2020版新设计一轮复习数学(文)江苏专版讲义:第十章 第四节 直接证明与间接证明 含答案
- 格式:doc
- 大小:474.16 KB
- 文档页数:12
第一节算法初步1.算法与流程图(1)算法通常是指对一类问题的机械的、统一的求解方法.(2)流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.三种基本逻辑结构(1)顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是先根据条件作出判断,再决定执行哪一种操作的结构.其结构形式为(3)循环结构是指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.循环结构又分为当型和直到型.其结构形式为3.基本算法语句(1)赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次送给a,b,输出语句“Print x”表示输出的运算结果x.(2)算法的选择结构由条件语句来表达,条件语句有两种,一种是If—Then—Else语句,其格式是If A ThenBElseCEnd If.(3)算法中的循环结构,可以运用循环语句来实现.①当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为For I From“初值”To“终值”Step“步长”循环体End For[提醒]上面“For”和“End For”之间缩进的步骤称为循环体,如果省略“Step步长”,那么重复循环时,I每次增加1.②不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.当型语句的一般格式是While p循环体End While,直到型语句的一般格式是Do循环体Until p End Do.[小题体验]1.For语句的一般格式为:For I From a To b Step c,其中a的意义是________.解析:根据“For”语句的意义可知,I为循环变量,a为I的初始值,b为I的终值.答案:循环变量初始值2.如图是一个算法流程图,则输出的S的值为________.解析:经过第一次循环后得S=11,n=3,此时S>n;进行第二次循环后得S=8,n=5,此时S>n;进行第三次循环后得S=3,n=7,此时S<n,退出循环,故S=3.答案:31.易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有选择结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[小题纠偏]1.执行如图所示的算法流程图,则输出S的值是________.解析:初始值S=2,n=1,不满足条件n>8,第一次循环:S=12,n=2;第二次循环:S=-1,n=3;第三次循环:S=2,n=4;第四次循环:S=12,n=5,故此循环的S值呈周期性出现,且周期为3,若n>8,则需n=9,应循环8次,故结束循环时应输出S的值为-1.答案:-12.(2018·常州期末)执行如图所示的流程图,若输入a=27,则输出b的值为________.解析:将a,b,|b-a|值列表:所以输出b 的值为13.答案:13考点一 算法流程图 (基础送分型考点——自主练透)[题组练透]1.如图所示的流程图中输出S 的值为________.解析:该流程图的功能是求半径为r 的圆的面积.由r =5得S =25π. 答案:25π2.(2018·南京学情调研)运行如图所示的算法流程图,若输出y 的值为12,则输入x 的值为________.解析:此算法程序表示一个分段函数y =⎩⎪⎨⎪⎧2x ,x ≥0,log 2(-x ),x <0,由f (x )=12,得x =- 2.答案:- 23.(2019·盐城模拟)运行如图所示的算法流程图,则输出S 的值为________.解析:运行算法流程图,S =1,k =2;S =5,k =4;S =21,k =6,不满足S <20,退出循环.故输出S 的值为21.答案:21[谨记通法]流程图的3个常用变量(1)计数变量:用来记录某个事件发生的次数,如i ←i +1. (2)累加变量:用来计算数据之和,如S ←S +i . (3)累乘变量:用来计算数据之积,如p ←p ×i .[提醒] 处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数. 考点二 算法的交汇性问题 (题点多变型考点——多角探明) [锁定考向]算法是高考热点内容,算法的交汇性问题是高考的一大亮点. 常见的命题角度有: (1)与三角函数的交汇问题; (2)与数列的交汇问题;(3)与函数或不等式的交汇问题.[题点全练]角度一:与三角函数的交汇问题1.(2019·镇江调研)给出一个算法的流程图,若a =sin θ,b =cos θ,c =tan θ,其中θ∈⎝⎛⎭⎫π4,π2,则输出的结果是________.解析:∵ θ∈⎝⎛⎭⎫π4,π2,∴a =sin θ,b =cos θ,c =tan θ的大小关系是:c >a >b , ∴执行第一个选择结构后,由于sin θ>cos θ, ∴a =b ,此时a =cos θ,∴执行第二个选择结构后,由于tan θ>cos θ, 则输出a =cos θ. 答案:cos θ角度二:与数列的交汇问题2.执行如图所示的流程图,如果输入n =3,则输出的S =________.解析:第一次循环:S =11×3,i =2;第二次循环:S =11×3+13×5,i =3; 第三次循环:S =11×3+13×5+15×7,i =4, 满足循环条件,结束循环.故输出S =11×3+13×5+15×7=12⎝⎛⎭⎫1-13+13-15+15-17=37. 答案:37角度三:与函数或不等式的交汇问题3.如图所示的流程图中,若f (x )=x 2-x +1,g (x )=x +4,且h (x )≥m 恒成立,则m 的最大值是________.解析:h (x )≥m 恒成立,只需m ≤h (x )min ,由流程图可知,h (x )=⎩⎪⎨⎪⎧f (x ),f (x )>g (x )g (x ),f (x )≤g (x )=⎩⎪⎨⎪⎧x 2-x +1,x <-1或x >3,x +4,-1≤x ≤3,而h (x )的值域为[3,+∞),所以m ≤3,即m 的最大值是3. 答案:3[通法在握]解决算法交汇问题的关键点(1)读懂流程图,明确交汇知识; (2)根据给出问题与流程图处理问题; (3)注意框图中结构的判断.[演练冲关]1.阅读下边的流程图,如果输出的函数值在区间⎣⎡⎦⎤14,12内,那么输入实数x 的取值范围为________.解析:由流程图可得分段函数:f (x )=⎩⎪⎨⎪⎧2x,-2≤x ≤2,2,x <-2或x >2,所以令2x ∈⎣⎡⎦⎤14,12,则x ∈[-2,-1]. 答案:[-2,-1]2.阅读如图所示的算法流程图,若输入的n 是30,则输出的变量S 的值是________.解析:根据算法流程图知,当n =30时,n >2,S =30,n =28;当n =28时,n >2,S =58,n =26;......;当n =2时,S =30+28+26+ (2)15(30+2)2=240,n =0.当n =0时,n <2,输出S =240. 答案:240考点三 基本算法语句 (重点保分型考点——师生共研)[典例引领]1.(2018·苏锡常镇调研)如图是给出的一种算法,则该算法输出的结果是________.T ←1I ←2While I ≤4 T ←T ×I I ←I +1End While Print T解析:该程序的作用是累乘并输出满足条件T =1×2×3×4=24.答案:242.(2019·南京四校联考)阅读下列两个程序:则输出结果较大的是________.(填甲或乙)解析:对于甲,S=0+1+2+…+500=125 250;对于乙,S=0+600+599+…+300=135 450,故输出结果较大的是乙.答案:乙3.运行如图所示的伪代码,则输出K的值是________.X←3K←0DoX←2X+1K←K+1Until X>16End DoPrint K解析:第一次循环,X=7,K=1;第二次循环,X=15,K=2;第三次循环,X=31,K=3;终止循环,输出K的值是3.答案:3[由题悟法]算法语句应用的4个关注点(1)输入语句可以同时给多个变量赋值,在给多个变量赋值时,变量之间要用“逗号”隔开,如“Read x,y,z”.(2)输出语句可以输出常量、变量或表达式的值,也可以输出多个结果,如“Print x,y”表示依次输出结果x,y.(3)条件语句必须以If语句开始,以End If语句结束,一个If语句必须和一个End If语句对应.(4)“For”语句的一般形式中Step“步长”为1时“Step 1”可省略,否则不能省略.[即时应用]1.根据如图所示的伪代码,最后输出S的值为________.S ←0For I From 1 To 10S ←S +I End For Print S解析:该伪代码是1+2+3+…+10的求和,所以输出S 的值为55. 答案:552.根据如图所示的伪代码,可以输出的结果S 为________.I ←1DoI ←I +2 S ←2I +3Until I ≥8End Do Print S解析:I =1,第一次循环I =3,S =9;第二次循环I =5,S =13;第三次循环I =7,S =17;第四次循环I =9,S =21;退出循环,故输出的结果为21.答案:21一抓基础,多练小题做到眼疾手快1.(2019·金陵中学月考)如图所示的伪代码中,若输入x 的值为-4,则输出y 的值为________.解析:由框图知:算法的功能是求y =⎩⎪⎨⎪⎧|x -3|, x >3,2x , x ≤3的值,当输入x =-4时,执行y =2-4=116. 答案:1162.(2018·南京三模)执行如图所示的伪代码,输出的结果是________.解析:=1×3×5×…×I >200的I +2的值,∵S =1×3×5×7=105<200,S =1×3×5×7×9=945>200, ∴输出的I =9+2=11. 答案:113.运行如图所示的伪代码,则输出的结果为________.i ←0S ←0Do i ←i +2S ←S +i 2Until i ≥6End Do Print S解析:i =2时,S =4;i =4时,S =20;i =6时,S =56,这时退出循环体,输出S =56. 答案:564.(2019·苏州高三调研)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的流程图是秦九韶算法的一个实例.若输入n ,x 的值分别为3,3,则输出的v 的值为________.解析:运行该流程图,n =3,x =3,v =1,i =2;v =5,i =1;v =16,i =0;v =48,i =-1,循环结束.故输出的v 的值为48.答案:485.(2019·海安中学测试)运行如图所示的流程图,则输出的结果S 为________.解析:运行该流程图, i =1时,S =1-12= 12;i =2时,S =1-2=-1; i =3时,S =1-(-1)=2; i =4时,S =1-12=12;…∴变量S 的值是以3为周期在变化, 当i =2 017时,S =12,i =2 018时退出循环,故输出S =12.答案:126.(2018·镇江调研)如图伪代码中,输入15,18,则伪代码执行的结果是________.Read a ,bIf a <b Then t ←a a ←b b ←t End IfPrint a , b解析:a =15,b =18,因为15<18,所以t =15,a =18,b =15; 因为18<15不成立,所以输出18,15. 答案:18,15二保高考,全练题型做到高考达标1.(2019·徐州调研)运行如图所示的流程图,则输出的n 的值是________.解析:模拟该算法流程图运行过程,如下:n=0时,A=30-20=0;n=2时,A=32-22=5;n=4时,A=34-24=65;n=6时,A=36-26=665;n=8时,A=38-28=6 305>1 000,终止循环,输出n=8.答案:82.执行如图所示的流程图,输出的x值为________.解析:首先a=2是固定的值.列表如下:在循环结束时,输出x=6.答案:63.(2019·南京模拟)根据如图所示的伪代码,可知输出的S的值为________.解析:运行该算法,S=1,I=8S=7,I=-1,终止循环.故输出的S的值为7.答案:74.(2018·扬州期末)执行如图所示的程序框图,输出的s值为________.解析:模拟执行如图所示的程序框图,如下:n=0,s=1;n=1,s=3;n=2,s=53;n=3,s=115,此时终止循环,输出s=115.答案:1155.如果执行如图所示的流程图,那么输出的S=________.解析:这个程序是计算-2+0+2+4+…+100的算法,由等差数列求和公式可知:结果为(-2+100)×522=2 548.答案:2 5486.(2019·苏北四市质检)如图是一个算法的伪代码,运行后输出的b的值为________.解析:a =1,b =2,I =4;a =3,b =5,I =6;a =8,b =13,I =8,结束运行.故输出的b 的值为13.答案:137.(2019·宿迁中学调研)根据如图所示的算法流程图,可知输出的结果S 为________.解析:根据如图所示的算法流程图,可知该程序的功能是:计算并输出S =11×2+12×3+13×4的值,所以S =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14=34. 答案:348.如图是一个算法流程图,则输出的S 的值是________.解析:该流程图运行2 019次,所以输出的S =cos π3+cos 2π3+cos π+…+cos 2 017π3+cos 2 018π3+cos2 019π3=336⎝⎛⎭⎫cos π3+cos 2π3+cos π+…+cos 6π3+cos π3+cos 2π3+cos π=-1. 答案:-19.执行如图所示的流程图,则输出的S 值为________([x ]表示不超过x 的最大整数).解析:n =1,S =1,n =1不满足判断框中的条件; n =2,S =2,n =2不满足判断框中的条件; n =3,S =3,n =3不满足判断框中的条件; n =4,S =5,n =4不满足判断框中的条件; n =5,S =7,n =5满足判断框中的条件, 所以输出的结果为7. 答案:710.(2019·泰州学情调研)如图是一个算法的流程图,则输出的n 的值是________.解析:第一次执行循环体后,S =12,n =2,不满足退出循环的条件;第二次执行循环体后,S =1+32,n =3,不满足退出循环的条件; 第三次执行循环体后,S =1+32+1,n =4,满足退出循环的条件, 故输出n 的值是4. 答案:4。
§10.3 用样本估计总体考情考向分析 主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用;题型以填空题为主,难度为中低档题.1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:如果将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,那么就得到频率分布折线图.(2)总体分布的密度曲线:如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s =.1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](3)方差:s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](x n 是样本数据,n 是样本容量,是样本平均1nx x x x 数).概念方法微思考1.在频率分布直方图中如何确定中位数?提示 在频率分布直方图中,中位数左边和右边的直方图的面积是相等的.2.平均数、标准差与方差反映了数据的哪些特征?提示 平均数反映了数据取值的平均水平,标准差、方差反映了数据对平均数的波动情况,即标准差、方差越大,数据的离散程度越大,越不稳定;反之离散程度越小,越稳定.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ )(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ )题组二 教材改编2.[P58例4]如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有________人.答案 25解析 0.5×0.5×100=25.3.[P56练习T3]一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为________.答案 8解析 设频数为n ,则=0.25,n32∴n =32×=8.144.[P71练习T1]已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.答案 0.1解析 ==5.1,x 4.7+4.8+5.1+5.4+5.55则该组数据的方差s 2==0.1.(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)25题组三 易错自纠5.(2018·徐州模拟)一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为________.答案 8解析 因为数据共40个,第5组的频率为0.1,所以第5组的频数为40×0.1=4,所以第6组的频数为40-(10+5+7+6+4)=8.6.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m ,众数为n ,平均数为,则m ,n ,的大小关系x x 为________.(用“<”连接)答案 n <m <x解析 由图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m =5.5;又5出现的次数最多,故n =5;=≈5.97.x 2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030故n <m <.x 7.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据频率分布直方图,这200名学生中每周的自习时间不少于22.5小时的人数是________.答案 140解析 由频率分布直方图,知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.题型一 茎叶图的应用1.(2018·南通模拟)如图是甲、乙两位同学在5次测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为________.答案 2解析 由于甲、乙两位同学的平均数均为90,所以甲、乙两位同学的方差分别为×(4+1+0+1+4)=2,×(9+1+0+1+9)=4>2,1515故成绩较稳定(方差较小)的那一位同学的方差为2.2.(2018·江苏淮阴中学月考)如图所示是一次歌唱大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数为85,则a 2+b 2的最小值是________.答案 32解析 方法一 根据题意,有=5,得a +b =8,则b =8-a ,a 2+b 2=a 2+(8-a )24+a +6+b +75=2a 2-16a +64,其中a ,b 满足0≤a ≤9,0≤b ≤9,即0≤a ≤9,0≤8-a ≤9,即0≤a ≤8且a 是整数,令f (a )=2a 2-16a +64,显然当a =4时,f (a )取得最小值,这个最小值是32.方法二 同方法一可得a +b =8,则8≥2,故ab ≤16,而a 2+b 2=(a +b )2-2ab ≥64-32=ab 32,当且仅当a =b =4时等号成立.3.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如下.根据该统计数据,估计此地该年AQI 大于100的天数约为________.(该年有365天)答案 146解析 该样本中AQI 大于100的频数是4,频率为,25由此估计该地全年AQI 大于100的频率为,25估计此地该年AQI 大于100的天数约为365×=146.25思维升华 茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.题型二 频率分布直方图的绘制与应用例1 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为_______.答案 12解析 志愿者的总人数为=50,20(0.16+0.24)×1所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.思维升华 (1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆.(2)在很多题目中,频率分布直方图中各小长方形的面积之和为1,是解题的关键,常利用频率分布直方图估计总体分布.跟踪训练1 (1)某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.答案 10解析 设11时至12时的销售额为x ,因为9时至10时的销售额为2.5万元,由题意得=0.10.4,得x =10.2.5x(2)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为________.答案 400解析 因为第一、第二、第三小组的频率成等比数列,设公比为q ,则第三小组的频率为0.16q 2;又第三、第四、第五、第六小组的频率成等差数列,设公差为d ,从而得第六小组的频率为0.16q 2+3d =0.07.又因为六组频率之和为1,所以Error!由图知q >0,d <0,得q =1.25,d =-0.06,得第三小组的频率为0.25,则该校高三年级的男生总数为100÷0.25=400.题型三 用样本的数字特征估计总体的数字特征例2 (1)(2013·江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.答案 2解析 甲=(87+91+90+89+93)=90,x 15乙=(89+90+91+88+92)=90,x 15s =[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,2甲15s =[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.2乙15(2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:①分别求出两人得分的平均数与方差;②根据图和上面算得的结果,对两人的训练成绩作出评价.解 ①由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.甲==13;x 10+13+12+14+165乙==13,x 13+14+12+12+145s =[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4;2甲15s =[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.2乙15②由s >s ,可知乙的成绩较稳定.2甲2乙从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.跟踪训练2 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,),(a ,b ),(,b ),(,),(a ,b ),(a ,b ),(a ,b a a b ),(,b ),(a ,),(,),(a ,b ),(a ,),(,b ),(a ,b ),其中a ,分别表示甲组研发b a b a b b a a 成功和失败;b ,分别表示乙组研发成功和失败.b (1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.解 (1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数甲==;x 101523方差为s ==.2甲115[(1-23)2×10+(0-23)2×5]29乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数乙==;x 91535方差为s ==.2乙115[(1-35)2×9+(0-35)2×6]625因为甲>乙,s <s ,所以甲组的研发水平优于乙组.x x 2甲2乙(2)记恰有一组研发成功为事件E ,在所抽得的15个结果中,恰有一组研发成功的结果是(a ,),(,b ),(a ,),(,b ),(a ,),(a ,),(,b ),共7个.因此事件E 发生的频率为.b a b a b b a 715用频率估计概率,即得所求概率为P (E )=.7151.(2015·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.答案 6解析 这组数据的平均数为(4+6+5+8+7+6)=6.162.下面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为________.答案 5,8解析 由题意根据甲组数据的中位数为15,可得x =5;乙组数据的平均数为16.8,则=16.8,求得y =8.9+15+18+24+10+y 53.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.答案 0.4解析 10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为=0.4.4104.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为________.答案 22.5解析 产品的中位数出现在频率是0.5的地方.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x ,则由0.1+0.2+0.08×(x -20)=0.5,得x =22.5.5.(2018·扬州调研)随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若该校的学生总人数为3 000,则成绩不超过60分的学生人数大约为________.答案 900解析 由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.6.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.答案 16解析 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为=2×8=16.22×647.已知等差数列{a n }的公差为d ,若a 1,a 2,a 3,a 4,a 5的方差为8,则d 的值为________.答案 ±2解析 因为{a n }为等差数列,所以a 1,a 2,a 3,a 4,a 5的平均数为a 3,所以方差为[(-2d )2+(-15d )2+0+d 2+(2d )2]=2d 2=8,解得d =±2.8.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案 24解析 底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.9.某电子商务公司对10 000名网络购物者2018年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示:(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案 (1)3 (2)6 000解析 由频率分布直方图及频率和等于1,可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内的频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.10.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.答案 2解析 170+×(1+2+x +4+5+10+11)=175,17×(33+x )=5,即33+x =35,解得x =2.1711.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为________.答案 6.8解析 因为甲==11,x 9+7+7+14+185乙==11,x 8+9+10+13+155所以s ==>s ===6.8,故得分稳定的运动员的方2甲16+16+4+9+4959452乙9+4+1+4+165345差为6.8.12.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为400×=20.5100(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×=30,12所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.13.样本(x 1,x 2,…,x n )的平均数为,样本(y 1,y 2,…,y m )的平均数为(≠).若样本(x 1,x y x y x 2,…,x n ,y 1,y 2,…,y m )的平均数=α+(1-α),其中0<α<,则n ,m 的大小关系为________.z x y 12答案 n <m解析 由题意,得==+,z nx +my n +m n n +m x m n +m y 则有α=,又0<α<,则0<<,得n <m .n m +n 12n m +n 1214.(2018·南通、徐州等六市调研)某班40名学生参加普法知识竞赛,成绩都在区间[40,100]上,其频率分布直方图如图所示,则成绩不低于60分的人数为________.答案 30解析 根据频率分布直方图可得成绩不低于60分的学生的频率为(0.015+0.030+0.025+0.005)×10=0.75.∴成绩不低于60分的学生的人数为40×0.75=30.15.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为________.答案 6解析 根据频率分布直方图得,第1,3,4组的频率之比为1∶4∶3,所以用分层抽样的方法抽取16人时,在第4组中应抽取的人数为16×=6.31+4+316.空气质量指数(简称:AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI 大小分为六级:[0,50)为优,[50,100)为良,[100,150)为轻度污染,[150,200)为中度污染,[200,250)为重度污染,[250,300)为严重污染.下面记录了北京市22天的空气质量指数,根据图表,下列结论正确的是________.(填序号)①在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量;②在北京这22天的空气质量中,有3天达到污染程度;③在北京这22天的空气质量中,12月29日空气质量最差;④在北京这22天的空气质量中,达到空气质量优的天数有7天.答案 ①②③解析 因为97>59,51>48,36>29,68>45,所以在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量,即①正确;AQI不低于100的数据有3个:143,225,145,所以在北京这22天的空气质量中,有3天达到污染程度,即②正确;因为12月29日的AQI为225,为重度污染,该天的空气质量最差,即③正确;AQI在[0,50)的数据有6个:36,47,49,48,29,45,即达到空气质量优的天数有6天,所以④错.。
§10.4 随机事件的概率考情考向分析 以考查随机事件、互斥事件与对立事件的概率为主,试题为简单题,题型为填空题.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=为事件A 出现的频率.n An (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ).2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若B ⊇A 且A ⊇BA =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P (A )+P (B )=13.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1.(2)必然事件的概率P (E )=1.(3)不可能事件的概率P (F )=0.(4)概率的加法公式如果事件A 与事件B 互斥,则P (A∪B )=P (A )+P (B ).(5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ).概念方法微思考1.随机事件A 发生的频率与概率有何区别与联系?提示 随机事件A 发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A 发生的频率稳定在事件A 发生的概率附近.2.随机事件A ,B 互斥与对立有何区别与联系?提示 当随机事件A ,B 互斥时,不一定对立,当随机事件A ,B 对立时,一定互斥.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.( × )(2)在大量重复试验中,概率是频率的稳定值.( √ )(3)两个事件的和事件是指两个事件都得发生.( × )(4)两互斥事件的概率和为1.( × )题组二 教材改编2.[P94练习T1]下列事件是随机事件的有________.(填序号)①若a,b,c都是实数,则a· (b·c)=(a· b)·c;②没有空气和水,人也可以生存下去;③掷一枚硬币,出现反面;④在标准大气压下,水的温度达到90 ℃时沸腾.答案 ③解析 ①为必然事件,③为随机事件,②④为不可能事件.3.[P97练习T1]某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是________.(填序号)①明天本地有80%的区域降雨,20%的区域不降雨;②明天本地有80%的时间降雨,20%的时间不降雨;③明天本地降雨的可能性是80%;④以上说法均不正确.答案 ③解析 选项①②显然不正确,因为80%的概率是指降雨的概率,而不是指80%的区域降雨,更不是指有80%的时间降雨,是指降雨的可能性是80%.4.[P101例3]同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件有________个.答案 6解析 由题意知,事件A 包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个.题组三 易错自纠5.从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,则下列事件中概率为1的是________.(填序号)①三个都是正品;②三个都是次品;③三个中至少有一个是正品;④三个中至少有一个是次品.答案 ③解析 16个同类产品中,只有2个次品,从中抽取三件产品,则①是随机事件,②是不可能事件,③是必然事件,④是随机事件.又必然事件的概率为1,所以答案为③.6.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是________.答案 15解析 基本事件的个数为5×3=15,其中满足b >a 的有3种,所以b >a 的概率为=.315157.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为________.答案 0.35解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率为P =1-P (A )=1-0.65=0.35.题型一 事件关系的判断1.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有________组.答案 1解析 ①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,故两个事件不是互斥事件;②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,故两个事件不互斥;③中“恰有1个白球”与“恰有1个黄球”都是指有1个白球和1个黄球,故两个事件是同一事件;④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件.2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是________.310710答案 至多有一张移动卡解析 至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.3.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A =“取出的两个球同色”,B =“取出的两个球中至少有一个黄球”,C =“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E =“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ).答案 ①④解析 当取出的两个球中一黄一白时,B 与C 都发生,②不正确;当取出的两个球中恰有一个白球时,事件C 与E 都发生,③不正确;显然A 与D 是对立事件,①正确;C ∪E 为必然事件,P (C ∪E )=1,④正确;P (B )=,P (C )=,⑤不正确.4535思维升华 (1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.题型二 随机事件的频率与概率例1 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的2+16+3690估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300;若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.36+25+7+490因此Y 大于零的概率的估计值为0.8.思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.跟踪训练1 某鲜花店将一个月(30天)某品种鲜花的日销售量与销售天数统计如下表,将日销售量落入各组区间的频率视为概率.日销售量(枝)[0,50)[50,100)[100,150)[150,200)[200,250]销售天数3天5天13天6天3天(1)求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天做促销活动,求这2天恰好是在销售量低于50枝时的概率.解 (1)设日销售量为x 枝,则P (0≤x <50)==,330110P (50≤x <100)==,53016所以P (0≤x <100)=+=.11016415(2)日销售量低于100枝的共有8天,从中任选2天做促销活动,共有28种情况;日销售量低于50枝的共有3天,从中任选2天做促销活动,共有3种情况.所以所求概率为P =.328题型三 互斥、对立事件的概率命题点1 互斥事件的概率例2 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,取到红球的概率是,取到黑球或黄球的概率是,取到黄球或绿球的概率也是,试求取到黑球、黄球和绿球13512512的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”分别是A ,B ,C ,D ,则有P (A )=,P (B ∪C )=P (B )+P (C )=,13512P (C ∪D )=P (C )+P (D )=,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-=,解得P (B )5121323=,P (C )=,P (D )=,141614因此取到黑球、黄球、绿球的概率分别是,,.141614方法二 设红球有n 个,则=,所以n =4,即红球有4个.n 1213又取到黑球或黄球的概率是,所以黑球和黄球共5个.512又总球数是12,所以绿球有12-4-5=3(个).又取到黄球或绿球的概率也是,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=5122(个),所以黑球有12-4-3-2=3(个).因此取到黑球、黄球、绿球的概率分别是=,=,=.312142121631214命题点2 对立事件的概率例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解 方法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=,P (A 2)==,P (A 3)==,5124121321216P (A 4)=.112根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=+=.51241234(2)取出1球是红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=++=.5124122121112方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1--=.21211234(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P (A 1∪A 2∪A 3)=1-P (A 4)=1-=.1121112思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.跟踪训练2 某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )==0.15,P (B )==0.12.1501 0001201 000由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概24100率得P (C )=0.24.用正难则反思想求对立事件的概率若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.例 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x 3025y 10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=1.9(分钟).1×15+1.5×30+2×25+2.5×20+3×10100(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率,得P (A 1)==,P (A 2)==.201001510100110P (A )=1-P (A 1)-P (A 2)=1--=.15110710故一位顾客一次购物的结算时间不超过2分钟的概率为.7101.(2018·南京调研)某单位要在4名员工(含甲、乙两人)中随机选2名到某地出差,则甲、乙两人中至少有一人被选中的概率是________.答案 56解析 从4名员工中随机选2名的所有基本事件共有6个,而甲、乙都未被选中的事件只有1个,所以甲、乙两人中,至少有一人被选中的概率为1-=.16562.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为________.答案 78解析 4位同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-=.1+116783.两个工人每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等2334品相互独立,则这两个零件中恰有一个一等品的概率为________.答案 512解析 记两个零件中恰好有一个一等品的事件为A ,则P (A )=×+×=.23(1-34)(1-23)345124.(2018·苏北四市模拟)若随机地从1,2,3,4,5五个数中选出两个数,则这两个数恰好为一奇一偶的概率为__________.答案 35解析 从1,2,3,4,5五个数中选出两个数的所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中一奇一偶的基本事件有6个,故所求事件的概率为P ==.610355.下列命题:①将一枚硬币抛两次,设事件M :“两次出现正面”,事件N :“只有一次出现反面”,则事件M 与N 互为对立事件;②若事件A 与B 互为对立事件,则事件A 与B 为互斥事件;③若事件A 与B 为互斥事件,则事件A 与B 互为对立事件;④若事件A 与B 互为对立事件,则事件A ∪B 为必然事件.其中的真命题是________.(填序号)答案 ②④解析 对于①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故①错;对于②,对立事件首先是互斥事件,故②正确;对于③,互斥事件不一定是对立事件,如①中的两个事件,故③错;对于④,事件A ,B 为对立事件,则在这一次试验中A ,B 一定有一个要发生,故④正确.6.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点”,若表示B 的对立事件,则一次试验中,事件A +发生的概率为________.B B 答案 23解析 掷一个骰子的试验有6种可能的结果.由题意知P (A )==,P (B )==,26134623∴P ()=1-P (B )=1-=,B 2313∵表示“出现5点或6点”,因此事件A 与互斥,B B 从而P (A +)=P (A )+P ()=+=.B B 1313237.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为=5200.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________.答案 (54,43]解析 由题意可知Error!即Error!解得Error!所以<a ≤.54439.甲、乙两人玩数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为______.答案 79解析 甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为3×3=9.设甲、乙“心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2包含2个基本事件,∴P (B )=,∴P (A )=1-=.29297910.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数01234≥5概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是________.答案 0.74解析 由表格可得至少有2人排队的概率P =0.3+0.3+0.1+0.04=0.74.11.A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A 班 6 6.5 7 7.5 8B 班 6 7 8 9 10 11 12C 班3 4.5 6 7.5 9 10.5 12 13.5①试估计C 班的学生人数;②从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.解 ①由题意及分层抽样可知,C 班学生人数约为100×=100×=40.85+7+8820②设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,...,5,事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,...,8.由题意可知P (A i )=,i =1,2,...,5;P (C j )=,j =1,2, (8)1518P (A i C j )=P (A i )P (C j )=×=,i =1,2,...,5,j =1,2, (8)1518140设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×=.1403812.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解 (1)P (A )=,P (B )==,11 000101 0001100P (C )==.501 000120故事件A ,B ,C 的概率分别为,,.11 0001100120(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )==.1+10+501 000611 000故1张奖券的中奖概率为.611 000(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-=.(11 000+1100)9891 000故1张奖券不中特等奖且不中一等奖的概率为.9891 00013.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.答案 351315解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P ==.11+10+7+86+7+8+8+10+10+1135“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P =1-=.86+7+8+8+10+10+11131514.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取出的两个球颜色相同的概率;(2)求取出的两个球颜色不相同的概率.解 从六个球中取出两个球的基本事件有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)记事件A 为“取出的两个球是白球”,则这个事件包含的基本事件有(1,2),(1,3),(2,3),共3个,故P (A )==;31515记事件B 为“取出的两个球是黑球”,同理可得P (B )=.15记事件C 为“取出的两个球的颜色相同”,A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=.25(2)记事件D 为“取出的两个球的颜色不相同”,则事件C ,D 对立,根据对立事件概率之间的关系,得P (D )=1-P (C )=1-=.253515.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.答案 112解析 小明输入密码后两位的所有情况为(4,A ),(4,a ),(4,B ),(4,b ),(5,A ),(5,a ),(5,B ),(5,b ),(6,A ),(6,a ),(6,B ),(6,b ),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是.11216.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如表所示:X 1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;Y 51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至多为48 kg 的概率.解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y 51484542频数2463所种作物的平均年收获量为==46.51×2+48×4+45×6+42×31569015(2)方法一 由(1)知P (Y =42)=,P (Y =45)=,315615P (Y =48)=.415故在所种作物中随机选取一株,它的年收获量至多为48 kg 的概率为P (Y ≤48)=P (Y =42)+P (Y =45)+P (Y =48)=++=.3156154151315方法二 由(1)知P (Y =51)=,215故在所种作物中随机选取一样,它的年收获量至多为48 kg 的概率为P (Y ≤48)=1-P (Y =51)=.1315。
第四节直接证明与间接证明1.直接证明直接证明中最基本的两种证明方法是综合法和分析法.(1)综合法:从已知的条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.(2)分析法:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.(3)综合法与分析法的推证过程如下: 综合法——已知条件⇒…⇒…⇒结论; 分析法——结论⇐…⇐…⇐已知条件. 2.间接证明反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[小题体验]1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明结论“a >b ”时,应假设“a ≤b ”.( ) (4)反证法是指将结论和条件同时否定,推出矛盾.( ) 答案:(1)× (2)× (3)√ (4)×2.设a =lg 2+lg 5,b =e x (x <0),则a 与b 的大小关系为________. 答案:a >b3.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的个数是________.解析:要使b a +ab ≥2成立, 则ba >0,即a 与b 同号, 故①③④均能使b a +ab ≥2成立. 答案:31.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.2.利用反证法证明数学问题时,没有用假设命题推理而推出矛盾结果,其推理过程是错误的. [小题纠偏]1.6-22与5-7的大小关系是________.解析:假设6-22>5-7,由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.答案:6-22>5-72.(2019·南通调研)用反证法证明命题:“若(a -1)(b -1)·(c -1)>0,则a ,b ,c 中至少有一个大于1”时,要做的假设是“假设a ,b ,c ________”.答案:都不大于1考点一 分析法 (基础送分型考点——自主练透)[题组练透]1.(2019·南通模拟)已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 证明:∵m >0,∴1+m >0,∴要证⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m , 即证(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0, 即证(a -b )2≥0, 而(a -b )2≥0显然成立,故⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 2.(易错题)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c .证明:要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1,只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c2+a2=ac+b2,又△ABC三内角A,B,C成等差数列,故B=60°,由余弦定理,得b2=c2+a2-2ac cos 60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.[谨记通法]1.利用分析法证明问题的思路分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.2.分析法证明问题的适用范围当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.考点二综合法(重点保分型考点——师生共研)[典例引领](2019·徐州检测)设a,b是非负实数,求证:a3+b3≥ab(a2+b2).证明:因为a3+b3-ab(a2+b2)=a2a(a-b)+b2b·(b-a)=(a-b)[(a)5-(b)5],当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).[由题悟法]综合法证明问题的思路(1)分析条件选择方向分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法(2)转化条件组织过程把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化(3)适当调整回顾反思回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取[即时应用]在△ABC中,角A,B,C的对边分别为a,b,c,已知sin A sin B+sin B sin C+cos 2B=1.(1)求证:a,b,c成等差数列.(2)若C =2π3,求证5a =3b .证明:(1)由已知得sin A sin B +sin B sin C =2sin 2B , 因为sin B ≠0,所以sin A +sin C =2sin B ,由正弦定理,有a +c =2b ,即a ,b ,c 成等差数列. (2)由C =2π3,c =2b -a 及余弦定理得(2b -a )2=a 2+b 2+ab ,即有5ab -3b 2=0, 所以a b =35,即5a =3b .考点三 反证法 (重点保分型考点——师生共研)[典例引领]设a >0,b >0,且a +b =1a +1b .证明: (1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.当且仅当a =b 时取等号. (2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立.[由题悟法]反证法证明问题的3步骤(1)反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[即时应用]等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n .(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 解:(1)设等差数列{a n }的公差为d .由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn =n +2,假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2), 所以(q 2-pr )+2(2q -p -r )=0, 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0,所以p =r ,与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成等比数列.一保高考,全练题型做到高考达标1.(2019·海门中学检测)用反证法证明命题“若a 2+b 2=0,则a ,b 全为0”,其反设为“________”.解析:命题“若a 2+b 2=0,则a ,b 全为0”, 其题设为“a 2+b 2=0”,结论是“a ,b 全为0”, 用反证法证明该命题时,其反设为“a ,b 不全为0”. 答案:a ,b 不全为02.(2018·徐州模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是________.解析:因为P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,所以P 2<Q 2,所以P <Q .答案:P <Q3.(2018·江阴调研)设a ,b 是两个实数,给出下列条件:①a +b >2;②a 2+b 2>2.其中能推出:“a ,b 中至少有一个大于1”的条件的是________(填序号).解析:①中,假设a ≤1,b ≤1,则a +b ≤2与已知条件a +b >2矛盾,故假设不成立,所以a ,b 中至少有一个大于1,①正确;②中,若a =-2,b =-3,则a 2+b 2>2成立,故②不能推出:“a ,b 中至少有一个大于1”.答案:①4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)________0(填“>”“<”或“=”).解析:由f (x )是定义在R 上的奇函数, 且当x ≥0时,f (x )单调递减, 可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2), 则f (x 1)+f (x 2)<0. 答案:<5.(2019·吕四中学检测)若0<a <1,0<b <1,且a ≠b ,则在a +b,2ab ,a 2+b 2和2ab 中最大的是________.解析:因为0<a <1,0<b <1,且a ≠b ,所以a +b >2ab ,a 2+b 2>2ab ,a +b -(a 2+b 2)=a (1-a )+b (1-b )>0,所以a +b 最大.答案:a +b6.如果a a +b b >a b +b a ,则a ,b 应满足的条件是__________.解析:a a +b b >a b +b a ,即(a -b )2(a +b )>0,需满足a ≥0,b ≥0且a ≠b . 答案:a ≥0,b ≥0且a ≠b7.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,所以c n 随n 的增大而减小,所以c n +1<c n . 答案:c n +1<c n8.已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8. 证明:因为x ,y ,z 是互不相等的正数,且x +y +z =1, 所以1x -1=1-x x =y +z x >2yz x ,① 1y -1=1-y y =x +z y >2xz y , ② 1z -1=1-z z =x +y z >2xy z , ③ 又x ,y ,z 为正数,由①×②×③, 得⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8.9.已知等差数列{a n }的前n 项和为S n ,a 3=5,S 8=64. (1)求数列{a n }的通项公式;(2)求证:1S n -1+1S n +1>2S n (n ≥2,n ∈N *).解:(1)设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 3=a 1+2d =5,S 8=8a 1+28d =64,解得a 1=1,d =2. 故所求的通项公式为a n =2n -1. (2)证明:由(1)可知S n =n 2, 要证原不等式成立,只需证1(n -1)2+1(n +1)2>2n2, 即证[(n +1)2+(n -1)2]n 2>2(n 2-1)2, 只需证(n 2+1)n 2>(n 2-1)2, 即证3n 2>1.而3n 2>1在n ≥2时恒成立,从而不等式1S n -1+1S n +1>2S n(n ≥2,n ∈N *)恒成立.10.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:EC ∥平面PAD ; (2)求证:平面EAC ⊥平面PBC .证明:(1)作线段AB 的中点F ,连结EF ,CF (图略),则AF =CD ,AF ∥CD , 所以四边形ADCF 是平行四边形, 则CF ∥AD .又EF ∥AP ,且CF ∩EF =F ,所以平面CFE ∥平面PAD . 又EC ⊂平面CEF ,所以EC ∥平面PAD . (2)因为PC ⊥底面ABCD ,所以PC ⊥AC . 因为四边形ABCD 是直角梯形, 且AB =2AD =2CD =2, 所以AC =2,BC = 2.所以AB 2=AC 2+BC 2,所以AC ⊥BC , 因为PC ∩BC =C ,所以AC ⊥平面PBC , 因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC . 二上台阶,自主选做志在冲刺名校1.(2019·南通调研)已知数列{a n }各项均为正数,且不是常数列. (1)若数列{a n }是等差数列,求证:a 1+a 3<2a 2;(2)若数列{a n }是等比数列,求证:1-a n,1-a n +1,1-a n +2不可能成等比数列. 证明:(1)要证a 1+a 3<2a 2, 只需证a 1+a 3+2a 1a 3<4a 2, ∵数列{a n }是等差数列, ∴a 1+a 3=2a 2,∴只需证 a 1a 3<a 2,即证a 1a 3<a 22=⎝⎛⎭⎫a 1+a 322, ∵数列{a n }各项均为正数,∴a 1a 3<a 22=⎝⎛⎭⎫a 1+a 322成立, ∴a 1+a 3<2a 2.(2)假设1-a n,1-a n +1,1-a n +2成等比数列, 则(1-a n +1)2=(1-a n )(1-a n +2),即1-2a n +1+a 2n +1=1+a n a n +2-(a n +a n +2), ∵数列{a n }是等比数列,∴a 2n +1=a n a n +2,∴2a n +1=a n +a n +2, ∴数列{a n }是等差数列,∴数列{a n }是常数列,这与已知相矛盾, 故假设不成立,∴1-a n,1-a n +1,1-a n +2不可能成等比数列.2.若无穷数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,则称{a n }具有性质P . (1)若{a n }具有性质P ,且a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求a 3;(2)若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1,b 5=c 1=81,a n =b n +c n ,判断{a n }是否具有性质P ,并说明理由;(3)设{b n }是无穷数列,已知a n +1=b n +sin a n (n ∈N *),求证:“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”.解:(1)因为a 5=a 2,所以a 6=a 3,a 7=a 4=3,a 8=a 5=2, 于是a 6+a 7+a 8=a 3+3+2.又因为a 6+a 7+a 8=21,所以a 3=16.(2)由题意,得数列{b n }的公差为20,{c n }的公比为13,所以b n =1+20(n -1)=20n -19,c n =81·⎝⎛⎭⎫13n -1=35-n , a n =b n +c n =20n -19+35-n .a 1=a 5=82,但a 2=48,a 6=3043,a 2≠a 6, 所以{a n }不具有性质P . (3)证明:充分性:当{b n }为常数列时,a n +1=b 1+sin a n .对任意给定的a 1,若a p=a q,则b1+sin a p=b1+sin a q,即a p+1=a q+1,充分性得证.必要性:假设{b n}不是常数列,则存在k∈N*,使得b1=b2=…=b k=b,而b k+1≠b.下面证明存在满足a n+1=b n+sin a n的数列{a n},使得a1=a2=…=a k+1,但a k+2≠a k+1. 设f(x)=x-sin x-b,取m∈N*,使得mπ>|b|,则f(mπ)=mπ-b>0,f(-mπ)=-mπ-b<0,故存在c使得f(c)=0.取a1=c,因为a n+1=b+sin a n(1≤n≤k),所以a2=b+sin c=c=a1,依此类推,得a1=a2=…=a k+1=c.但a k+2=b k+1+sin a k+1=b k+1+sin c≠b+sin c,即a k+2≠a k+1.所以{a n}不具有性质P,矛盾.必要性得证.综上,“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.。
姓名,年级:时间:§10。
5 古典概型考情考向分析古典概型每年都会考查,主要考查实际背景下的可能事件,通常与互斥事件、对立事件一起考查,其中计数的方法局限于枚举法.常以填空题形式出现,属于中低档题.1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型满足以下两个条件的随机试验的概率模型称为古典概型.(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.3.如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是错误!。
如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=错误!。
4.古典概型的概率公式P(A)=错误!。
概念方法微思考1.任何一个随机事件与基本事件有何关系?提示任何一个随机事件都等于构成它的每一个基本事件的和.2.如何判断一个试验是否为古典概型?提示一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽”与“不发芽”.( ×)(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面",这三个结果是等可能事件.(×)(3)从市场上出售的标准为500±5g的袋装食盐中任取一袋测其重量,属于古典概型.(×)(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13。
(√)(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0。
2。
( √) (6)在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为错误!.( √)题组二教材改编2.[P103练习T6]从A,B,C三名同学中选2名为代表,则A被选中的概率为________.答案错误!解析从A,B,C三名同学中选2名为代表,有AB,AC,BC三种可能,则A 被选中的概率为错误!。
§7.6直接证明与间接证明考情考向分析高考要求了解分析法、综合法、反证法,会用这些方法处理一些简单问题,高考一般不单独考查,会与其他知识综合在一起命题.1.直接证明(1)定义:直接从原命题的条件逐步推得命题成立的证明方法. (2)一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒A ⇒B ⇒C ⇒…⇒本题结论.(3)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法常称为综合法. ②推证过程已知条件⇒…⇒…⇒结论 (4)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法. ②推证过程结论⇐…⇐…⇐已知条件 2.间接证明(1)常用的间接证明方法有反证法、同一法等. (2)反证法的基本步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.概念方法微思考1.直接证明中的综合法是演绎推理吗?提示是.用综合法证明时常省略大前提.2.综合法与分析法的推理过程有何区别?提示综合法是执因索果,分析法是执果索因,推理方式是互逆的.3.反证法是“要证原命题成立,只需证其逆否命题成立”的推理方法吗?提示不是.反证法是命题中“p与綈p”关系的应用.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ ) 题组二 教材改编2.[P87习题T2]若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是______. 答案 P >Q解析 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .3.[P87习题T7]设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,则a x +cy=________. 答案 2解析 由题意,得x =a +b2,y =b +c2,b 2=ac ,∴xy =(a +b )(b +c )4,a x +c y =ay +cx xy=a ·b +c 2+c ·a +b2xy=a (b +c )+c (a +b )2xy =ab +bc +2ac 2xy=ab +bc +ac +b 22xy =(a +b )(b +c )2xy=(a +b )(b +c )2×(a +b )(b +c )4=2.题组三 易错自纠4.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是________.(填序号) ①ac 2<bc 2;②a 2>ab >b 2; ③1a <1b ;④b a >a b.答案 ②解析 a 2-ab =a (a -b ), ∵a <b <0,∴a -b <0,∴a 2-ab >0, ∴a 2>ab .(*1) 又ab -b 2=b (a -b )>0,∴ab >b 2,(*2)由(*1)(*2)得a 2>ab >b 2.5.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要作的假设是________________. 答案 方程x 3+ax +b =0没有实根解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根. 6.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是__________三角形. 答案 钝角解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1.sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾.所以假设不成立.假设△A 2B 2C 2是直角三角形,不妨设A 2=π2,则cos A 1=sin A 2=1,A 1=0,矛盾.所以△A 2B 2C 2是钝角三角形.题型一综合法的应用1.已知m>1,a=m+1-m,b=m-m-1,则a,b的大小关系为________.答案a<b解析∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.2.如果a a+b b>a b+b a成立,则a,b应满足的条件是__________________________.答案a≥0,b≥0且a≠b解析∵a a+b b-(a b+b a)=a(a-b)+b(b-a)=(a-b)(a-b)=(a-b)2(a+b).∴当a≥0,b≥0且a≠b时,(a-b)2(a+b)>0.∴a a+b b>a b+b a成立的条件是a≥0,b≥0且a≠b.3.若a,b,c是不全相等的正数,求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明∵a,b,c∈(0,+∞),∴a +b2≥ab >0,b +c2≥bc >0,a +c2≥ac >0.由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立.上式两边同时取常用对数,得 lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .4.已知a ,b ,c >0,a +b +c =1.求证: (1)a +b +c ≤3; (2)13a +1+13b +1+13c +1≥32. 证明 (1)∵(a +b +c )2=(a +b +c )+2ab +2bc +2ca ≤(a +b +c )+(a +b )+(b +c )+(c +a )=3,∴a +b +c ≤3(当且仅当a =b =c 时取等号). (2)∵a >0,∴3a +1>1, ∴43a +1+(3a +1)≥243a +1(3a +1)=4, ∴43a +1≥3-3a ⎝ ⎛⎭⎪⎫当且仅当a =13时,取等号, 同理得43b +1≥3-3b ,43c +1≥3-3c ,以上三式相加得 4⎝⎛⎭⎪⎫13a +1+13b +1+13c +1≥9-3(a +b +c )=6,∴13a +1+13b +1+13c +1≥32(当且仅当a =b =c =13时取等号). 思维升华(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.题型二 分析法的应用例1已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎪⎫0,π2,故x 1+x 2∈(0,π).所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝⎛⎭⎪⎫x 1+x 22.证明 要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明(3x 1-2x 1)+(3x 2-2x 2)2≥1223x x +-2·x 1+x 22, 因此只要证明3x 1+3x 22-(x 1+x 2)≥1223x x+-(x 1+x 2), 即证明3x 1+3x 22≥3x 1+x 22, 因此只要证明3x 1+3x 22≥3x 1·3x 2, 由于当x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,当且仅当x 1=x 2时,等号成立.故原结论成立.思维升华(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.跟踪训练1已知a >0,证明:a 2+1a 2-2≥a +1a -2. 证明 要证a 2+1a 2-2≥a +1a -2, 只需证a 2+1a 2≥⎝ ⎛⎭⎪⎫a +1a -(2-2). 因为a >0,所以⎝ ⎛⎭⎪⎫ a +1a -(2-2)>0, 所以只需证⎝ ⎛⎭⎪⎫ a 2+1a 2 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a -(2-2)2, 即2(2-2)⎝ ⎛⎭⎪⎫a +1a ≥8-42, 只需证a +1a≥2. 因为a >0,a +1a ≥2显然成立(当a =1a=1时等号成立), 所以要证的不等式成立.题型三 反证法的应用命题点1 证明否定性命题例2设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,则当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②,得(1-q )S n =a 1-a 1q n, ∴S n =a 1(1-q n )1-q, ∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1, a 21q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+q k +1. ∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.命题点2 证明存在性命题例3已知在四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD ,AD ⊂平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,BC ,BF ⊂平面SBC ,∴平面SBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题例4已知M 是由满足下列条件的函数构成的集合:对任意f (x )∈M ,①方程f (x )-x =0有实数根;②函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x 4是不是集合M 中的元素,并说明理由; (2)集合M 中的元素f (x )具有下列性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根.(1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根0;②f ′(x )=12+cos x 4,所以f ′(x )∈⎣⎢⎡⎦⎥⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素. (2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0.不妨设α<β,根据题意存在c ∈(α,β),满足f (β)-f (α)=(β-α)f ′(c ).因为f (α)=α,f (β)=β,且α≠β,所以f ′(c )=1.与已知0<f ′(x )<1矛盾.又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论;第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.跟踪训练2若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.1.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.答案 A ≤B ≤C解析 因为a +b 2≥ab ≥2ab a +b, 又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调减函数, 故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b . 2.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是________.(用含a ,b ,c 的不等式表示)答案 (a -b )(a -c )>0解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.3.设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则P ,Q 的大小关系为________.答案 P >Q解析 因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin2x ,而sin2x ≤1,所以Q ≤2.于是P >Q .4.已知函数y =f (x )是R 上的奇函数,且为增函数,若a +b >0,b +c >0,c +a >0,则f (a )+f (b )+f (c )的符号为________.答案 正解析 ∵a +b >0,∴a >-b .又函数y =f (x )是R 上的奇函数,且为增函数,∴f (a )>f (-b )=-f (b ),即f (a )+f (b )>0.同理f (b )+f (c )>0,f (c )+f (a )>0,∴f (a )+f (b )+f (c )>0.5.要证a 2+b 2-1-a 2b 2≤0只要证明________.(填正确的序号)①2ab -1-a 2b 2≤0;②a 2+b 2-1-a 4+b 42≤0; ③(a +b )22-1-a 2b 2≤0; ④(a 2-1)(b 2-1)≥0.答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.6.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________.(填序号)答案 ③解析 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.7.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________.答案 a ,b 都不能被5整除 8.6+7与22+5的大小关系为______________.答案 6+7>22+ 5 解析 要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小,只需比较6+7+242与8+5+410的大小, 只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5.9.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为____________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n ,则c n 随n 的增大而减小,∴c n +1<c n .10.已知直线l ⊥平面α,直线m ⊂平面β,有下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ⊥m ⇒α∥β.其中正确命题的序号是________.答案 ①解析 ① ⎭⎪⎬⎪⎫l ⊥αα∥β⇒l ⊥β, 又∵m ⊂β,∴l ⊥m ,①正确;②⎭⎪⎬⎪⎫l ⊥αα⊥β⇒l ∥β或l ⊂β, ∴l ,m 平行、相交、异面都有可能,故②错误;③ ⎭⎪⎬⎪⎫l ⊥αl ⊥m⇒m ⊂α或m ∥α. 又m ⊂β,∴α,β可能相交或平行,故③错误.11.已知数列{a n }的前n 项和为S n ,且满足a n +S n =2(n ∈N *).(1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.(1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n , 所以{a n }是首项为1,公比为12的等比数列, 所以a n =12n -1(n ∈N *). (2)证明 假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r , 所以2·2r -q =2r -p +1.(*)又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立,矛盾.所以假设不成立,原命题得证.12.设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c n n>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.(1)解 c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2.当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0,所以b k -na k 在k ∈N *上单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n .所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1,所以{c n }是等差数列.(2)证明 设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n=b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧ b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1.①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2,因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列.②当d 1=0时,对任意n ≥1,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1).此时,c 1,c 2,c 3,…,c n ,…是等差数列.③当d 1<0时,当n >d 2d 1时,有nd 1<d 2,所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|.对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1,故当n ≥m 时,c n n >M .13.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎪⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧ f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足题干要求的p 的取值范围为⎝⎛⎭⎪⎫-3,32. 14.已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1, 即12<x 0<2,与假设x 0<0(x 0≠-1)相矛盾, 故方程f (x )=0没有负数根.15.已知函数f (x )=2e 2x-2ax +a -2e -1,其中a ∈R ,e 为自然对数的底数.若函数f (x )在区间(0,1)内有两个零点,则a 的取值范围是________.答案 (2e -1,2e 2-2e -1)解析 f (x )=2e 2x -2ax +a -2e -1,则f ′(x )=4e 2x -2a ,x ∈(0,1),∵4<4e 2x <4e 2,∴①若a ≥2e 2时,f ′(x )<0,函数f (x )在(0,1)内单调递减,故在(0,1)内至多有一个零点,故舍去;②若a ≤2时,f ′(x )>0,函数f (x )在(0,1)内单调递增,故在(0,1)内至多有一个零点,故舍去; ③若2<a <2e 2时,函数f (x )在⎝ ⎛⎭⎪⎫0,12ln a 2上单调递减,在⎝ ⎛⎭⎪⎫12ln a 2,1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12ln a 2=2a -a ln a 2-2e -1.令h (x )=2x -x ln x 2-2e -1(2<x <2e 2),则h ′(x )=-ln x +1+ln2,当x ∈(2,2e)时,h ′(x )>0,h (x )为增函数;当x ∈(2e,2e 2)时,h ′(x )<0,h (x )为减函数,所以h (x )max =h (2e)=-1<0,即f (x )min <0恒成立,所以函数f (x )在区间(0,1)内有两个零点,则⎩⎪⎨⎪⎧ f (0)>0,f (1)>0, 解得a ∈(2e-1,2e 2-2e -1).16.(2017·江苏)对于给定的正整数k ,若数列{a n }满足a n -k +a n -k +1+…+a n -1+a n +1+…+a n +k -1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. 证明 (1)因为{a n }是等差数列,设其公差为d ,则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d=2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n ,因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此,当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n , ①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .② 由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③ a n +2+a n +3=4a n +1-(a n -1+a n ).④ 将③④代入②,得a n -1+a n +1=2a n ,其中n ≥4,所以a 3,a 4,a 5,…是等差数列,设其公差为d ′.在①中,取n =4,则a 2+a 3+a 5+a 6=4a 4,所以a 2=a 3-d ′,在①中,取n =3,则a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d ′,所以数列{a n }是等差数列.。
第四节直接证明与间接证明1.直接证明直接证明中最基本的两种证明方法是综合法和分析法.(1)综合法:从已知的条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.(2)分析法:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.(3)综合法与分析法的推证过程如下: 综合法——已知条件⇒…⇒…⇒结论; 分析法——结论⇐…⇐…⇐已知条件. 2.间接证明反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[小题体验]1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明结论“a >b ”时,应假设“a ≤b ”.( ) (4)反证法是指将结论和条件同时否定,推出矛盾.( ) 答案:(1)× (2)× (3)√ (4)×2.设a =lg 2+lg 5,b =e x (x <0),则a 与b 的大小关系为________. 答案:a >b3.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的个数是________.解析:要使b a +ab ≥2成立, 则ba >0,即a 与b 同号, 故①③④均能使b a +ab ≥2成立. 答案:31.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.2.利用反证法证明数学问题时,没有用假设命题推理而推出矛盾结果,其推理过程是错误的. [小题纠偏]1.6-22与5-7的大小关系是________.解析:假设6-22>5-7,由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.答案:6-22>5-72.(2019·南通调研)用反证法证明命题:“若(a -1)(b -1)·(c -1)>0,则a ,b ,c 中至少有一个大于1”时,要做的假设是“假设a ,b ,c ________”.答案:都不大于1考点一 分析法 (基础送分型考点——自主练透)[题组练透]1.(2019·南通模拟)已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 证明:∵m >0,∴1+m >0,∴要证⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m , 即证(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0, 即证(a -b )2≥0, 而(a -b )2≥0显然成立,故⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 2.(易错题)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c . 求证:1a +b +1b +c =3a +b +c .证明:要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1,只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c2+a2=ac+b2,又△ABC三内角A,B,C成等差数列,故B=60°,由余弦定理,得b2=c2+a2-2ac cos 60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.[谨记通法]1.利用分析法证明问题的思路分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.2.分析法证明问题的适用范围当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.考点二综合法(重点保分型考点——师生共研)[典例引领](2019·徐州检测)设a,b是非负实数,求证:a3+b3≥ab(a2+b2).证明:因为a3+b3-ab(a2+b2)=a2a(a-b)+b2b·(b-a)=(a-b)[(a)5-(b)5],当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)[(a)5-(b)5]>0.所以a3+b3≥ab(a2+b2).[由题悟法]综合法证明问题的思路(1)分析条件选择方向分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公式等,确定恰当的解题方法(2)转化条件组织过程把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化(3)适当调整回顾反思回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取[即时应用]在△ABC中,角A,B,C的对边分别为a,b,c,已知sin A sin B+sin B sin C+cos 2B=1.(1)求证:a,b,c成等差数列.(2)若C =2π3,求证5a =3b .证明:(1)由已知得sin A sin B +sin B sin C =2sin 2B , 因为sin B ≠0,所以sin A +sin C =2sin B ,由正弦定理,有a +c =2b ,即a ,b ,c 成等差数列. (2)由C =2π3,c =2b -a 及余弦定理得(2b -a )2=a 2+b 2+ab ,即有5ab -3b 2=0, 所以a b =35,即5a =3b .考点三 反证法 (重点保分型考点——师生共研)[典例引领]设a >0,b >0,且a +b =1a +1b .证明: (1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.当且仅当a =b 时取等号. (2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立.[由题悟法]反证法证明问题的3步骤(1)反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[即时应用]等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n .(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 解:(1)设等差数列{a n }的公差为d .由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn =n +2,假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2), 所以(q 2-pr )+2(2q -p -r )=0, 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0,所以p =r ,与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成等比数列.一保高考,全练题型做到高考达标1.(2019·海门中学检测)用反证法证明命题“若a 2+b 2=0,则a ,b 全为0”,其反设为“________”.解析:命题“若a 2+b 2=0,则a ,b 全为0”, 其题设为“a 2+b 2=0”,结论是“a ,b 全为0”, 用反证法证明该命题时,其反设为“a ,b 不全为0”. 答案:a ,b 不全为02.(2018·徐州模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是________.解析:因为P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,所以P 2<Q 2,所以P <Q .答案:P <Q3.(2018·江阴调研)设a ,b 是两个实数,给出下列条件:①a +b >2;②a 2+b 2>2.其中能推出:“a ,b 中至少有一个大于1”的条件的是________(填序号).解析:①中,假设a ≤1,b ≤1,则a +b ≤2与已知条件a +b >2矛盾,故假设不成立,所以a ,b 中至少有一个大于1,①正确;②中,若a =-2,b =-3,则a 2+b 2>2成立,故②不能推出:“a ,b 中至少有一个大于1”.答案:①4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)________0(填“>”“<”或“=”).解析:由f (x )是定义在R 上的奇函数, 且当x ≥0时,f (x )单调递减, 可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2), 则f (x 1)+f (x 2)<0. 答案:<5.(2019·吕四中学检测)若0<a <1,0<b <1,且a ≠b ,则在a +b,2ab ,a 2+b 2和2ab 中最大的是________.解析:因为0<a <1,0<b <1,且a ≠b ,所以a +b >2ab ,a 2+b 2>2ab ,a +b -(a 2+b 2)=a (1-a )+b (1-b )>0,所以a +b 最大.答案:a +b6.如果a a +b b >a b +b a ,则a ,b 应满足的条件是__________.解析:a a +b b >a b +b a ,即(a -b )2(a +b )>0,需满足a ≥0,b ≥0且a ≠b . 答案:a ≥0,b ≥0且a ≠b7.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,所以c n 随n 的增大而减小,所以c n +1<c n . 答案:c n +1<c n8.已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8. 证明:因为x ,y ,z 是互不相等的正数,且x +y +z =1, 所以1x -1=1-x x =y +z x >2yz x ,① 1y -1=1-y y =x +z y >2xz y , ② 1z -1=1-z z =x +y z >2xy z , ③ 又x ,y ,z 为正数,由①×②×③, 得⎝⎛⎭⎫1x -1⎝⎛⎭⎫1y -1⎝⎛⎭⎫1z -1>8.9.已知等差数列{a n }的前n 项和为S n ,a 3=5,S 8=64. (1)求数列{a n }的通项公式;(2)求证:1S n -1+1S n +1>2S n (n ≥2,n ∈N *).解:(1)设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 3=a 1+2d =5,S 8=8a 1+28d =64,解得a 1=1,d =2. 故所求的通项公式为a n =2n -1. (2)证明:由(1)可知S n =n 2, 要证原不等式成立,只需证1(n -1)2+1(n +1)2>2n2, 即证[(n +1)2+(n -1)2]n 2>2(n 2-1)2, 只需证(n 2+1)n 2>(n 2-1)2, 即证3n 2>1.而3n 2>1在n ≥2时恒成立,从而不等式1S n -1+1S n +1>2S n(n ≥2,n ∈N *)恒成立.10.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 的中点.(1)求证:EC ∥平面PAD ; (2)求证:平面EAC ⊥平面PBC .证明:(1)作线段AB 的中点F ,连结EF ,CF (图略),则AF =CD ,AF ∥CD , 所以四边形ADCF 是平行四边形, 则CF ∥AD .又EF ∥AP ,且CF ∩EF =F ,所以平面CFE ∥平面PAD . 又EC ⊂平面CEF ,所以EC ∥平面PAD . (2)因为PC ⊥底面ABCD ,所以PC ⊥AC . 因为四边形ABCD 是直角梯形, 且AB =2AD =2CD =2, 所以AC =2,BC = 2.所以AB 2=AC 2+BC 2,所以AC ⊥BC , 因为PC ∩BC =C ,所以AC ⊥平面PBC , 因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC . 二上台阶,自主选做志在冲刺名校1.(2019·南通调研)已知数列{a n }各项均为正数,且不是常数列. (1)若数列{a n }是等差数列,求证:a 1+a 3<2a 2;(2)若数列{a n }是等比数列,求证:1-a n,1-a n +1,1-a n +2不可能成等比数列. 证明:(1)要证a 1+a 3<2a 2, 只需证a 1+a 3+2a 1a 3<4a 2, ∵数列{a n }是等差数列, ∴a 1+a 3=2a 2,∴只需证 a 1a 3<a 2,即证a 1a 3<a 22=⎝⎛⎭⎫a 1+a 322, ∵数列{a n }各项均为正数,∴a 1a 3<a 22=⎝⎛⎭⎫a 1+a 322成立, ∴a 1+a 3<2a 2.(2)假设1-a n,1-a n +1,1-a n +2成等比数列, 则(1-a n +1)2=(1-a n )(1-a n +2),即1-2a n +1+a 2n +1=1+a n a n +2-(a n +a n +2), ∵数列{a n }是等比数列,∴a 2n +1=a n a n +2,∴2a n +1=a n +a n +2, ∴数列{a n }是等差数列,∴数列{a n }是常数列,这与已知相矛盾, 故假设不成立,∴1-a n,1-a n +1,1-a n +2不可能成等比数列.2.若无穷数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,则称{a n }具有性质P . (1)若{a n }具有性质P ,且a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求a 3;(2)若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1,b 5=c 1=81,a n =b n +c n ,判断{a n }是否具有性质P ,并说明理由;(3)设{b n }是无穷数列,已知a n +1=b n +sin a n (n ∈N *),求证:“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”.解:(1)因为a 5=a 2,所以a 6=a 3,a 7=a 4=3,a 8=a 5=2, 于是a 6+a 7+a 8=a 3+3+2.又因为a 6+a 7+a 8=21,所以a 3=16.(2)由题意,得数列{b n }的公差为20,{c n }的公比为13,所以b n =1+20(n -1)=20n -19,c n =81·⎝⎛⎭⎫13n -1=35-n , a n =b n +c n =20n -19+35-n .a 1=a 5=82,但a 2=48,a 6=3043,a 2≠a 6, 所以{a n }不具有性质P . (3)证明:充分性:当{b n }为常数列时,a n +1=b 1+sin a n .对任意给定的a1,若a p=a q,则b1+sin a p=b1+sin a q,即a p+1=a q+1,充分性得证.必要性:假设{b n}不是常数列,则存在k∈N*,使得b1=b2=…=b k=b,而b k+1≠b.下面证明存在满足a n+1=b n+sin a n的数列{a n},使得a1=a2=…=a k+1,但a k+2≠a k+1.设f(x)=x-sin x-b,取m∈N*,使得mπ>|b|,则f(mπ)=mπ-b>0,f(-mπ)=-mπ-b<0,故存在c使得f(c)=0.取a1=c,因为a n+1=b+sin a n(1≤n≤k),所以a2=b+sin c=c=a1,依此类推,得a1=a2=…=a k+1=c.但a k+2=b k+1+sin a k+1=b k+1+sin c≠b+sin c,即a k+2≠a k+1.所以{a n}不具有性质P,矛盾.必要性得证.综上,“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.命题点一算法1.(2018·江苏高考)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.I←1S←1While I<6I←I+2S←2SEnd WhilePrint S解析:I=1,S=1,此时I<6,进入循环;I=3,S=2,此时I<6,进入下一次循环;I=5,S=4,此时I<6,进入下一次循环;I=7,S=8,此时I>6,不满足I<6,退出循环,输出S=8.答案:82.(2017·江苏高考)如图是一个算法流程图.若输入x的值为116,则输出y的值是________.解析:由流程图可知其功能是运算分段函数y =⎩⎪⎨⎪⎧2x ,x ≥1,2+log 2x ,0<x <1,所以当输入的x 的值为116时,y =2+log 2116=2-4=-2. 答案:-23.(2016·江苏高考)如图是一个算法的流程图,则输出的a 的值是________.解析:由a =1,b =9,知a <b , 所以a =1+4=5,b =9-2=7,a <b . 所以a =5+4=9,b =7-2=5,满足a >b . 所以输出的a =9. 答案:94.(2015·江苏高考)根据如图所示的伪代码,可知输出的结果S 为________.S ←1I ←1While I <8 S ←S +2 I ←I +3End While Print S解析:由程序可知,S =1,I =1,I <8;S =3,I =4,I <8;S =5,I =7,I <8;S =7,I =10,I >8,此时结束循环,输出S =7.答案:7 命题点二 复数1.(2018·江苏高考)若复数z 满足i·z =1+2i ,其中i 是虚数单位,则z 的实部为________.解析:由i·z =1+2i ,得z =1+2i i =2-i , ∴z 的实部为2.答案:2 2.(2017·江苏高考)已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________. 解析:法一:复数z =1+2i +i -2=-1+3i ,则|z |=(-1)2+32=10.法二:|z |=|1+i|·|1+2i|=2×5=10. 答案:103.(2016·江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.答案:54.(2015·江苏高考)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________.解析:因为z 2=3+4i ,所以|z 2|=|z |2=|3+4i|=32+42=5,所以|z |= 5. 答案: 55.(2018·天津高考)i 是虚数单位,复数6+7i 1+2i=________. 解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i 5=4-i. 答案:4-i命题点三 合情推理与演绎推理1.(2017·全国卷Ⅱ改编)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则下列说法正确的序号为________.①乙可以知道四人的成绩②丁可以知道四人的成绩③乙、丁可以知道对方的成绩④乙、丁可以知道自己的成绩解析:依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩.故④正确.答案:④2.(2016·天津高考)已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列; (2)设a 1=d ,T n =∑k =12n (-1)k b 2k ,n ∈N *,求证:∑k =1n1T k <12d 2. 证明:(1)由题意得b 2n =a n a n +1,c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1.因此c n +1-c n =2d (a n +2-a n +1)=2d 2, 所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=2d (a 2+a 4+…+a 2n )=2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =1n 1T k =12d 2∑k =1n 1k (k +1) =12d 2∑k =1n ⎝⎛⎭⎫1k -1k +1 =12d 2·⎝⎛⎭⎫1-1n +1 <12d 2.。