考研数学(同济版)重点
- 格式:docx
- 大小:32.95 KB
- 文档页数:10
【干货】2021考研数学第一章范围及复习提点同学们,计划备考2021考研的考生,现在开始就应该开始复习考研数学了,考研数学对于很多考生来说都比较难,所以更应该提早进行复习。
本篇文章文都考研为同学们带来关于考研数学第一章范围及复习提点的内容,计划参加2021考研的小伙伴们来看看吧!高等数学同济七版(复习提点)第一章:函数极限第一节:理论部分(自己认真学)另注意狄利克雷函数、符号函数、取整函数的定义及性质,双曲正弦(奇函数)双曲余弦(偶函数),双曲正切(奇函数),反双曲正弦(奇函数),反双曲正切(奇函数)。
习题1-1:第8、9、13.第二节:理论部分(自己认真学)另其中例1、2、3了解;定理1、例4理解;定理2、定理3、推论、定理4掌握;习题1-2:第1题(略);第2、3题了解;第4、5、6掌握第三节:理论部分(自己认真学)另其中例1、2、3、4、5了解;例6、7理解;定理1、2、3、推论3、定理4掌握;习题1-3:第1、2、3、4、5、6、7、8、9理解;第10、11、12掌握;第四节:理论部分(自己认真学)另本节结论掌握,证明全部理解即可习题1-4:第1题掌握;第2、3、4理解;第5、6、7、8掌握第五节:理论部分:(自己认真学)另本节结论掌握,证明全部理解即可习题1-5:第1题:(11)(14);第3、4、5、6题第六节:理论部分:(自己认真学)准则I, I‘掌握;准则II掌握,II’了解,柯西收敛准则(略)习题1-6:全做第七节:理论部分:记结论,理解说明习题1-7:全做第八节:理论部分:掌握连续的概念(掌握证明)和间断点的类型(掌握计算);习题1-8:全做第九节:理论部分:记结论(掌握计算)习题1-9:全做第十节:理论部分:掌握有界性定理、最大值最小值定理,零点定理(不需证明)介值定理(证明);一致连续性(略)习题1-10:第1、2、3、4、5、6;第7题(略)总习题一:全做【注】本文来源:文都孙雯微信公众号希望以上梳理出的关于2021考研数学第一章范围及复习提点的内容可以为同学们的复习提供帮助,小编会不断更新2021考研数学备考知识,欢迎广大考生持续关注!。
考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
考研数学二课本要点指导文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]高数部分:(配同济六版教材)第一章函数与极限(考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5集合部分只需简单了解P5--7不用看P7--17重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20不用看P21习题1.11、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28例1、2、3均不用证p28--29定理1、2、3的证明不用自己证但要会理解P30定理4不用看P30--31习题1-21大题只需做(4)(6)(8)2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题一、(了解)二、(了解)P33--34例1、2、3、4、5只需大概了解即可P35例6要会做例7不用做P36--37定理2、3证明不用看定理3’4”完全不用看p37习题1--31--4均做5--12均不用做第四节(重要)一、无穷小(重要)二、无穷大(了解)p40例2不用做p41定理2不用证p42习题1--41做2--5不全做6做7--8不用做第五节(注意运算法则的前提条件是各自存在)p43定理1、2的证明要理解p44推论1、2、3的证明不用看p48定理6的证明不用看p49习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14)2、3要做4、5重点做6不做第六节极限存在准则(重要)两个重要极限(重要两个重要极限要会证明p50准则1的证明要理解p51重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)p58--59定理1、2的证明要理解p59习题1--7全做第八节(基本必考小题)p60--64要重点看第八节基本必出考题p64习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节(了解)p66--67定理3、4的证明均不用看p69习题1--91、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)一、(重要)二、(重要)p72三、一致连续性(不用看)p74习题1--101、2、3、5要做,要会用5的结论.4、6、7不用做p74总习题一除了7、8、9(1)(3)(4)之外均要做其中要重点做的是3(1)(2)、5、11、14第二章(小题必考章节)第一节(重要)一、引例(数三可只看切线问题举例)二、导数的定义(重难点,考的频率很高)三、导数的几何意义(重要)另:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四、函数的可导性与连续性关系(要会证明,重要)p79导数的定义要重点掌握,基本必出考题p81--82例1--例6认真做以便真正掌握导数的定义p85可导性与连续性的关系要会证明)p86习题2--1不用做的是1、2、9(1)--(6)、10、12、13、14其余都要做其中重点做的是6、7、8、16、18、19第二章第二节(考小题)四、基本求导法则与求导公式(要非常熟)p88--89(1)(2)(3)的证明均不用看p89例1不用做p90定理2的证明要理解p91--92例6--8重点做p92定理3证明不用看p96例7不用做p97习题2--22题(1)(5)(7)(10)、3(1)、4、12均不用做其余全做其中13、14要重点做第二章第三节(重要,考的可能性大)p100例3不用做p103习题2--35、6、7、11均不用做,其余全做其中4、12要重点做第二章第四节(考小题)p107--110由参数方程所确定的函数的导数数三不用看p111三、相关变化率(不用看)p111习题2--41大题(1)(4)、3(1)(2)、9--12均不用做数三5--8也不用做其中4重点做第二章第五节(考小题)p119四、微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲均不作要求)习题2--55--12均不用做其他的全做p125总习题二4、10、15--18均不用做,其余全做其中2、3、6、7、14要重点做数三不用做12、13第三章(考大题难题经典章节,绝对重点章节)第一节(最重要,与中值定理应用有关的证明题)一、罗尔定理(要会证)二、拉格朗日中值定理(要会证)三、(柯西中值定理(要会证)另外,要会证明费马定理p128--133费马定理罗尔定理拉格朗日中值定理柯西中值定理一定要会独立证明,极其重要p134习题3--1除13、15不用做,其余全部重点做第三章第二节(重要,基本必然要考)p134--135洛必达法则要会证明习题3--2习题全做其中1、(1)(5)(10)(12)(15)(16)、3、4要重点做第三章第三节(掌握其应用,可以不用证明公式其本身)p140--141泰勒公式的证明不用看p145习题3--38、9不用做,其余全做,其中,10(1)(2)(3)要重点做第三章第四节(考小题)p152习题3--43(1)(2)(5)、5(1)(2)、8(1)(2)、9(1)(3)(5)、10(2)不用做,其余全做,重点做3(3)(6)(8)、4、5(3)(5)、6、13、15第三章第五节(考小题为主)p160例5不用做p161例6不用做p162例7不用做p162习题3--51(2)(3)(6)(9)、8--16均不用做,其余全做第三章第六节(重要基础章节)p169习题3--61不用做2--5都要做第三章第七节(了解,只有数一数二考,数三不用看)一、弧微分(不用看)二、(了解)三、(了解)p175四、(不用看)p177习题3--7数三均不用做数一数二只需做1—6第三章第八节(只要有近似,考研不考,不用看)p182总习题三数一、数二全做数三15不用做其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第四章(重要、相对于数一、数三,数二考大题的可能性更大)第一节(重要)一、(理解)二、(会背,且熟练准确)三、(理解)p186例4不用做p188--189基本积分表一定要记得熟练、准确p192习题4--12(1)--(4)(6)(7)(9)(10)(11)(16)、3、4、6均不用做其余全做第四章第二节(重要,其中第二类换元法更加重要)p207习题4--21、2(1)(2)(3)(8)(9)(10)(13)(25)均不用做,其余全做第四章第三节(考研必考)p212习题4--3全做(分部积分法极其重要)第四节(重要)p218习题4--4全做第五节(不用看)p221总习题四全做第五章(重要,考研必考)第一节(理解)一、定积分问题举例(了解,其中变速直线运动的路程,数三不用看)二、定积分定义(理解)p228三、定积分的近似计算(不用看)p231--234四、定积分的性质(理解)性质1--7要理解,且能熟练应用,其中性质7最重要,要会独立证明p234习题5--11、2、3、6、8、9、10均不用做,其余全部做,且重点做5、11、12第五章第二节(重要)一、变速直线运动中的位置……的联系(了解,数三不用看)二、积分上限的函数极其导数(极其重要,要会证明)三、牛顿--莱布尼茨公式(重要、要会证明)p237定理1,要求会独立证明,极其重要p239定理3要求会独立证明p241例5不用做例6经典例题,极其重要,记住结论p243习题5--26(1)(2)(4)--(7)(9)、7、8均不用做,其余全做,其中数三2不用做需要重点做的为9(2)、10—13第五章第三节(重要,分部积分法更重要)p247--249例5、6、7经典例题,重点做,并记住其相应结论p252例12经典例题,记住结论p253习题5--31(1)(2)(3)(6)(12)(14)(15)(16)(21)(22)、7(1)(3)(8)(9)不用做,其余全部做,且重点做1(4)(7)(17)(18)(2 5)(26)、2、6、7(7)(10)(12)(13)第五章第四节(考小题)p260习题5--4全做,重点做1(4)、3.3题为经典公式,一定发要熟记第五节(不用看)注考纲不做要求,最好记住F(伽马,打不出来那个)函数的部分性质,可能给解题带来方便,可参考汤家凤视频)p268总习题五1(3)、2(3)(4)(5)、15、16均不用做其余全部做其中,重点做的是3、5、7、8、9、10(1)(2)(3)(8)(9)(10)、13、14、17第六章(考小题)第一节(理解)第二节(面积最重要)一、平面图形的面积p276--277极坐标情形只有数一数二看数三不用看二、体积(数三只看旋转体的体积)p280--281平行截面面积为已知的立体体积只有数一数二看三、平面曲线的弧长(数三不用看,数一数二记住公式即可)习题6--2数一全做数二21--30不用做数三5、6、7、8、15(4)、17、18、21--30不用做第三节(数三不用看,数一数二了解)p291--292习题6.3只有数一数二做数三不用做p292--293总习题六数一全做数二6不做数三只需做3、4、5第七章(本章对于数二相对最重要)第一节(了解)p294例2数三不用看p298习题7--1只需做1(3)(4)、2(2)(4)、3(2)、4(2)(3)、5第七章第二节(理解)p301--304例2、3、4只有数一数二看,数三不用看p304习题7--2只做1、2第七章第三节(理解)二、可化为齐次的方程(不用看)p306例2--p309均不用看p309习题7--31只做(1)(5)(6)2只做(2)3、4不用做第七章第四节(重要,熟记公式)p312例2不用看p314伯努利方程只有数一看p315习题7--41只做(3)(5)(8)(10)、2只做(2)(3)、3做4--7均不用做、8只有数一做第七章第五节(只有数一数二考,理解)p317例2不用看p319例4不用做p321例6不用做p316--p323数三均不用看p323习题7--5(数三不用做)数一数二只做1(3)(4)(5)(10)、2(1)(2)(6)3、4不用做第七章第六节(理解)一、(不用看)二、(重要)三、(不用看)p323--324二阶线性微分方程举例不用看p325--328定理1、2、3、4重点看p328--330常数变易法不用看p331习题7--6只做1(3)(4)(6)(7)(10)、3、4(1)(5)(6)第七章第七节、第八节(最重要,考大题备选章节)p335例4不用做p336--338例5不用做习题7--7只做1(1)(4)(7)(9)(10)、2(1)(2)(4)p346例5不用看p347习题7--8只做1(2)(4)(5)(6)(9)(10)、2(3)(4)、6其中6重点做第七章第九节(只有数一考,理解)p348--349欧拉方程只有数一看p349习题7--9数一只做(5)(8)第十节(不用看)p353总习题七数一做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7、8、10数二做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7数三做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7第八章(只有数一考,考小题,了解)(本章只有数一考,单独命题以考小题为主,但数一特有的绝对重要考点,曲线曲面积分要以本章为基础,建议数一同学好好复习本章)本章需要数一多加注意的考点有:曲面方程与空间曲线方程.球面‘柱面、旋转曲面,常用的二次曲面方程及其图形.本章题目没有给画....第九章(考大题经典章节,但难度一般不大)第一节(了解)p54n维空间部分不用看,只有数一同学需要记住空间两点之间的距离公式p55例2、3不用看p57最后四行只有数一看p58例4证明不用看,只需记住:求多重极限依然满足:无穷小量有界量=无穷小量p59例5以上多元函数极限存在与否重点看例5做p60例6不用做定义4不用看p61例7了解p62例8做p62性质1和性质2一般重要备注:连续函数的有界性定理,最值定理,介值定理的考察,一元函数远比多元函数重要p62习题9--11--4、7--10均不用做只做5(3)(4)(6)、6(4)(5)(6)第九章第二节(理解)二、高阶偏导数(重要)p63偏导数的定义及其计算法(重点看)p65例1、2不用做只做例3、4p66二元函数偏导数的几何意义不用看例5不用做p66--67多元函数偏导数的存在与连续的关系重点看例6不用做p68--69定理只记住结论即可例7、8均做习题9--21只做(3)(5)(6)(7)(8)、4、5(只有数一做)、6(2)(3)7、8、9、与2、3均不用做第九章第三节(理解)p70--71全微分的定义与可微分的定理1及其证明重点看p72--73可微分的定理2记住结论即可,证明不用看例1、2不用做,只做例3二、全微分在近似计算中的应用(不用看)p74--75均不用看p76习题9--3只做1(2)(4)、2、3、5其余均不用做第九章第四节p77定理1证明不用看p78其他情形不用做p79做例1、3、4例2不用做其中重点做例4p80--81例5不用做,全微分形式不变性重点看p82--83例6做习题9--4只做3、4、7、8(1)(3)、9、10、11、12(2)(4)其余均不用做第九章第五节(理解、小题)二、方程组的情形(不用看)p83--85隐函数存在定理(只有数一数二看)例1、2数一数二做p86--88不用看p89习题9--5只做1、2、5、7、8其余均不做第九章第六节(只有数一考,考小题)一、一元向量值函数及其导数(不用看)p94--99只有数一看例4、5、6、7均要做p100习题9--6(只有数一做)要做6、7、10、11、12其余均不用做第九章第七节(只有数一考,考小题)p102--103定理记住,证明不用看例1、2做p103--107例3、4数一做p107数量场、向量场不用看例7不用做p108--109习题9--7只做2、5、8、10.其余均不用做第九章第八节(重要,答题常考题型)p109定义与例1、2、3均要重点做和看p110定理1及其证明均要仔细看,定理2只要记住,证明不用看p111例4做p112--113例5例6不用做p113--115条件极值与拉格朗日乘数法重点看p116--117例7、9不用做只做例8p118习题9--8只做1、4、8(只有数一做)、12其余均不用做第九章第九节(只有数一考,了解)一、了解二(不用看)p119定理记住结论,证明不用看p121例1做p122--129极值充分条件的证明与第十节均不用看p129总习题九1、2、4、5、811、12、14(数一)、17(数一),其余全不做第十章(重要,数二数三相对于数一,本章更加重要,数二数三基本必考答题)第一节(了解)p132--133二重积分的概念与性质(重要)p133平面薄片的质量可以不看p134--135定义与性质重点看p136习题10--1只做2、4(2)(3)、5(3)(4)其余均不用做第十章第二节(重要,数二数三及其重要)p--148直角坐标与极坐标均看(重要)例1、2、3、5做例6只有数一做例4不用做p149--153二重积分的换元法不用看p153习题10--2只做1(1)(4)、2(1)(3)、3记住结论、4(重点做)、6(2)(4)(6)8、9、10(只有数一做)、11(2)(4)、12(2)(3)(4)、13(1)(3)、14(2)(3)、15(2)(3)、18(数一)其余均不做第十章第三节(只有数一考)一、(了解)二、(重要)p157--163三重积分的概念与计算数一重点看例1、2、3、4均要做p164习题10--3(只有数一做)只做4、7、9、11其余均不用做第十章第四节(了解)p165--176(只有数一考,可以先不用看,上过强化班以后,再专门解决一些不太重要的边边角角的考点)p176--181含参变量的积分的章节与习题10--5均不用看与做p181总习题十只做1(1)(数一)(2)(3)、2(2)(4)、3(2)(3)、4、6、7(数一)、8(1)(3)、9(数一)其余均不用做第十一章(只有数一考,数二数三均不考,数一考大题考难题的经典章节)第一节(重要)一、对弧长曲线的概念(理解)与性质(了解)重点看二、对弧长曲线积分的计算法(重要)p187记住定理的结论,证明不用看p189只做例1.例2、3不用做p190习题1--1只做3(3)(4)(5)(8),其余不用做第十一章第二节(重要)一、对坐标的曲线积分的概念(理解)与性质(了解)重点看二、.........计算法(重要)p194--195定理及其证明要重点看p196--198例1--4均重点做例5不用做p199两类曲线积分之间的关系(记住结论)一般看p200--201习题11-2只做3(2)(4)(8)、4(3)(4)、7其余不用做第十一章第三节(重要)一、(重要)二、(重要)三、(理解)四、(不用看)p202定理1及其证明(重点看)p204例1、2不用做p204--205例3、4重点做p205平面上曲线积分与路径无关的条件(重点看)p206定理2记住结论,证明不用看p208定理3记住结论,证明不用看p209推论记住结论p210例5做p211例6不用做例7做p212--213曲线积分的基本定理不用看p213--215习题11-3只做3、5(2)(3)、8(2)(4)(7)其余不用做第十一章第四节(重要)一、(了解)二、(重要)p215--216对面积的曲面积分的概念与性质及计算法均要重点看p217--218例1、2重点做p219--220习题11--4只做3、4、5、6(1)其余均不用做第十一章第四节(重要)一、(了解)二、(重要)p215--216对面积的曲面积分的概念与性质及计算法均要重点看p217--218例1、2重点做p219--220习题11--4只做3、4、5、6(1)其余均不用做第十一章第五节(重要)一、(了解)二、(重要)三、(了解)p220对坐标的曲面积分(重点看)p220--228对坐标的曲面积分与性质计算法与两类曲面积分之间的联系均要重点看例1、2、3均要重点做习题11-5只做3(1)(2)(3)、4(1)(2)其余均不用做第十一章第六节高斯公式(重要)通量(不用看)与散度(了解)、一、(重要)二、(不用看)三、(了解)p229定理1及其证明重点看p231例1不用做例2重点做p232例3做p233定理2记住结论证明不用看p234例4不用做p235记住散度定义及公式p236例5做p236--237习题11--6只做1(2)(3)(5)、3(2)、4其余均不作第十一章第七节斯托克斯公式(重要)环流量(不用看)与旋度(了解)一、重要二、(不用看)三、(了解)p237定理1及其证明重点看p240例1、2重点做p241定理2只记住结论,证明不用看p242定理2只记住结论p243旋度记住定义与公式p244例4做p245习题11--7只做2(2)(3)(4)、3(2)、4(1)其余均不用做p246总习题十一只做1(1)(2)、2、3(1)(3)(5)(6)、4(1)(2)、7、9(1)(2).其余均不用做第十二章(1、数二不考,不用看.2、数一数三考大题、考难题的经典章节)第一节(一般考点)一、(了解)二、(考选择题章节)三、(不用看)p248常数项级数的概念(重点看)p250例1、2、3均要做记住例1的结论p251--253熟练记住五大基本性质p254柯西审敛原理不用看p254习题12--1只做2(3)(4)、3(1)(2)(3)、4(3)(5)其余不用做第十二章第二节(理解、重要)四、(不用看)p256--p261正项级数的审敛法定理1--6均要重点看例1--8均要做p262交错级数及其审敛法(重要)定理7及其证明重点看p263定理8及其证明重点看p265l例9做四、(p265--267)不用看p268习题12--2只做1(2)(4)(5)、2(2)(3)(4)、3(2)(3)(4)、4(2)(4)、5(2)(4)(5)其余均不用做第十二章第三节(重要、重点看)一、(了解)二、(最重要)三、(乘或除不用看)p271定理1阿贝尔定理及其证明重点看p272定理2及其证明重点看p273--274例1--5均做p276幂级数的和函数的性质要熟练记住例6做(重点做)p277习题12--3只做1(2)(4)(6)(7)(8)、2(1)(3)其余均不用做第十二章第四节(数一相对于数三,本节更重要)p278--279定理及其证明重点看p280--285例1--6均要做公式(1)到(11)必须牢记其中p278的公式(4)最重要p285习题12--4只做2(2)(4)(6)、4、6其余均不用做p285--302第五节、第六节(不用看)第十二章第七节(数三不用看,数一了解)一、(不用看)p305公式(6)重要、牢记p306定理重要例1做p307例2做p309例3不做p311例4、5做p313例6做p315习题12--7只做2(2)、3、4、5其余均不用做第十二章第八节(了解,数三不用看)p317(6)记住公式,证明不用看例1做p318例2不用做p319傅里叶级数的复数形式(不用看)p322习题12--8只做1(2)(3)、2(2)其余不用做p322--323总习题十二全做,且全部重点做其中11、12只有数一做线代部分(配同济5版)第一章行列式(行列式很少单独考大题,但考大题必然会用到行列式)第一节(了解)第二节(了解)第三节(了解)p6从中间偏上一行“仿比,可以把行列式...情形”到p7上第三行(例5上面)可以不用看p7例6证明不用看,记住上下三角行列式即可四、(不用看)五、(理解)p9行列式性质1证明不用看只需举例说明p10......2............p11中间从“例如以数k...”到“以上诸性质请读者证明之”可以不用看p12例8经典例题p14例10证明不用看,记住结论即可p15例11不用做六、(理解)p16中间偏下引理及其证明不用看p17记住定理3,证明不用看p18例12证明不用看,只需记住范德蒙德行列式p19中间偏下,定理3的推论证明好好看一下p21例13经典例题七、(理解,考大题有时会用到)p22例14仔细算一下p23例15可以不用做p25--28习题一1(1)(2)、2(2)(5)、3、4(2)(4)、5(重点做一下)、6(2)(3)、8(1)(2)(3)、9(重点做,经典习题)、10(2)、12(重点做)线代第二章(考小题为主,但毫无疑问考大题必然会用到矩阵及其运算)第一节、(了解)p30从例1到p31倒数第三行“对应n阶方阵”以上可以不用看p32可以不用看第二节(理解)p34定义4上面的均不用看(知道法则即可)p37中从第五行“上节例1中..”到p38倒数第四行“等式得证”均可以不用看p40例8经典例题p41例9经典结论务必会证明p42六、(不用看)第三节(理解)p45例12经典例题(提升计算能力)第四节、(正在变得越来越重要)p51例17经典例题p53克拉默法则的证明重点看一下p54--56习题二要做的题1(2)(3)(5)、2、4、5(重点做)、6--9、10(2)(3)(4)、11(2)(3)、12(2)、14--17、18--21(均重点做)、22、23--24(重点做)、26、27、28(1)线代第三章(重要,基本必考大题)第一节(理解)第二节(掌握,基本每年考大题都会用到的概念)p66第八行定义4重点看p69--70矩阵秩的性质(1)--(8)与例8、9均要重点看、重点做第三节(重要,每年必考)p73例10重点做p74例11不用做例12重点做p75例13重点做p77定理7.证明重点做p78--80习题三要做的题1(1)、2、3、4(1)、5--8、9(重点做)、10(2)、11--12(重点做)、13(4)、14(3)、15--16(重点做)、18--21(均要重点做)线代第四章(重要,每年必考,可能考大题,也可能考小题)第一节(重要,考大题为主)p81从倒数第8行“在解析几何中..”到p82正中间“当R(A)..”往上均可以不用看第二节(重要,小题为主,但有时会考大题,证明向量组线性无关)第三节(重要,必考的概念)第四节(重要,常考大题)p97例12重要例题p100例13、14、15经典例题p101例16重要例题第五节(数二、数三不考,数一只需了解)p106--110习题四1--3、4(1)、5--7、8(重点做)、9、10、11(2)、12(2)、13、14、15(重点做)、16--18、20(2)、21--22(重点做)、23、24(重点做)、25(经典结论,务必会证明)、26(1)、27(重点做)、28--29(只有数一做)、30、31、32(重点做)、33--38(只有数一做)线代第五章(重要,每年考大题的必考章节)第一节(理解,以考小题为主)p111从中间偏下“内机具有下列性质”到p112前三行均不用看p112定义2的性质证明不用看定理1的证明要看p115从第四行到例3上面的解析几何术语解释不用看第二节(大题必然会用到)p118例5不用做例6重点做p119例7不用做p120例8、9重点做p120--121定理2证明不用看p121例10重点例题第三节(重要,考大题为主)p123定理4重要定理第四节(重要,考大题为主)p124定理5的证明不用看定理6、7重点看p125例12重点做p126例13重点做第五节(重要,大小题均有可能考)p127到定义8上面不用看p130例14重点做第六节(了解)第七节(理解,大小题均有可能考)p133倒数2、3、4行即负定不用看p134--习题五1、2(2)(3)、4--5(重点做)、6(2)、7、8(重点做)、9--11、12--14(重点做)、15、16(重点做)、17、19(2)、20、21--24(重点做)、25(2)、26(3)、27(2)、28(2)、29(只有数一做)、30(重点做)、31(3)、32--34(重点做)。
考研数学二推荐教材高等数学同济高等数学同济是一本备受考研数学二考生推荐的教材。
该教材以其全面、准确和易于理解的特点,成为广大考生备考数学二的首选教材。
下面我将从教材的内容、难度、习题和其他方面进行详细介绍。
高等数学同济的内容非常全面,涵盖了数学二考研的各个重要知识点。
教材以清晰的逻辑结构,将数学概念、定理和公式有机地串联起来,使考生能够更好地理解和掌握数学知识。
无论是微积分、数学分析、线性代数还是常微分方程等内容,在高等数学同济中都有详细的叙述和解释,让考生能够系统地学习这些知识。
同时,高等数学同济的难度控制得非常合理。
教材将内容难度由低到高地进行设置,使考生能够逐渐提高自己的数学水平。
在每个章节的开头,教材还特别设置了预备知识,为考生复习和学习提供了便利。
教材中的例题和习题也是经过精心挑选,能够循序渐进地帮助考生巩固和运用所学的知识。
高等数学同济的习题非常丰富,适合考生进行练习和巩固。
教材中的习题既包括基础习题,也包括拓展习题,能够满足不同层次考生的需求。
在每个章节的末尾,教材还附有详细的习题解答,供考生核对和参考,帮助考生更好地理解和掌握数学概念和解题方法。
除了以上几个方面,高等数学同济还有一些其他值得注意的特点。
首先,教材的表达清晰简洁,语句通顺自然,排版整洁美观,读起来非常流畅。
其次,教材中的示例和图表设计得简单明了,能够帮助考生更好地理解数学概念和解题思路。
最后,教材还附有许多考研数学二的经典题目和真题,供考生进行针对性的练习和复习,帮助考生更好地备战考试。
综上所述,高等数学同济是一本令考研数学二考生称赞的教材。
其内容全面、准确,难度适中,习题丰富,排版整洁美观,语句流畅。
如果你是一位考研数学二的考生,我强烈推荐你选择高等数学同济作为备考教材。
相信通过认真学习和练习,你一定能够在考研中取得优异的成绩!。
考研数学二各科目复习重点总结考研数学二各科目复习重点总结我们在准备进行考研数学的二次备考的时候,需要做好备考的资料参考。
店铺为大家精心准备了考研数学二备考,欢迎大家前来阅读。
考研数学二各科目复习安排高数第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的`问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵考研数学:数二复习锦囊一、高等数学同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;二、线性代数数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;三、数学二不考概率与数理统计研究典型题型对于数二的来说,需要做大量的试题。
《高等数学》考研同济大学数学系2021考研真题库第一部分 考研真题精选向量代数与空间解析几何填空题(把答案填在题中横线上)点(2,1,0)到平面3x +4y +5z =0的距离d =______。
[数一2006研]【答案】【解析】由点到平面的距离公式多元函数微分法及其应用一、选择题1设函数f (x ,y )在点(0,0)处可微,f (0,0)=0,,且非零向量d →与n →垂直,则( )。
[数一2020研]A .存在B .存在C .存在D .存在【答案】A 查看答案【解析】∵f (x ,y )在(0,0)处可微,f (0,0)=0,∴;即。
∵,∴存在。
∴选A项。
2关于函数给出下列结论①∂f/∂x|(0,0)=1②∂2f/∂x∂y|(0,0)=1③④正确的个数为()。
[数二2020研]A.4B.3C.2D.1【答案】B查看答案【解析】①因,故①正确。
②因,先求f x′(0,y),而当y≠0时,不存在;当y=0时,;综上可知,f x′(0,y)不存在。
故∂2f/∂x∂y|(0,0)不存在,因此②错误。
③当xy≠0时,,当(x,y)沿着y轴趋近于(0,0)点时,;当(x,y)沿着x轴趋近于(0,0)点时,;综上可知,,故③正确。
④当y=0时,;当y≠0时,,故,则,故④正确。
综上,正确个数为3。
故应选B。
3函数f (x ,y ,z )=x 2y +z 2在点(1,2,0)处沿向量u →=(1,2,2)的方向导数为( )。
[数一2017研] A .12 B .6 C .4 D .2【答案】D 查看答案【解析】计算方向余弦得:cos α=1/3,cos β=cos γ=2/3。
偏导数f x ′=2xy ,f y ′=x 2,f z ′=2z 。
得∂f/∂u =f x ′cos α+f y ′cos β+f z ′cos γ=4·(1/3)+1·(2/3)+0·(2/3)=2。
高数书题目重点目录整理2015考研数学高等数学教材导学【注】1导学用书:同济大学《高等数学》(上、下册)(第6版)2 请各位学员认真研读课本内容及完成选择习题,打下一个牢固的基础。
无论是教材上的定理、例题,还是课后的习题,曾作为历年的考研真题出现过。
第1章函数、极限、连续1、映射与函数(一)复习内容P1-16(表示1至16页,下同),双曲函数开始之后的不复习。
(二)选做习题P21-22 第4-12题,第14-16题。
2、数列的极限(一)复习内容P23-30(二)选做习题P30-31 第1、5、6题。
3、函数的极限(一)复习内容P31-37(二)选做习题P37-39 第1-4题,第12题。
4、无穷小与无穷大(一)复习内容P39-41(二)选做习题P42 第4、5、6、7题。
5、极限运算法则(一)复习内容P43-49(二)选做习题P49 第1-5题。
6、极限存在准则两个重要极限(一)复习内容P50-55(除Cauchy极限存在准则)(二)选做习题P56-57 第1、2、4题。
7、无穷小的比较(一)复习内容P57-59(二)选做习题P59-60 第1-4题。
8、函数的连续性与间断点(一)复习内容P60-64(二)选做习题P64-65 第1-5题,第7-8题。
9、连续函数的运算与初等函数的连续性(一)复习内容P66-69(二)选做习题P69-70 习题1-9全做P74 总习题一第1-13题。
第2章函数、极限、连续1、导数概念(一)复习内容P77-86(二)选做习题P86-88 习题2-1全做。
2、函数的求导法则(一)复习内容P88-96(例17不学)(二)选做习题P97-99 第1、5题,第5-11题,第13、14题。
3、高阶导数(一)复习内容P99-102(二)选做习题P103 习题2-3除第5题全做。
4、隐函数及由参数方程所确定的函数的导数相关变化率(一)复习内容P104-111(二)选做习题P111-113 习题2-4除第9题全做。
高等数学课后习题解读总习题一:1是填空题,是考察与极限有关的一些概念,这个是很重要的,要掌握好。
而且几乎每章的总习题都设了填空题,均与这些章节的重要概念有关。
所以每章的总习题里的填空题所涉及的知识点,比如谁是谁的什么条件之类,务必要搞清楚。
2是无穷小的阶的比较3、4、5、6是与函数有关的题目,这个是学好高数的基础,但却不是高数侧重的内容,熟悉即可7用定义证明极限,较难,一般来说能理解极限的概念就可以了8典型题,求各种类型极限,重要,6个小题各代表一种类型,其实求极限的题目基本跳不出这六种框架了9典型题,选择合适的参数,使函数连续,用连续的定义即可10典型题,判断函数的间断点类型,按间断点的分类即可11较难的极限题,这里是要用到夹逼原理,此类题目技巧性强,体会一下即可12证明零点存在的问题,要用到连续函数介值定理,重要的证明题型之一,必需掌握13该题目给出了渐近线的定义以及求法,要作为一个知识点来掌握,重要综上,第一章总习题要着重掌握的是1、2、8、9、10、12、13题总习题二:1填空题,不多说了,重点2非常好的一道题目,考察了与导数有关的一些说法,其中的干扰项(B)(C)设置的比较巧妙,因为平时我们一般只注意到导数在某点存在的条件是左右导数都存在且相等,容易忽视另一个重要条件:函数必须要在该点连续,否则何来可导?而(B)(C)项的问题正是在于即使其中的极限存在,也不能保证函数在该点连续,因为根本就没出现f(a),所以对f(x)在a 处的情况是不清楚的。
而对(A)项来说只能保证右导数存在。
只有(D)项是能确实的推出可导的3物理应用现在基本不要求了4按定义求导数,不难,应该掌握5常见题型,判断函数在间断点处的导数情况,按定义即可6典型题,讨论函数在间断点处的连续性和可导性,均按定义即可7求函数的导数,计算层面的考察,第二章学习的主要内容8求二阶导数,同上题9求高阶导数,需注意总结规律,难度稍大,体会思路即可10求隐函数的导数,重要,常考题型11求参数方程的导数,同样是常考题型12导数的几何应用,重要题型13、14、15不作要求综上,第二章总习题需重点掌握的题目是1、2、4、5、6、7、8、10、11、12第三章的习题都比较难,需要多总结和体会解题思路总习题三1零点个数的讨论问题,典型题,需掌握2又一道设置巧妙的题目,解决方法有很多,通过二阶导的符号来判断函数增量与导数、微分的大小关系,07年真题就有一道题目由此题改造而来,需重点体会3举反例,随便找个有跳跃点的函数即可4中值定理和极限的综合应用,重要题目,主要从中体会中值定理的妙处5零点问题,可用反证法结合罗尔定理,也可正面推证,确定出函数的单调区间即可,此题非典型题6、7、8中值定理典型题,要证明存在零点,可构造适当的辅助函数,再利用罗尔定理,此类题非常重要,要细心体会解答给出的方法9非常见题型,了解即可10罗必达法则应用,重要题型,重点掌握11不等式,一般可用导数推征,典型题12、13极值及最值问题,需要掌握,不过相对来说多元函数的这类问题更重要些14、15、16不作要求17非常重要的一道题目,设计的很好,需要注意题目条件中并未给出f''可导,故不能连用两次洛必达法则,只能用一次洛必达法则再用定义,这是此题的亮点18无穷小的阶的比较,一是可直接按定义,二是可将函数泰勒展开,都能得到结果,此题考察的是如何判断两个量的阶的大小,重要19对凹凸性定义的推广,用泰勒公式展开到二阶可较方便的解决,此题可看作泰勒公式应用的一个实例,重在体会其思想20确定合适的常数,使得函数为给定的无穷小量,典型题,且难度不大综上,第三章总习题需要重点掌握的是1、2、4、6、7、8、10、11、12、13、17、18、20第四章没有什么可说的重点,能做多少是多少吧……积分的题目是做不完的。
目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表
记
该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。
目 录第1章 行列式1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章 矩阵及其运算2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章 矩阵的初等变换与线性方程组3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章 向量组的线性相关性4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章 相似矩阵及二次型5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章 线性空间与线性变换6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第1章 行列式1.1 复习笔记一、二阶与三阶行列式1二阶行列式定义 将四个数,,,按一定位置,排成二行二列的数表:则表达式就是数表的二阶行列式,并记作2三阶行列式定义 设有9个数排成3行3列的数表记该式称为数表所确定的三阶行列式.二、全排列和对换1全排列把n个不同的元素排成一列,称为这n个元素的全排列.n个不同元素的所有排列的种数,通常用P n表示.(1)逆序数定义对于n个不同的元素,先规定各元素之间有一个标准次序(例如,个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说构成1个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.(2)分类逆序数是奇数的排列称为奇排列,逆序数是偶数的排列称为偶排列.(3)逆序数的计算设n个元素为1至n这n个自然数,并规定由小到大为标准次序.设为这n个自然数的一个排列,考虑元素,如果比p i大的且排在p i前面的元素有t i个,则称p i这个元素的逆序数为t i.全体元素的逆序数的总和即是这个排列的逆序数.2对换(1)定义对换是在排列中,将任意两个元素对调,其余元素不动.将相邻两个元素对换称为相邻对换.(2)性质①排列中的任意两个元素对换,排列改变奇偶性.②奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数为偶数.三、n阶行列式1定义称为n阶行列式,简记作,其中数a ij为行列式D的第(i,j)元素.2两类典型的n阶行列式(1)下三角形行列式(2)对角行列式3行列式的性质(1)行列式与它的转置行列式相等.(2)对换行列式的两行(列),行列式变号.(3)如果行列式有两行(列)元素成比例,则此行列式等于零.(4)行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式.(5)若行列式的某一行(列)的元素都是两数之和,则可以将该行列式拆分成两个行列式之和.(6)把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.四、行列式按行(列)展开1余子式与代数余子式在n阶行列式中,把(i,j)元a ij所在的第i行和第j列划去后,留下来的n -1阶行列式称为(i,j)元a ij的余子式,记作M ij,记A ij称为(i,j)元a ij的代数余子式.2定理行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即或 3范德蒙德行列式4代数余子式的推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.即或5代数余子式的重要性质或.1.2 课后习题详解1利用对角线法则计算下列三阶行列式:2按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)13…(2n-1)24…(2n);(6)13…(2n-1)(2n)(2n-2)…2.解:(1)此排列为标准排列,其逆序数为0;(2)此排列的首位元素4的逆序数为0,第2位元素1的逆序数为1,第3位元素3的逆序数为1,末位元素2的逆序数为2,故它的逆序数为0+1+1+2=4;(3)此排列的前两位元素的逆序数均为0,第3位元素2的逆序数为2;末位元素1的逆序数为3,故它的逆序数为0+0+2+3=5;(4)此排列的从首位元素到末位元素的逆序数依次为0,0,2,1,因此它的逆序数为0+0+2+1=3;(5)此排列中前n位元素的逆序数均为0.第n+1位元素2与它前面的n -1个数构成逆序对,所以它的逆序数为n-1;同理可知,第n+2位元素4的逆序数为n-2……末位元素2n的逆序数为0.因此该排列的逆序数为(6)此排列的前n+1位元素的逆序数均为0;第n+2位元素(2n-2)的逆序数为2;第n+3位元素2n-4与它前面的2n-3,2n-1,2n,2n-2构成逆序对,所以它的逆序为4,……,末位元素2的逆序数为2(n-1),因此该排列的逆序数为3写出四阶行列式中含有因子的项.解:根据行列式定义可知,此项必定还含有分别位于第3行和第4行的某两元素,而它们又分别位于第2列和第4列,即a32和a44或a34和a42.又因排列1324与1342的逆序数分别为1与2,所以此行列式中含有的项为与4计算下列各行列式:解:(1)(2);(3)(4)(5)(6)5求解下列方程:其中a,b,c互不相等.因此方程的解为.(2)根据题意,方程左式为4阶范德蒙德行列式,则有因a,b,c互不相等,因此方程的解为6证明:(2)将左式按第1列拆开可以得到因此有其中于是因此,(5)方法一 按第1列展开得方法二 按最后一行展开得7设n阶行列式,把D上下翻转、或逆时针旋转、或依副对角线翻转,依次得证明证:(1)通过对换行将D1变换成D,从而可找出D1与D的关系:D1的最后一行是D的第1行,把它依次与前面的行交换,直至换到第1行,共进行n-1次交换;这时最后一行是D的第2行,把它依次与前面的行交换,直至换到第2行,共进行n-2次交换……直至最后一行是D 的第n-1行,再通过一次交换将它换到第n-1行,这样就把D1变换成D,共进行次交换,故.(2)计算D2:观察可知,D2的第1,2,…,n行恰好依次是D的第n,n-1,…,1列,因此若把D2上下翻转得,则的第1,2,…,n行依次是D的第1,2,…,n列,即.于是由(1)有(3)计算D3:观察可知,若把D3逆时针旋转90°得,则的第1,2,…n列恰好是D的第n,n-1,…,1列,于是再把左右翻转就得到D.由(1)、(2)有8计算下列各行列式(D k为k阶行列式):,其中对角线上元素都是a,未写出的元素都是0;;;提示:利用范德蒙德行列式的结果.,其中未写出的元素都是0;;,其中a ij=|i-j|;,其中解:(1)方法一 化D n为上三角形行列式上式中最后那个行列式为上三角形行列式;方法二 把D n按第二行展开,由于D n的第二行除对角线元素外全为零,因此有,即于是有 (2)利用各列的元素之和相同,把从第二行起的各行全部加到第一行,再提取公因式.(3)把所给行列式上下翻转,即为范德蒙德行列式,若再将它左右翻转,由于上下翻转与左右翻转所用交换次数相等,因此行列式经上下翻转再左右翻转,即相当于转180°,其值不变.于是按范德蒙德行列式的结果可得(4)可用递推法即有递推公式另外,归纳基础为,利用这些结果可递推得(5)把第一行除外的所有行都加到第一行,并提取第一行的公因子,得(6)(7)可将原行列式化为上三角形行列式,需从第2行起,各行均减去第1行,得行列式其中.于是9设,D的(i,j)元的代数余子式记作A ij,求.解:求,则等于用1,3,-2,2替换D的第3行对应元素所得行列式,即1.3 考研真题详解一、选择题行列式等于( ).[数一、数二、数三 2014研]A. B.C. D.【答案】B【解析】二、填空题1阶行列式 [数一 2015研]【答案】【解析】将阶行列式按第一行展开2设是三阶非零矩阵,为A的行列式,A ij为a ij的代数余子式,若,则|A|=______.[数一、数二、数三 2013研]【答案】-1【解析】由可知,故3设A,B为3阶矩阵,且.[数二、数三2010研]【答案】3【解析】因为所以第2章 矩阵及其运算2.1 复习笔记一、线性方程组和矩阵1线性方程组(1)n元非齐次线性方程组设有n个未知数m个方程组的线性方程组当常数项不全为零时,该方程组称为n元非齐次线性方程组.(2)n元齐次线性方程组含有n个未知数m个方程组的线性方程组称为n元齐次线性方程组.2矩阵(1)定义由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.记为(2)分类①实矩阵 矩阵元素都为实数的矩阵.②复矩阵 矩阵元素为复数的矩阵.③行矩阵/列矩阵 又称行向量/列向量,只有一行(列)的矩阵.④n阶方阵 行数与列数都等于n的矩阵称为n阶方阵.⑤零矩阵 元素都是零的矩阵.⑥对角矩阵 对角线以外的元素都是0的方阵.⑦单位矩阵 对角线上元素都为1的对角矩阵.二、矩阵的运算1矩阵的加法(1)定义设有两个m×n矩阵A=(a ij)和B=(b ij),则矩阵A与B的和记作A+B,规定为注意:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算.(2)运算规律设A,B,C都是m×n矩阵,则①A+B=B+A;②(A+B)+C=A+(B+C);③设矩阵A=(a ij),记:-A=(-a ij),-A称为矩阵A的负矩阵,显然有A+(-A)=0,由此规定矩阵的减法为:A-B=A+(-B).2数与矩阵相乘(1)定义数λ与矩阵A的乘积记作λA或Aλ,规定为(2)运算规律设A、B为m×n矩阵,λ、μ为数,则①(λμ)A=λ(μA);②(λ+μ)A=λA+μA;③λ(A+B)=λA+λB.3矩阵与矩阵相乘(1)定义设A=(a ij)是一个m×s矩阵,B=(b ij)是一个s×n矩阵,则规定矩阵A 与矩阵B的乘积是一个m×n矩阵C=(c ij),其中并把此乘积记为C=AB.(2)运算规律①(AB)C=A(BC);②(AB)=(A)B=A(B)(其中λ为数);③A(B+C)=AB+AC,(B+C)A=BA+CA;④EA=AE=A;⑤.(3)注意①只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.②矩阵的乘法一般不满足交换律,即在一般情形下,AB≠BA.③对于两个n阶方阵A,B,若AB=BA,则称方阵A与B是可交换的.④若有两个矩阵A,B,满足AB=0,不能得出A=0或B=0的结论;若A≠0,而A(X-Y)=0也不能得出X=Y的结论.三、矩阵的转置1定义把矩阵A的行换成同序数的列得到一个新矩阵,称为A的转置矩阵,记作A T.2转置运算(1)(A T)T=A;(2)(A+B)T=A T+B T;(3)(λA)T=λA T;(4)(AB)T=B T A T.3对称矩阵设A为n阶方阵,如果满足A T=A,即a ij=a ji(i,j=1,2…,n),则称A为对称矩阵.四、方阵的行列式1定义由n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A 的行列式,记作detA或|A|.2由A确定|A|的运算规律假设A、B为n阶方阵,λ为数:(1)|A T|=|A|;(2)|λA|=λn|A|;(3)|AB|=|A||B|.3伴随矩阵行列式|A|的各个元素的代数余子式A ij所构成的如下的矩阵称为矩阵A的伴随矩阵,简称伴随阵.一般地,五、逆矩阵1定义对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则称矩阵A是可逆的,并把矩阵B称为A的逆矩阵,A又称B的逆矩阵,简称逆阵.2性质(1)若矩阵A是可逆的,则A的逆矩阵是唯一的.(2)若矩阵A可逆,则|A|≠0.(3)若|A|≠0,又称A为非奇异矩阵,则矩阵A可逆,且,其中A*为矩阵A的伴随矩阵.若|A|=0,称A为奇异矩阵,A不可逆.(4)A为可逆矩阵的充要条件是|A|≠0.3逆矩阵运算规律:(1)若A可逆,则A-1也可逆,且;(2)若A可逆,数λ≠0,则λA可逆,且(3)若A、B为同阶矩阵且均可逆,则AB也可逆,且;(4)若AB=E(或BA=E),则B=A-1.六、克拉默法则含有n个未知数x1,x2,…,x n的n个线性方程的方程组 (2-1-1)它的解可以用n阶行列式表示,即有克拉默法则:如果线性方程组(2-1-1)的系数矩阵A的行列式不等于零,即则方程组(2-1-1)有唯一解其中A j(j=1,2,…,n)是把系数矩阵A中第j列的元素用方程组右端的常数项代替后所得到的n阶矩阵,即七、矩阵分块法1定义将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的子块,以子块为元素的形式上的矩阵称为分块矩阵.2矩阵分块法(1)设矩阵A与B的行数相同、列数相同,采用相同的分块法,有其中A ij与B ij的行数相同、列数相同,则(2)设,λ为数,则.(3)设A为m×l矩阵,B为l×n矩阵,分块成其中A i1,A i2,…,A it的列数分别等于B1j,B2j,…,B tj的行数,则其中(4)设,则(5)设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即其中A i(i=1,2,…,s)都是方阵,则称A为分块对角矩阵.分块对角矩阵的行列式具有下述性质由此性质可知,若,则,并有2.2 课后习题详解1计算下列乘积:(1);(2);(3);(4);(5).解:(1);(2);(3);(4);(5)2设,求3AB-2A及A T B.解:则有因A T=A,即A为对称阵,所以3已知两个线性变换求从z1,z2,z3到x1,x2,x3的线性变换.解:依次将两个线性变换写成矩阵形式其中分别为对应的系数矩阵;在这些记号下,从z1,z2,z3到x1,x2,x3的线性变换的矩阵形式为,此处矩阵即有4假设,问:(1)AB=BA吗?(2)(A+B)2=A2+2AB+B2吗?(3)(A+B)(A-B)=A2-B2吗?5举反例说明下列命题是错误的:(1)若,则;(2)若A2=A,则或A=E;(3)若AX=AY,且A≠0,则X=Y.6(1)设,求A2,A3,…,A k;(2)设,求A4.解:(1)根据矩阵乘法直接计算得一般可得 (2-2-1)则当k=1时,式(2-2-1)成立.假设当k=n时,式(2-2-1)成立,则当k=n+1时根据数学归纳法可知式(2-2-1)成立;7(1)设,求A50和A51;(2)设,A=ab T,求A100.解:(1),则可得(2)由于b T a=-8,所以根据上式可知8(1)设A,B为n阶矩阵,且A为对称阵,证明B T AB也是对称阵;(2)设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.证:(1)由矩阵乘积的转置规则有所以由定义知B T AB为对称阵;(2)因为A T=A,B T=B,所以9求下列矩阵的逆矩阵:(1);(2);(3);(4).解:(1)根据二阶方阵的求逆公式可得(2)(3)因为,所以A可逆,并且于是(4)因为a1a2…a n≠0,所以a i≠0,i=1,2,…,n.则矩阵是有意义的,并且因为所以A可逆,而且.10已知线性变换求从变量x1,x2,x3到变量y1,y2,y3的线性变换.解:记则线性变换的矩阵形式为x=Ay,其中A是它的系数矩阵.因为所以A是可逆矩阵,则从变量x1,x2,x3到变量y1,y2,y3的线性变换的矩阵形式可写成又由于 于是即11设J是元素全为1的n(≥2)阶方阵.证明E-J是可逆矩阵,且这里E是与J同阶的单位矩阵.证:因为于是所以,是可逆矩阵,并且12设(k为正整数),证明可逆,并且其逆矩阵证:因为所以可逆,并且其逆矩阵.13设方阵A满足A2-A-2E=O (2-2-2)证明A及A+2E都可逆,并求解:(1)可先证A可逆.由式(2-2-2)得即 所以A是可逆的,且;(2)再证A+2E可逆.由,即同理,可知可逆,且.14解下列矩阵方程:(1);(2);(3);(4)AXB=C,其中.解:(1)因为矩阵的行列式等于1,不为零,所以它可逆,从而用它的逆矩阵左乘方程两边,得(2)记矩阵方程为,因所以A可逆,用右乘方程的两边可得又由于所以(3)记,则矩阵方程可写为因为,所以A,B均可逆.依次用和左乘和右乘方程两边得(4)因为,所以A,B均是可逆矩阵,且分别用和左乘和右乘方程两边得15分别应用克拉默法则和逆矩阵解下列线性方程组:(1)(2)解:(1)①可用克拉默法则:因为系数矩阵的行列式,由克拉默法则,方程组有唯一解,并且②用逆矩阵方法:因为|A|≠0,所以A可逆,于是则有(2)①用克拉默法则:因为系数矩阵的行列式,由克拉默法则方程组有唯一解,并且②用逆矩阵方法因为|A|=2≠0,所以A可逆,于是,易求得代入可得16设A为三阶矩阵,,求.解:因为,所以A可逆.于是由及,得对公式两端取行列式得17设,AB=A+2B,求B.解:由因,它的行列式det(A-2E)=2≠0,所以它是可逆矩阵.用左乘上式两边得18设.且AB+E=A2+B,求B.解:由方程,合并含有未知矩阵B的项,得又因为,其行列式,所以A-E可逆,用左乘上式两边,即可得到解:由于所给矩阵方程中含有A及其伴随阵A*,可用公式求解:用A左乘所给方程两边,得又由于,所以A是可逆矩阵,用右乘上式两边,可以得到观察可得是可逆矩阵,并且于是 20已知A的伴随阵A*=diag(1,1,1,8),且,求B.解:(1)先化简所给矩阵方程假设能求得A并且为可逆矩阵,则可解得 (2-2-3)(2)再计算A根据题意可知A是可逆矩阵,由,两边取行列式得即,所以,于是因为,所以是可逆矩阵,并且将上述结果代入式(2-2-3)可得21设,其中,求A11.解:由于,则.所以22设AP=PΛ,其中求φ(A)=A8(5E-6A+A2).解:由于,所以P是可逆矩阵.根据AP=PΛ可得,并且记多项式,则有由于是三阶对角阵,所以于是 23设矩阵A可逆,证明其伴随阵A*也可逆,且.证:因为,根据定理2的推论可以知A*可逆,且另因.用A左乘此式两边得通过比较上面两式可知结论成立.24设n阶矩阵A的伴随阵为A*,证明:(1)若|A|=0,则|A*|=0;(2).证:(1)因为 (2-2-4)当时,上式成为可用反证法求证。
考研数二同济教材第七版范围
考研数学二是考研数学中较为基础的一门科目,其考试范围主要涵盖高等数学、线性代数、概率论与数理统计等知识点。
而同济大学第七版的考研数学二教材则是目前较为广泛使用的教材之一,其内容详尽、难度适中,适合大多数考生备考使用。
高等数学部分重点考察函数、极限、连续、微积分、级数等基本概念和理论,以及这些概念和理论在不同情境下的应用。
考生需要熟练掌握各种基本概念和理论,并能够灵活运用这些知识解决复杂问题。
线性代数部分主要考察矩阵、向量、线性方程组、线性变换等基本概念和理论,以及这些概念和理论在不同情境下的应用。
概率论与数理统计部分主要考察概率论基础、随机变量、数字特征、抽样分布、参数估计与假设检验等基本概念和理论,以及这些概念和理论在不同情境下的应用。
建议在备考时仔细阅读教材,并做相关的习题,以提高理解和掌握知识点的能力。
同时,也可以参考相关的辅导资料和历年真题,以更好地了解考试形式和难度,并针对性地进行备考。
高等数学部分(配同济6版)第一章函数与极限(必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.1 1、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9 均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28 例1、2、3均不用证P28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-2 1大题只需做(4)(6)(8)2--6均不用做第三节函数的极限(一般章节)一、函数极限的定义(了解)二、函数极限的性质(了解)P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4”完全不用看P37习题1--3 1--4 均做5--12 均不用做第四节无穷小与无穷大(重要)一、无穷小(重要)二、无穷大(了解)P40 例2不用做P41 定理2不用证P42习题1--4 1做2--5 不全做6 做7--8 不用做第五节极限运算法则(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1—5 1题只需做(3)(6)(7)(8)(10)(11)(13)(14) 2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明)p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限) p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1—7 1大题只做(1)(4)(6) 2全做3不用做4全做,其中(2)(3)(5)重点做第七节无穷小的比较(重要)p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节函数的连续性与间断点(基本必考小题)p60--64 要重点看第八节基本必出考题p64 习题1—8 1、2、3、4、5要做其中4、5要重点做6--8不用做第九节连续函数的运算与初等函数的连续性(了解)p66--67 定理3、4的证明均不用看p69 习题1—9 1、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一、有界性与最大值最小值定理(重要)二、零点定理与介值定理(重要)p72三、一致连续性(不用看)p74习题1—10 1、2、3、5要做,要会用5的结论。
4、6、7不用做p74 总习题一除了7、8、9(1)(3)(4)之外均要做其中要重点做的是3(1)(2)、5、11、14第二章导数与微分(小题必考章节)第一节导数概念(重要)一、引例(数三可只看切线问题举例)二、导数的定义(重难点,考的频率很高)三、导数的几何意义(重要)另:【数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四、函数的可导性与连续性关系(要会证明,重要)p79 导数的定义要重点掌握,基本必出考题p81--82 例1--例6 认真做以便真正掌握导数的定义p85 可导性与连续性的关系要会证明)p86 习题2--1 不用做的是1、2、9(1)--(6)、10、12、13、14其余都要做其中重点做的是6、7、8 、16、18、19第二节函数的求导法则(考小题)四、基本求导法则与求导公式(要非常熟)p88--89 (1)(2)(3)的证明均不用看p89 例1 不用做p90 定理2的证明要理解p91--92 例6--8重点做p92 定理3证明不用看p96 例7不用做p97 习题2—2 2题(1)(5)(7)(10)、3(1)、4、12均不用做其余全做其中13、14要重点做第三节高阶导数(重要,考的可能性大)p100 例3不用做p103 习题2—3 5、6、7、11均不用做,其余全做!其中4、12要重点做第四节隐函数及由参数方程所确定的函数的导数相关变化率(考小题)p107--110 由参数方程所确定的函数的导数数三不用看p111三、相关变化率(不用看)p111 习题2—4 1大题(1)(4)、3(1)(2)、9--12均不用做数三5--8也不用做其中4重点做第五节函数的微分(考小题)p119四、微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲均不作要求)习题2—5 5--12均不用做其他的全做p125 总习题二4、10、15--18均不用做,其余全做!其中2、3、6、7、14要重点做!数三不用做12、13第三章微分中值定理与导数的应用(考大题难题经典章节,绝对重点章节)第一节微分中值定理(最重要,与中值定理应用有关的证明题)一、罗尔定理(要会证)二、拉格朗日中值定理(要会证)三、(柯西中值定理(要会证)另外,要会证明费马定理p128--133 费马定理罗尔定理拉格朗日中值定理柯西中值定理一定要会独立证明,极其重要p134 习题3--1 除13、15不用做,其余全部【重点】做第二节洛必达法则(重要,基本必然要考)p134--135 洛必达法则要会证明习题3--2习题全做其中1、(1)(5)(10)(12)(15)(16)、3、4要重点做第三节泰勒公式(掌握其应用,可以不用证明公式其本身)p140--141 泰勒公式的证明不用看p145 习题3--38、9不用做,其余全做,其中,10 (1)(2)(3)要重点做第四节函数的单调性与曲线的凹凸性(考小题)p152 习题3--43(1)(2)(5)、5(1)(2)、8(1)(2)、9(1)(3)(5)、10(2)不用做,其余全做,重点做3(3)(6)(8)、4、5(3)(5)、6、13、15 第五节函数的极值与最大值最小值(考小题为主)p160 例5不用做p161 例6不用做p162 例7不用做p162 习题3--51(2)(3)(6)(9)、8--16均不用做,其余全做第六节函数图形的描绘(重要基础章节)p169 习题3--61 不用做2--5都要做第七节曲率(了解,只有数一数二考,数三不用看)一、弧微分(不用看)二、曲率及其计算公式(了解)三、曲率园与曲率半径(了解)p175四、(不用看)p177 习题3--7数三均不用做数一数二只需做1--6第八节方程的近似解(只要有近似,考研不考,不用看)p182 总习题三数一、数二全做数三可不用做其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第四章不定积分(重要、相对于数一、数三,数二考大题的可能性更大)第一节不定积分的概念与性质(重要)一、原函数与不定积分的概念(理解)二、基本积分表(会背,且熟练准确)三、不定积分的性质(理解)p186 例4不用做p188--189 基本积分表一定要记得熟练、准确p192 习题4--12(1)--(4)(6)(7)(9)(10)(11)(16)、3、4、6均不用做其余全做第二节换元积分法(重要,其中第二类换元法更加重要)p207 习题4--21、2(1)(2)(3)(8)(9)(10)(13)(25)均不用做,其余全做第三节分部积分法(考研必考)p212 习题4--3 全做(分部积分法极其重要)第四节有理函数的积分(重要)p218 习题4--4 全做第五节积分表的应用(不用看)p221 总习题四全做第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一、定积分问题举例(了解,其中变速直线运动的路程,数三不用看)二、定积分定义(理解)三、定积分的近似计算(不用看)四、定积分的性质(理解)性质1--7要理解,且能熟练应用,其中性质7最重要,要会独立证明p234 习题5--11、2、3、6、8、9、10均不用做,其余全部做,且重点做5、11、12第二节微积分基本公式(重要)一、变速直线运动中的位置……的联系(了解,数三不用看)二、积分上限的函数极其导数(极其重要,要会证明)三、牛顿--莱布尼茨公式(重要、要会证明)p237 定理1 ,要求会独立证明,极其重要p239 定理3 要求会独立证明p241 例5不用做例6 经典例题,极其重要,记住结论p243 习题5--26(1)(2)(4)--(7)(9)、7、8均不用做,其余全做,其中【数三】2不用做需要重点做的为9(2)、10--13 第三节定积分的换元法和分部积分法(重要,分部积分法更重要)p247--249 例5、6、7经典例题,重点做,并记住其相应结论p252 例12 经典例题,记住结论p253 习题5--31(1)(2)(3)(6)(12)(14)(15)(16)(21)(22)、7(1)(3)(8)(9)不用做,其余全部做,且重点做1(4)(7)(17)(18)(25)(26)、2、6、7(7)(10)(12)(13)第四节反常积分(考小题)p260 习题5--4全做,重点做1(4)、3 。
3题为经典公式,一定发要熟记第五节(不用看)【注】考纲不做要求,最好记住F(伽马,打不出来那个)函数的部分性质,可能给解题带来方便,可参考汤家凤视频)p268 总习题五1(3)、2(3)(4)(5)、15、16均不用做其余全部做其中,重点做的是3、5、7、8、9、10(1)(2)(3)(8)(9)(10)、13、14、17 第六章定积分的应用(考小题)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一、平面图形的面积p276--277 极坐标情形只有数一数二看数三不用看二、体积(数三只看旋转体的体积)p280--281 平行截面面积为已知的立体体积只有数一数二看三、平面曲线的弧长(数三不用看,数一数二记住公式即可)习题6--2数一全做数二21--30 不用做数三5、6、7、8、15(4)、17、18、21--30 不用做第三节定积分在物理学上的应用(数三不用看,数一数二了解)p291--292 习题6.3只有数一数二做数三不用做p292--293 总习题六数一全做数二6 不做数三只需做3、4、5第七章微分方程(本章对于数二相对最重要)第一节微分方程的基本概念(了解)p294 例2数三不用看p298 习题7--1只需做1(3)(4)、2(2)(4)、3(2)、4(2)(3)、5第二节可分离变量的微分方程(理解)p301--304 例2、3、4只有数一数二看,数三不用看p304 习题7--2只做1、2第三节齐次方程(理解)二、可化为齐次的方程(不用看)p306 例2--p309 均不用看p309 习题7--31只做(1)(5)(6)2只做(2)3、4不用做第四节一阶线性微分方程(重要,熟记公式)p312 例2 不用看p314伯努利方程只有数一看p315 习题7--41只做(3)(5)(8)(10)、2只做(2)(3)、3做4--7均不用做、8只有数一做第五节可降阶的高阶微分方程(只有数一数二考,理解)p317 例2 不用看p319 例4 不用做p321 例6不用做p316--p323 数三均不用看p323 习题7--5(数三不用做)数一数二只做1(3)(4)(5)(10)、2(1)(2)(6)3、4不用做第六节高阶线性微分方程(理解)一、二阶线性微分方程举例(不用看)二、线性微分方程的解的结构(重要)三、常数变易法(不用看)p323--324 二阶线性微分方程举例不用看p325--328 定理1、2、3、4重点看p328--330 常数变易法不用看p331 习题7--6只做1(3)(4)(6)(7)(10)、3、4(1)(5)(6)第七节常系数齐次线性微分方程第八节常系数非齐次线性微分方程(最重要,考大题备选章节)p335 例4不用做p336--338 例5不用做习题7--7只做1(1)(4)(7)(9)(10)、2(1)(2)(4)p346 例5不用看p347 习题7--8只做1(2)(4)(5)(6)(9)(10)、2(3)(4)、6 其中6重点做第九节欧拉方程(只有数一考,理解)p348--349 欧拉方程只有数一看p349 习题7--9数一只做(5)(8)第十节常系数线性微分方程组解法举例(不用看)p353 总习题七数一做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7、8、10数二做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7数三做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7 第八章空间解析几何与向量代数(只有数一考,考小题,了解)(本章只有数一考,单独命题以考小题为主,但数一特有的绝对重要考点,曲线曲面积分要以本章为基础,建议数一同学好好复习本章)本章需要数一多加注意的考点有:曲面方程与空间曲线方程。