积的比为( ) A. 1∶2B. 2∶1C. 1∶4D. 4∶13.已知四条线段是成比例线段,即dcb a =,下列说法错误的是( ) A .ad=bc B.bad b c a =++ C. d bc bd a -=-D .2222dc b a =4..如图,已知//,//,分别交于点,则图中共有相似三角形( )A.4对B.5对C. 6对D.7对5.如图,在△中,∠的垂直平分线交的延长线于点,则的长为()A.32B.76C. 236D.6.下列四组图形中,不是相似图形的是()7.已知两个相似多边形的面积比是9︰16,其中较小多边形的周长为36 cm,则较大多边形的周长为( )A.48 cmB.54 cmC.56 cmD.64 cm8.手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形和矩形花边,其中每个图案花边的宽度都相同,那么每个图案中花边的内外边缘所围成的几何图形不相似的是()二、综合训练9.如图,在△ABC中,DE∥BC,23DEBC,△ADE的面积为8,则△ABC的面积为。
10.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为_______,面积为________。
11.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 。
12.若0234x y z ==≠,则23x y z+= 。
浙教新版九年级上册《4.5相似三角形的性质及其应用》2024年同步练习卷(3)一、选择题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图所示的网格由边长相同的小正方形组成,点A,B,C,D,E,F,G均在小正方形的顶点上,则的重心是()A.点GB.点DC.点ED.点F2.如图,在中,E,G分别是AB,AC上的点,,的平分线AD交EG于点F,若,则()A.B.C.D.3.如图,的两条中线AD和BE相交于点G,过点E作交AD于点F,则FG:AG是()A.1:4B.1:3C.1:2D.2:34.如图,正方形ABCD中,E为CD的中点,,交BC于点F,则与的大小关系为()A.B.C.D.无法确定二、填空题:本题共6小题,每小题3分,共18分。
5.如图,在中,点D,E分别是BC,AC的中点,AD与BE相交于点若,则EF的长是______.6.如图,AD是的高,AE是的外接圆的直径,且,,,则的直径______.7.点G是的重心,,如果,那么AB的长是______.8.如图,E,F分别为AC,BC的中点,D是EC上一点,且若,,则BE的长为______.9.如图,在等腰中,,,点E在边CB上,,点D在边AB上,,垂足为F,则AD的长为______.10.如图,点D在的边BC上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离EF的长等于______.三、解答题:本题共3小题,共24分。
解答应写出文字说明,证明过程或演算步骤。
11.本小题8分已知,如图,在中,CD是斜边上的中线,交BC于点F,交AC的延长线于点∽吗?为什么?你能推出结论吗?请试一试.12.本小题8分已知:如图,在中,点D、E分别在边BC、AB上,,AD与CE相交于点F,求证:;求证:13.本小题8分如图,在中,,,动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒,连接若与相似,求t的值;连接AN,CM,若,求t的值.答案和解析1.【答案】B【解析】解:取BC的中点N,取AC的中点M,连接AN,BM,如图所示,则AN与BM的交点为D,故点D是的重心,故选:取BC的中点N,取AC的中点M,连接AN,BM,然后根据图形可知AN与BM的交点为D,即可得到点D 为的重心.本题考查三角形的重心,解答本题的关键是明确三角形的重心是三角形中线的交点.2.【答案】C【解析】解:,,,,∽,故选:根据两组对应角相等可判断∽,可得,则可得出结论.本题考查了相似三角形的判定与性质,灵活运用定理是关键.3.【答案】A【解析】【分析】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,根据重心的性质得到,,根据平行线分线段成比例定理计算即可.【解答】解:的两条中线AD和BE相交于点G,点G是的重心,,,,,::4,故选:4.【答案】C【解析】解:,,,,∽,且相似比为2,,,又,∽,易证∽,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定∽,即可解题.本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证∽是解题的关键.5.【答案】3【解析】解:点D,E分别是BC,AC的中点,,且,,,,故答案为:由题意可知,DE是的中线,则,且,可得,代入BF的长,可求出EF的长,进而求出BE的长.本题主要考查三角形中位线,平行线分线段成比例等知识,熟练掌握相关知识是解题的关键.6.【答案】【解析】【分析】本题考查了圆周角定理,相似三角形的性质和判定的应用,解此题的关键是求出∽首先根据两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出关于AE的比例式,计算即可.【解答】解:由圆周角定理可知,,,,∽::AC,,,,::5,,故答案为:7.【答案】6【解析】解:如图,AD为AB边上的中线,点G是的重心,,,,故答案为先根据三角形重心的性质得到,则,然后根据直角三角形斜边上的中线性质得到AB的长.本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:也考查了直角三角形斜边上的中线性质.8.【答案】【解析】解:,,,∽,,,,E,F分别为AC,BC的中点,,,解得:故答案为:由可得:,结合公共角,可证得∽,从而利用相似三角形的对应中线之比等于相似比即可求BE的长.本题主要考查相似三角形的判定与性质,解答的关键是明确相似三角形的对应中线的之等于相似比.9.【答案】【解析】解:过D作于H,在等腰中,,,,,,,,,,∽,,,,,,,故答案为:过D作于H,根据等腰三角形的性质得到,,求得,得到,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.10.【答案】【解析】解:如图,连接AE并延长交BD于G,连接AF并延长交CD于H,点E、F分别是和的重心,,,,,,,,,,∽,,,故答案为:连接AE并延长交BD于G,连接AF并延长交CD于H,根据三角形的重心的概念、相似三角形的性质解答.本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.11.【答案】证明:,,,,,∽;为的中线,,,又,,又是公共角,∽,,即【解析】根据题意,得,,则,易证∽;由中,CD是斜边上的中线,得,则,又,所以,又是公共角,所以∽,即可得出;本题主要考查了直角三角形和相似三角形的判定与性质,掌握直角三角形斜边上的中线等于斜边的一半,是解答本题的关键.12.【答案】证明:,,,,,,∽,,;∽,,即,,,∽,,,,【解析】根据等腰三角形的性质得到,,推出∽,根据相似三角形的性质得到,于是得到;根据相似三角形的性质得到,即,推出∽,根据相似三角形的性质得到,于是得到,等量代换即可得到结论.本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得∽是解题的关键.13.【答案】解:,,,,由题意得,,当∽时,,即,解得:;当∽时,,即,解得:,综上所述,与相似时,t的值为或;如图,过点M作于点D,,,∽,,,,,,,,,,,,,,,∽,,即,解得:【解析】根据勾股定理求出AB,分∽、∽两种情况,根据相似三角形的性质列出比例式,计算即可;过点M作于点D,分别证明∽,∽,根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。
25.3 相似三角形一、选择题1.下列命题正确的是( )A .两个等腰三角形相似B .有一条边相等的两个等腰三角形相似C .有一个角相等的两个等腰三角形相似D .顶角相等的两个等腰三角形相似2.已知△ABC △△DEF ,∠A =50°,∠E =60°,则△C 等于 ( )A .50°B .60°C .70°D .80°3.[2019·唐山乐亭县期中]如图18-K -1,△ADE ∽△ABC .若AD =2,BD =4,则△ADE 与△ABC 的相似比是 ( )A .1∶2B .1∶3C .2∶3D .3△24.在△ABC 中,已知AB =5,BC =4,AC =8.若△ABC △△A 1B 1C 1,△A 1B 1C 1最长边的长为16,则△A 1B 1C 1其他两边的长分别为( )A .A 1B 1=8,B 1C 1=10 B .A 1B 1=5,B 1C 1=8C .A 1B 1=10,B 1C 1=8D .A 1B 1=10,B 1C 1=4图18-K -1 图18-K -25.[2019·哈尔滨]如图18-K -2,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是 ( ) A.AD AB =AE EC B.AG GF =AE BD C.BD AD =CE AE D.AG AF =AC EC二、填空题6.如图18-K -3,△AED ∽△ABC ,其中△1=△B ,则AD △______=______△BC =______△AB .图18-K -3 图18-K -47.如图18-K -4,在菱形ABCD 中,EF ∥BC ,AE BE =13,EF =3,则CD 的长为________.三、解答题8.如图18-K -5,为了测量水塘边A ,B 两点之间的距离,在可以看到A ,B 的点E 处,取AE ,BE 延长线上的D ,C 两点,使CD △AB .如果量得CD =5米,AD =15米,ED =3米,请求出A ,B 两点之间的距离.图18-K -59.如图18-K -6,在四边形ABCD 中,AB ∥CD ,且AB =2CD ,E ,F 分别是AB ,BC 的中点,EF 与BD 交于点H .(1)求证:△EDH △△FBH ;(2)若BD =6,求DH 的长.图18-K -610如图18-K -7,已知在△ABC 中,AB =8,BC =7,AC =6,点D ,E 分别在边AB ,AC 上.如果以A ,D ,E 为顶点的三角形和以A ,B ,C 为顶点的三角形相似,且相似比为13,求AD 和AE 的长.图18-K -71.D 2.C3.B [解析] △AD =2,BD =4,∴AB =AD +BD =6,∴AD ∶AB =1△3.∵△ADE ∽△ABC ,∴△ADE 与△ABC 的相似比是1△3.故选B.4.C5.C [解析] A 项,∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AE AC,故A 项错误; B 项,∵DE ∥BC ,△AG GF =AE EC,故B 项错误; C 项,∵DE ∥BC ,∴BD AD =CE AE,故C 项正确; D 项,∵DE ∥BC ,∴△AGE ∽△AFC ,∴AG AF =AE AC,故D 项错误. 故选C.6.AC ED AE7.12 [解析] △在菱形ABCD 中,EF ∥BC ,AE BE =13,EF =3, ∴△AEF ∽△ABC ,AB =BC =CD =DA ,AE AB =14, ∴EF BC =AE AB, ∴3BC =14,解得BC =12, ∴CD =12.8.解:△CD△AB ,∴△DCE ∽△ABE ,∴CD ∶BA =ED△EA ,即5△BA =3△(15-3),解得BA =20,即A ,B 两点之间的距离为20米.9.解:(1)证明:△在四边形ABCD 中,AB ∥CD ,且AB =2CD ,E 是AB 的中点,∴DC =12AB =BE ,DC ∥BE , ∴四边形DCBE 是平行四边形,∴FB ∥DE ,∴△EDH ∽△FBH.(2)由(1)知,BC ∥DE ,BC =DE.∵FB =12BC , ∴FB =12DE. ∵△EDH ∽△FBH ,△DE BF =DH BH=2. ∵DH +BH =6,∴DH =4.10解:根据题意,应分两种情况讨论:(1)当△ADE△△ABC 时,AD AB =AE AC =13, 即AD 8=AE 6=13, ∴AD =83,AE =2. (2)当△AED△△ABC 时,AE AB =AD AC =13, 即AE 8=AD 6=13, ∴AD =2,AE =83. 综上所述,AD 和AE 的长分别是83,2或2,83.。
九年级相似三角形同步测试题(时间90分钟,共120分)学校 班级 姓名 学号一、精心选一选,相信你选得准(10×3′=30′)1、若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( ) A .1∶4B .1∶2C .2∶1D .1∶22、下列说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60 o的两个直角三角形相似,其中正确的说法是 A .②④ B .①③ C .①②④ D .②③④ ( ) 3、如图1所示,给出下列条件: ( ) ①B ACD ∠=∠; ②ADC ACB ∠=∠; ③AC AB CD BC=; ④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为( ) A .1B .2C .3D .44、如图2,在正方形网格上,若使⊿ABC ∽⊿PBD,则点P 应在( ) A.P1处 B.P2处 C.P3处 D.P4处5、三角形三边之比3:5:7,与它相似的三角形最长边是21cm ,另两边之和是( ) A .15cm B .18cmC .21cm D .24cm6、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )A7、如图3所示,已知点E F 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G ,2FG =,则CF 的长为( )A .4B .4.5C .5D .6A .8、如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12mB .10mC .8mD .7m9、如图是福娃京京设计用手电来测量某古城墙高度的示意图.点P 处放一水平的平面镜, 光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知 AB ⊥BD ,CD ⊥BD, 且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )A. 6米B. 8米C. 18米D.24米10、在△ABC 中,AB=6,AC=4,点P 是AC 的中点,过点P 的直线交AB 于Q,若以A 、P 、Q 为顶点的三角形与△ABC 相似,则AQ 的长为( ) A .43B . 3C .43或3 D .34或3二、细心填一填,相信你填得对(10×3′=30′)1、在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图6所示,飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为 千米2、已知ΔABC 的三边长之比为3∶4∶5,与其相似的DEF △的周长为36,则DEF △最长边的长为.3、如图7,∠DAB =∠CAE ,请补充一个条件:,使△ABC ∽△ADE .4、如图8,在直角梯形ABCD 中,BC ⊥AB ,BD ⊥AD ,CD ∥AB ,且BD=3,CD=2,则下底AB 的长是.5、如图9,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC =.6、三角尺在灯泡O 的照射下在墙上形成影子(如图10所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是.7、如图11,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量得零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.8、如图12,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD=. 9、如图13,公园内有一个长5米的跷跷板AB ,当支点O 在距离A 端2米时,A 端的人可以将B 端的人跷高1.5米,那么当支点O 在AB 的中点时,A 端的人下降同样的高度可以将B 端的人跷高米.【答案】1.10、如图14,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是.【答案】144;三、耐心做一做,相信你的能力(共60′)1、(6分)如图,在矩形ABCD 中,点E F 、分别在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.2、(6分)如图,ABC △中,D E 、分别是边BC AB 、的中点,AD CE 、相交于G .求证:13GE GD CE AD ==.3、(8分)如图,在钝角三角形ABC 中,AB=6cm,AC=12cm,动点D 从A 点出发沿AB 运动到B 点,动点E 从C 点出发沿CA 运动到A 点,点D 运动的速度是1cm/s ,点E 运动的速度为2cm/s, 如果两点同时运动,那么当以点A,D,E 为顶点的三角形与△ABC 相似时,求两点运动的时间?4、(8分)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 21。
29.5相似三角形的性质1.如果两个相似三角形的相似比为1:4,则这两个三角形的对应的高的比为_______,对应角分线的比为____2.已知:如图1,在A B C △中,D E ∥B C ,D E 分别与A B 、A C 相交于D 、E ,:1:3A D AB =.若2D E =,则BC =_________.3.若A B C △的周长为20cm ,点D E F ,,分别是A B C △三边的中点, 则D E F △的周长为( ) A.5cmB.10cmC.15cmD.20cm 34.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成2cm ,那么这次复印出来的多边形图案面积是原来的( ) A .1倍 B .2倍 C .3倍 D .4倍5. 线段A B C D ,在平面直角坐标系中的位置如图2所示,O 为坐标原点, 若线段A B 上一点P 的坐标为()a b ,,则直线O P 与线段C D 的交点的 坐标为 .6. 如图3,已知DE ∥BC ,CD 和BE 相交于点O ,DOE S ∆∶COB S ∆=4∶9, 则AE ∶EC 为( )A 、2∶1B 、2∶3C 、4∶9D 、5∶4图17. 如图4,在梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点AD ∶BC =3∶7,则AO ∶OC = ,AOD S ∆∶BOC S ∆= ,AOD S ∆∶AOB S ∆= 。
8.两个相似三角形面积之差为9cm 2,对应的中线的比是2∶3,这两个三角形的面积分别是 。
9. 如图5,在△ABC 中,AB =14cm ,95=BDAD ,DE ∥BC ,CD ⊥AB ,CD =12cm ,求△ADE 的面积和周长。
参考答案1.1:4,1:4 2.6 3.B 4.D 5. (22)a b --, 6. A 7.3∶7,9∶49, 3∶7 8. 18 cm 2,27 cm 29. 分析:由AB =14cm ,CD =12cm 得ABC S ∆=84,再由DE ∥BC 可得△ABC ∽△ADE ,有2⎪⎭⎫⎝⎛=∆∆AB AD S S ABCADE 可求得ADE S ∆,利用勾股定理求出BC 、AC ,再用相似三角形的性质可得△ADE 的周长。
北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(01)一、选择题(共9小题)1.在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x轴交于点N(n,0),如图3,当m=时,n的值为()A.4﹣2B.2﹣4C.﹣D.2.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.3.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA:O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③=k;④扇形AOB与扇形A1O1B1的面积之比为k2.成立的个数为()A.1个B.2个C.3个D.4个4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:15.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣6.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=7.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD 于M、N两点.若AM=2,则线段ON的长为()A.B.C.1D.8.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=9.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH 上.若AB=5,BG=3,则△GFH的面积为何?()A.10B.11C.D.二、填空题(共10小题)10.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.11.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.12.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.13.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.14.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+=.15.如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.17.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=2EH;③HO=AE;④BC﹣BF=EH其中正确命题的序号是(填上所有正确命题的序号).18.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)19.如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015=.三、解答题(共11小题)20.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.21.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.(1)求证:P A•PB=PD•PC;(2)若P A=,AB=,PD=DC+2,求点O到PC的距离.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.23.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.24.如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM =2,则线段DG=.25.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.26.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.27.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.28.如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=.(1)求CD边的长;(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q(点Q运动到点B停止).设DP=x,四边形PQCD的面积为y,求y与x的函数关系式,并求出自变量x的取值范围.29.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.30.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(01)参考答案一、选择题(共9小题)1.A;2.D;3.D;4.B;5.D;6.C;7.C;8.C;9.D;二、填空题(共10小题)10.6;11.5;12.;13.3.6;14.1;15.18;16.5;17.①③;18.;19.2()2014;三、解答题(共11小题)20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(06)一、选择题(共15小题)1.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.2.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.33.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED 的值为()A.1:3B.2:3C.1:4D.2:54.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.5.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C.D.6.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:27.如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE 平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD =c,BC=d,AD=e,则下列等式成立的是()A.b2=ac B.b2=ce C.be=ac D.bd=ae9.如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?()A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙10.如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN 的面积比为()A.B.C.D.11.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.B.C.D.12.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.C.D.a13.如图,在平行四边形ABCD中,E为AD的中点,△DEF的面积为1,则△BCF的面积为()A.1B.2C.3D.414.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC 的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.815.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD 相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC 于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共9小题)16.如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=.17.在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=.18.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为.19.如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.20.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是.21.如图,在边长为10cm的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为cm.22.如图,在△ABC中,∠C=90°,BC=1,AC=2,四边形CA1B1C1、A1A2B2C2、A2A3B3C3…都是正方形,且A1、A2、A3…在AC边上,B1、B2、B3…在AB边上.则线段B n∁n的长用含n的代数式表示为.(n为正整数)23.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..24.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=.三、解答题(共6小题)25.如图l,在△ABC中,∠BAC=90°,AB=AC,AO⊥BC于点0,F是线段AO上的点(与A,0不重合),∠EAF=90°,AE=AF,连结FE,FC,BE,BF.(1)求证:BE=BF;(2)如图2,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF交AB于点G,交BE于点K.①求证:△AGC∽△KGB;②当△BEF为等腰直角三角形时,请你直接写出AB:BF的值.26.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.27.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC 与∠ACN的数量关系,并说明理由.28.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).(1)若以C、E、F为顶点的三角形与以A、B、C为顶点的三角形相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;(2)当点D是AB的中点时,△CEF与△CBA相似吗?请说明理由.29.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F 在边AB上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.30.如图,在△ABC中,以BC为直径作半圆O,交AB于点D,交AC于点E,AD=AE.(1)求证:AB=AC(2)若BD=4,BO=2,求AD的长.北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(06)参考答案一、选择题(共15小题)1.B;2.B;3.A;4.C;5.A;6.D;7.D;8.A;9.D;10.B;11.A;12.C;13.D;14.D;15.B;二、填空题(共9小题)16.5;17.3:5;18.16;19.;20.5;21.;22.()n;23.;24.;三、解答题(共6小题)25.;26.;27.;28.;1.8或2.5;29.;30.;北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(07)一、选择题(共1小题)1.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共9小题)2.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.3.如图,矩形ABCD的边AB上有一点P,且AD=,BP=,以点P为直角顶点的直角三角形两条直角边分别交线段DC,线段BC于点E,F,连接EF,则tan∠PEF=.4.劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为.5.梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则=.6.正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为.7.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.8.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.9.如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为cm.10.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).三、解答题(共7小题)11.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.12.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.13.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.14.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.15.将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE 面积的最大值.16.如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.17.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(07)参考答案一、选择题(共1小题)1.D;二、填空题(共9小题)2.7;3.;4.2.4cm或cm;5.或;6.或;7.(2,4﹣2);8.12;9.5;10.①②④;三、解答题(共7小题)11.;12.;13.;14.;15.;16.;17.;。
4.5《相似三角形判定定理的证明》同步练习一、选择题1.下列语句正确的是( )A.在△ABC 和△A ´B ´C ´中,∠B=∠B ´=90°,∠A=30°,∠C ´=60°,则⊿ABC 和⊿A ´B ´C ´不相似;B.在⊿ABC 和⊿A ´B ´C ´中,AB=´5,BC=7,AC=8,A ´C ´=16,B ´C ´=14,A ´B ´=10,则⊿ABC ∽⊿A ´B ´C ´;C.两个全等三角形不一定相似;D.所有的菱形都相似2.如图,在正三角形ABC 中,D 、AC AD E 分别在AC 、AB 上,且=31,AE =BE ,则有( ) A.△AED ∽△BED B.△AED ∽△CBD C.△AED ∽△ABD D.△BAD ∽△BCD( 3题 ) (4题)3.已知:如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( )A.1对B.2对C.3对D.4对4.三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为( )A.32cmB.24cmC.18cmD.16cm5.如图33-7,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( )A .∠BAD =∠CAEB .∠B =∠D C.BC DE =AC AE D.AB AD =AC AE图33-7 图33-86.如图33-8,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°,②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为( )A .1B .2C .3D .4二、填空题7. 已知一个三角形三边长是6cm ,7.5cm ,9cm ,另一个三角形的三边是8cm ,10cm ,12cm ,则这两个三角形 (填相似或不相似)8. 如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是_____________。
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB :DE =1:2,那么下列等式一定成立的是 A .BC :DE =1:2B .△ABC 的面积:△DEF 的面积=1:2 C .∠A 的度数:∠D 的度数=1:2D .△ABC 的周长:△DEF 的周长=1:2 【答案】D2.如图,AB 、CD 、EF 都与BD 垂直,且AB =1,CD =3,那么EF 的长是A .13B .23 C .34D .45【答案】C【解析】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF , ∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF DF AB DB =,EF BF CD BD =,∴EF EF DF BFAB CD DB BD+=+=1. ∵AB =1,CD =3,∴13EF EF +=1,∴EF =34.故选C .3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=23AB=23CD,∵AB∥CD,∴EFFC=BEDC=23,故选B.4.已知:如图,E是ABCD的边AD上的一点,且32AEDE=,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cmC.6cm D.9cm【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴BC BF ED DF=,∵32AEDE=,∴设AE=3k,DE=2k,则AD=BC=5k,52BC BFED DF==,∵BF=15cm,∴DF=25BF═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9C.3:1 D.1:3【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63°B.72°C.73°D.83°【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A.32B.1C.12D.23【答案】C【解析】∵E为AB中点,∴AE=12AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴AE ADAC AB,∴12AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是12,∴两个三角形的面积比是14,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】65或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,△ABC 和△A 1B 1C 1的相似比为k .求证:111ABC A B C S S △△=k 2;证明:作AD ⊥BC 于D ,A 1D 1⊥B 1C 1于D 1,∵△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应, ∴∠B =∠B 1,∵AD 、A 1D 1分别是△ABC ,△A 1B 1C 1的高线, ∴∠BDA =∠B 1D 1A 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B =k , ∴111ABC A B C S S △△=11111212BC AD B C A D ⋅⋅⋅⋅=k 2.13.如图所示,Rt △ABC ∽Rt △DFE ,CM 、EN 分别是斜边AB 、DF 上的中线,已知AC =9cm ,CB =12cm ,DE =3cm .(1)求CM 和EN 的长; (2)你发现CMEN的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt △ABC 中,AB =22AC CB +=22912+=15,∵CM 是斜边AB 的中线, ∴CM =12AB=7.5, ∵Rt △ABC ∽Rt △DFE , ∴DE DF AC AB =,即319315DF==, ∴DF =5,∵EN 为斜边DF 上的中线,∴EN =12DF =2.5; (2)∵7.532.51CM EN ==,相似比为9331AC DE ==,∴相似三角形对应中线的比等于相似比.14.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC 、CD 、BD 之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且AD =CD ,则∠ACB =__________°. (2)如图2,在△ABC 中,AC =2,BC 2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD的长.【解析】(1)当AD=CD时,如图,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)由已知得AC=AD=2,∵△BCD∽△BAC,∴BCBA=BDBC,设BD=x2)2=x(x+2),∵x>0,∴x3–1,∵△BCD∽△BAC,∴CD BDAC BC=32,∴CD 312-×62.故答案为:96.。
九年级上相似三角形同步
练习
The document was prepared on January 2, 2021
两个三角形相似的条件同步练习
一、请说一说什么是相似三角形
答:_____________.
通过探索和学习,你知道怎样判定两个三角形相似那么请把你的判定方法写在下面吧.
(1)_____________.
(2)_____________.
(3)_____________.
二、请你填一填
(1)如图4—6—1,在△ABC中,DE∥BC,AD=3 cm,BD=2 cm,△ADE与△ABC是否相似________,若相似,相似比是________.
图4—6—1
(2)如图4—6—2,D、E分别为△ABC中AB、AC边上的点,请你添加一个条件,使△ADE与△ABC相似,你添加的条件是_____________(只需填上你认为正确的一种情况即可).
图4—6—2
(3)如图4—6—3,测量小玻璃管口径的量具ABC中,AB的长是10毫米,AC被分成60等份.如果小管口DE正好对着量具上30份处(DE∥AB),那么小管口径DE的长是_____________毫米.
图4—6—3
(4)如图4—6—4,在R t △ABC 中,∠ACB =90°,作CD ⊥AB 于点D ,则图中相似的三角形有________对,它们分别是_____________.
图4—6—4
三、认真选一选
(1)下列各组图形中有可能不相似的是( ) A.各有一个角是45°的两个等腰三角形 B.各有一个角是60°的两个等腰三角形 C.各有一个角是105°的两个等腰三角形 D.两个等腰直角三角形
(2)△ABC 和△A ′B ′C ′符合下列条件,其中使△ABC 和△A ′B ′C ′不相似的是( )
A.∠A =∠A ′=45° ∠B =26° ∠B ′=109° =1 AC = BC =2 A ′B ′=4 A ′C ′=2 B ′C ′=3 C.∠A =∠B ′ AB =2 AC =2.4 A ′B ′= B ′C ′=3 =3 AC =5 BC =7 A ′B ′=
3
A ′C ′=
5
B ′
C ′=
7
(3)如图4—6—5,AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( )
A.AD OA
CD AB = B.BC
OB OD
OA =
C.OC
OB
CD AB =
D.OD
OB AD
BC
=
图4—6—5 图4—6—6(4)如图4—6—6,D为△ABC的边AB上一点,且∠ABC=∠ACD,AD=3 cm,AB=4 cm,则AC的长为()
A.2 cm
B.3 cm
C.12 cm
D.23 cm
四、用数学眼光看世界
图4—6—7
如图4—6—7,长梯AB斜靠在墙壁上,梯脚B距墙80 cm,梯上点D距墙70 cm,量得BD长55 cm,求梯子的长.
440 cm.。