电缆故障测试仪的四种实用测定方法
- 格式:docx
- 大小:973.36 KB
- 文档页数:5
电缆故障测试仪的故障测试方法1、低压脉冲法低压脉冲法的适用范围是通信和电力电缆的断线,接触不良,低阻性接地和短路故障以及电缆的全长和波速的测量。
一般步骤如下:a.将面板上触发工作方式开关置于“脉冲”()位置。
b.将测试线插入仪器面板上输入插座内,再将测试线的接线夹与被测电缆相连。
若为接地故障应将黑色夹子与被测电缆的地线相连。
c.断开被测电缆线对的局内设备。
d.搜索故障回波及判断故障性质。
使仪器增益最大,观察屏幕上有无反射脉冲,若没有,则按照“六、中3、的1)”的方法改变测量范围,每改变一档范围并观察有无反射脉冲,一档一档地搜索并仔细观察,至搜索到反射脉冲时为止。
故障性质由反射回波的极性判断。
若反射脉冲为正脉冲,则为开路断线故障,若反射脉冲为负脉冲,则为短路或接地故障。
e.距离测试,按增益控制键“▲或▼”使反射脉冲前沿最徒。
然后按光标移动键“◄或►”三秒左右快速移动,光标自动移至故障回波的前沿拐点处自动停下,此时屏幕上方显示的距离即为故障点到测试端的距离。
为了提高精度,按波速的方法改变波形比例,将波形扩展后,按上述方法进行精确定位。
2、直流高压闪络法1)首先检查触发工作方式选择开关位置于闪络( )位置,传播速度应为被测电缆的波速值。
2)适用范围:故障点电阻很高,尚未形成稳定通道,在一定的直流高压作用下,可产生闪络放电故障的电力电缆(即高阻闪络性故障)。
预防性击穿电压试验一般采用此法测试。
3)直流高压闪络故障持续时间有长有短,短的仅闪络几次即消失。
直闪法波形简单,容易判断,故障测量的准确度较高,因此应珍惜该过程的测试。
4)直闪法的测试原理图如图2。
在实际测试时利用高压设备和本公司高压测试装置,按图8所示线路连接。
T1 调压器 2KV AT2 高压变压器 0~50KV ,2KV AD 高压砖硅堆 反向电压100KV ,正向电流100mAC 高压电容器 0.1μF >10KV交直流电压表:0~300V ,直流电流表:100mA放电球隙内,电阻阻值:30±20/5k ΩV A R 3R 2 R 1 D 本仪器被测电缆 图8 冲击高压法测试原理图 C L 输出电阻:500Ω±10%5)接通仪器电源,屏幕出现视窗。
讲解电缆故障测试仪工作中的正确使用讲解电缆故障测试仪工作中的正确使用依据电力电缆常见的故障,本仪器设计了四种测试方法,用户可依据不同的故障实行不同的测试方法,也可以用不同的方法分别手记波形,相互比较分析,对故障点进一步确认。
电缆故障测试原理用本仪器测试电缆故障所采纳的基本原理为“回波测试”原理,即依靠电波在电缆中的传输反射来测试的。
⑴ 脉冲法测试原理:脉冲法测试即为本仪器内部产生一脉冲波,这一脉冲波被加于电缆上,当脉冲波碰到电缆特性阻抗变更的点,就会产生一回波信号(依据传输线原理),本仪器在电缆的测试端将这两个信号(发射波和回波)手记并显示,依据这两个波的时间差来计算出故障点与测试端的距离。
因此这种测试方法不受电缆敷设规定影响,只与电波在此电缆中的传输速度有关。
⑵ 高压闪络法测试原理:在针对电缆的高阻故障时,利用外部设备给电缆施加高压,当故障电缆承*所加高压时,故障点就会产生击穿电弧。
击穿电弧就会产生一回波,这样我们利用测试仪就可以将整个击穿过程在测试端利用手记波形的形式记录下来,通过这个击穿过程来分析计算击穿点离测试端的距离。
同样这种测试方法不受电缆敷设情况影响,只与电波在此电缆中的传输速度有关。
电缆故障测试程序在利用本仪器测试电缆故障时,应按如下程序进行:⑴ 万用表,摇表或由电缆预试结果判定电缆故障性质。
⑵ 依据电缆故障性质选择合适的测试方法:低阻故障和开路故障用脉冲法,当然对低阻故障也可采纳闪络法。
泄漏性高阻故障采纳闪络法(冲L法),有些泄漏性高阻故障也可采纳直闪法,但通常都不这样做,闪络性高阻故障采纳直闪法,也可以采纳两种方法都测一下相互比较提高判定的精准性。
⑶ 选择工作接地方,并从所选择的接地方分别引出两条地线,一条接仪器的地,另一条接高压设备的地。
工作地线的选择原则,是要确保测试相与其构成为一闭合回路,使本仪器能够得到正确的测试波形。
还应注意的是,工作地线必须和系统地连在一起,使人、仪器地、高压设备地以及被测电缆地四体同位。
电力电缆故障的检测方法电缆故障的主要种类是并联故障和串联故障。
串联故障指的是电缆当中的多个或者是一个导体存在断开情况,通常的时候,串联当中断开一个导体之前,较难发现串联的故障,只有真正出现短路情况的时候才容易发现串联故障。
并联故障是因为电缆长期超负荷运行而导致外绝缘的老化现象,进而在局部发生放电情况,导致并联故障。
而结合电缆故障被击穿的长度差异和电阻不同,能够划分电缆故障为高阻故障、低阻故障、开路故障。
1.电桥法电桥法是一种传统的电缆故障检测方法,其可以实现非常理想的效果。
这种检测方法十分便捷,有着非常高的检测精度,属于一种经常应用的电缆故障检测方法。
可是,也存在一些缺陷,因为电桥电压差和检流计不够灵敏,所以仅仅适宜对电阻较低的电缆故障开展检测。
而对于电阻较高的设备和断路故障的电缆问题难以借助这样的方法来检测。
2.高压电桥法在电缆检测当中,高压电桥法属于一种经常应用的故障检测方法。
其检测原理是,对于高压电桥当中恒流电源刺穿造成的电缆故障的地方,从一定程度上确保流动比较大的电桥电流,进而在电桥整体线路的两边形成一定的电位差,在协调电桥平衡的根底上统计故障地方的差距。
对于应用高压恒流电源而言,可以有效拓展电桥高阻检测的区域,相对来讲,其可以对结果开展尤为便捷和准确检测。
并且,对于电桥法的研究理论来讲,即电缆中心线路电阻与整体线路根据比率开展分配的特点可以促进电桥检测体系的形成。
3.冲击高压闪络法在对电缆故障开展检测的一些方法当中,施工人员应用十分广泛的一种方法是冲击高压闪络法。
这种方法的检测原理是在故障电缆的开端地方施加冲击高压,从而对发生故障的地方开展十分迅速的击穿,以及记录下故障地方一刹那电压突跳的数据信息。
在仔细研究电缆故障地方与电缆始末数据信息消耗时间的根底上对时间距离开展测试,从而得到故障的地方,以及执行解决对策。
4,低压脉冲反射法在电缆故障检测中应用低压脉冲发射的方法应当在损坏的线路当中注入低压脉冲。
电缆故障测试仪试验须知1、仪器正常状态的检查使用仪器前,可按以下步骤,检查仪器是否正常工作。
1)脉冲触发工作状态下,按下电源开键,液晶显示屏上将显示仪器主视窗口,显示屏上有故障距离、波速、测量范围,比例等字样及数据。
2)按面板“◄或►”键,仪器中间位置的活动光标将会移动,此时,故障距离数据相应变动。
3)调节增益电位器,仪器屏上显示的波形幅度将会增大或减小。
按照前述范围菜单操作步骤,改变测量范围,仪器显示屏上测量范围和发射脉冲宽度将发生相应变化,至此,表明仪器工作正常。
2、故障种类的初步判断测试前对故障原因和种类的分析是很必要的。
可选用通用仪表如欧姆表、兆欧表等结合现场情况和实际经验作初步分析判断。
3、选择触发工作方式如果是断线、接触不良、低阻接地与短路故障,应采用脉冲法。
若为电力电缆的高阻闪络故障则应采用闪络法。
并将触发工作方式选择开关置于相应的位置。
电缆故障产生原因编辑1)机械损伤机械损伤引起的电缆故障占电缆事故很大的比例。
据上海的资料统计,外力机械损伤引发的故障比例。
有些机械损伤很轻微,当时并没有造成故障,但在几个月甚至几年后损伤部位才发展成故障。
造成电缆机械损伤的主要有以下几种原因:电缆故障测试仪1)安装时损伤:在安装时不小心碰伤电缆,机械牵引力过大而拉伤电缆,或电缆过度弯曲而损伤电缆;2)直接受外力损坏:在安装后电缆路径上或电缆附近进行城建 施工,使电缆受到直接的外力损伤;3)行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;4)因自然现象造成的损伤:如中间接头或终端头内绝缘胶膨胀而胀裂外壳或电缆护套;因电缆自然行程使装在管口或支架上的电缆外皮擦伤;因土地沉降引起过大拉力,拉断中间接头或导体。
(2)绝缘受潮绝缘受潮后引起故障。
造成电缆受潮的主要原因有:1)因接头盒或终端盒结构不密封或安装不良而导致进水;2)电缆制造不良,金属护套有小孔或裂缝;3)金属护套因被外物刺伤或腐蚀穿孔;(3)绝缘老化变质电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。
电缆故障测试仪的几种测试方法,华天电力是电缆故障测试仪的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找电缆故障测试仪,就选华天电力。
电缆故障测试仪可测试各型号35KV以下电压等级的铜、铝芯高、低压电力电缆的各类故障。
常见的油浸纸电缆、交联聚乙烯电缆、不滴法电缆和取氯乙烯电缆等四种电缆的电波传播速度已经在仪器中预置。
电缆长度及故障距离的测量均是屏幕直接显示不需要人工换算,可测试各种型号电缆的开路、短路及电力电缆的高阻闪络性故障、高阻泄漏性故障。
电缆故障测试仪测试故障时,具体故障类型按以下方法进行测试。
低电阻接地故障。
电缆的单相低电阻接地故障是指电缆的一根芯线对地的绝缘由阻低于100kΩ,而芯线连续性良好。
此类故障隐蔽性强,我们可以采用回路定点法原理进行测试。
接线图如图所示,将故障芯线与另一完好芯线组成测量回路,用电桥测量,一端用跨接线跨接,另一端接电源、电桥或检流计,调节电桥电阻使电桥平衡,当电缆芯线材质和截面相同时,若损坏的线芯和良好的芯线在电桥上位置相互调换时,则有式中Z——测量端至故障点的距离m;L——电缆总长度,m;R1、R2——电桥的电阻臂。
在正常情况下,这两种接线测量结果应相同,误差一般为0.1%~0.2%,如果超出此范围或者X>L/2,可将测量仪表移到线路的另一端测量。
另外,我们还可以采用连续扫描脉冲示波器法(MST—1A型或LGS—1型数字式测试仪)进行测试。
短路或接地故障点处反射波将为负反射,示波器荧屏图如图所示。
此时故障点距离可按下列公式计算式中X——反射时间μs;V——波速,m/μs。
两相短路故障点的测试当出现两相短路故障点,测量接线方法如图所示。
测量时可将任一故障芯线作接地线,另一故障芯线接电桥,计算公式和测量方法与单相低电阻接地故障点相同。
三相短路故障点的测试当发生三相短路故障时,测量时必须借用其他并行的线路或装设临时线路作回路,装设临时线路,必须精确测量该线路的电阻,接线方法如同图所示。
HTRS-V变压器容量及空载负载测试仪电缆故障测试仪的使用方法1、电缆故障测试原理本仪器主机采用时域反射(TDR)原理,对被测电缆发射一系列电脉冲,并接收电缆中因阻抗变化引起的反射脉冲,再根据电波在电缆中的传播速度和两次反射波的特征拐点代表的时间,可测出故障点到测试端的距离为:S=VT/2式中:S代表故障点到测试端的距离V代表电波在电缆中的传播速度T代表电波在电缆中来回传播所需要的时间这样,在V已知和T已经测出的情况下,就可计算出故障点距测试端的距离S。
这一切只需稍加人工干预,就可由计算机自动完成,测试故障迅速准确。
本测试系统故障测试有低压脉冲法、多次脉冲法、直闪电流法、冲闪电流法四种基本方式。
2、低压脉冲方式低压脉冲用于测试电缆中电波传播的速度、电缆全长、低阻故障(故障相电阻值低于1K)和开路故障及短路故障,主机即可完成任务,无须多次脉冲产生器。
同时给下一步应 HTRS-V变压器容量及空载负载测试仪用多次脉冲法测试电缆高阻故障提供了依据。
脉冲测试的基本原理测量电缆故障时,电缆可视为一条均匀分布的传输线,根据传输线理论,在电缆一端加上脉冲电压,该脉冲按一定的速度(决定于电缆介质的介电常数和导磁系数)沿线向远端传输,当脉冲遇到故障点(或阻抗不均匀点)就会产生反射,且闪测仪记录下发送脉冲和反射脉冲之间的传输时间△T,则可按已知的传输速度V来计算出故障点的距离Lx,Lx=V•△T/2,如图8所示:测全长则可利用终端反射脉冲:L=V•T/2同样已知全长可测出传输速度:V=2L/T 测试时,在电缆故障相上加上低压脉冲,该脉冲沿电缆 HTRS-V变压器容量及空载负载测试仪传播直到阻抗失配的地方,如中间接头、T型接头、短路点、断路点和终端头等等,在这些点上都会引起电波的反射,反射脉冲回到电缆测试端时被测试仪接收。
测试仪可以适时显示这一变化过程。
根据电缆的测试波形我们可以判断故障的性质,当发射脉冲与反射脉冲同相时,表示是断路故障或终端头开路。
HT-TC电缆故障测试仪电缆故障测试仪操作方法1、电缆故障测试步骤(1)在测定电缆故障之间,测试人员除掌握本机性能与操作方法之外,必须首先确定电缆故障的性质,以便采用适当的工作方法与测试方法。
首先用兆欧表或万用表在电缆一端测量各相对地及相之间的绝缘电阻,根据阻值高低确定是低阻短路或断线开路,或者是高阻闪络性故障。
(2)当阻值低于100欧姆为低阻故障,0~几十欧为短路故障,阻值极高到无限大为开路或断线故障。
是否断线,还可以将电缆终端相连万能用表在始端测量被短路接两相的阻值加以确认。
此类故障可用低脉冲法直接测定。
(3)当阻值很高(数百兆和千兆)且在做高压试验时有瞬间放电现象,此类故障一般称为闪络性故障,可采用直流高压闪测法确定。
(4)高阻故障阻值高于低阻故障,可在做高压实验时用直流高压闪测法确定。
(5)按一定方式粗略测试之后再进行确定点,必要时需找电缆路径,丈量电缆长度或距离。
2、低压脉冲测试法 HT-TC电缆故障测试仪低压脉冲测试法具有操作简单、波形易于识别、准确度高等特点。
对于短路、低阻、断线故障用此法测试,可直接确定故障距离。
即使无此类故障,一般高压闪络测试前,也可以低压脉冲法测电缆全长或速度,与闪络测试波形比较,通常会利于波形分析,达到快速确定故障点目的。
2.1低压脉冲测试基本原理测量电缆故障时,电缆可视为一条均匀分布的传输线,在电缆一端加脉冲电压,则此脉冲按一定的速度(决定于电缆介质电常数和导磁系数)沿线传输,当脉冲遇到故障点(或阻抗不均匀点)就会发生反射,用闪测仪记录下发送脉冲和反射脉冲之间的传输时间△T,则可按已知的传输速度V来计算出故障的距离Lx,Lx=V·△T/2,如图10所示。
图10 测试原理图测全长则可利用终端反射脉冲:L=V·T/2同样已知全长可测出传输速度:V=2L/T2.2低压脉冲测试法测全长测全长操作步骤如下:开机(上电复位)→复位(主菜单)→键 HT-TC电缆故障测试仪1(工作选择菜单)→键1(脉冲菜单)→键1(测全长),然后根据屏幕显示接线图接线,如图11所示。
电缆故障测试仪测试电缆故障的绝对方法绝对方法:感应法基于将磁场捕获在电缆上方的原理,穿过损坏的芯线的声音频率电流从发电机传递。
在这种情况下,电缆周围会形成磁场,磁场强度与电缆中的电流值成正比。
沿着电缆线与接收框架,放大器和耳机的路线,它们会拾取电缆产生的电磁波,直到到达损坏点。
在损坏部位的后面,电话中的音量急剧下降(或消失),并且其周期性放大消失。
由于电缆芯被扭绞,并且在扭绞步骤1-1.5 m期间改变了它们在空间中的位置,因此声音发生了明显的周期性放大,直至损坏的地方。
通过铁芯的电流应足够大(15-20 A),使用感应方法,确定具有稳定性质的两相和三相故障,并且在损伤部位(从铁心到铁心)的过渡电阻值不超过20-25欧姆。
此方法可以确定要维修的断开电缆的位置,并将其放置在一组其他电缆中。
声学方法基于聆听损坏部位上方损坏通道中火花放电引起的声音振动。
在确定浮动击穿(在联轴器中)时,损坏的铁心会充电至击穿电压。
在出现稳定故障时,周期性的直流脉冲会从驱动器通过避雷器馈入电缆的受损芯线,同时在火花隙击穿的同时,在损坏部位会产生火花放电。
使用听诊器或带有压电换能器的特殊设备从地面听到伴随着火花放电的声音,该设备用于将机械振动转换为电振动。
声学方法是确定游泳跳动损伤位置的基础。
使用此方法,您还可以确定:具有稳定特性的单相和多相电路;一根或多根导体的破损并接地。
该方法的有效性取决于在损坏部位伴随火花放电的声音振动的水平(大小)。
使用此方法时,建议在较低的充电电压下使用较大的存储容量。
确定稳定故障时的充电电压应在电缆线工作电压的两到三倍之内。
该方法不适用于芯线与护套的金属连接以及损坏部位没有火花放电的情况。
确定浮动击穿电压时,放电电压应低于测试电压。
应当记住,声学方法很难在街道或工业噪声水平很高的情况下应用(有时是不可能的)。
架空框架法(感应法的一种变型)基于将磁场捕获在电缆上方的原理,来自发电机的声频电流(800-1200 Hz)通过该磁场流经损坏的芯线和护套。
说说使用电缆故障测试仪的测试方法仪器在测定电缆故障之间,测试人员除掌握本机性能与操作方法之外,必须首先确定电缆故障的性质,以便采用适当的工作方法与测试方法。
首先用兆欧或万用表在电缆一端测量各相对地及相之间的绝缘电阻,根据阻值高低确定是低阻短路或断线开路,或者是高阻闪络性故障。
操作方法1、当阻值低于200〜300欧姆为低阻故障,。
〜几十欧为短路故障,阻值极高到无限大为开路或断线故障。
是否断线,还可以将电缆终端相连用表在始端测量被短路接两相的阻值加以确认。
此类故障可用低脉冲法直接测定。
2、当阻值很高(数百兆和千兆)且在作高压实验时有瞬间放电现象,此类故障一般称为闪络性故障,可采用直流高压闪测法确定。
3、高阻故障:阻值高于低阻故障,且在作高压试验时直流高压闪测法确定。
4、按一定方式粗略测试之后再进行确定点,必要时需找电缆路径,丈量电缆长度或距离。
主要特点1、功能齐全,测试故障安全、迅速、准确。
仪器采用低压脉冲法和高压闪络法进行探测,可测试电缆的各种故障,对电力电缆的闪络及高阻故障无需烧穿而直接测试。
如配备声点仪,可准确测定故障点的位置2、测试精度高。
仪器采用高速数据采样技术,读取分辨率标。
智能化程度高。
测试结果以小型及数据自动显示在大屏幕液晶显示屏上,判断故障直观。
并配有菜单显示操作功能,无需对操作人员作专门的训练。
3、具有波开及参数存储、调出功能。
采用非易失性器件,关机后波形、数据不易失。
4、具有双踪显示功能。
可将故障电缆的测试波形与正常波形进行对比,有利于对故障的进一步判断。
5、具有波形扩展比例功能。
改变波形比例,可扩展波形进行精确测试。
6、控制测量光标,可自动沿线搜索,并在故障波形的拐点处自动停下。
7、可任意改变双光标的位置,直接显示故障点与测试点的直接距离或相对距离。
8、具有打印功能。
将测试的结果打印存档。
技术参数1.测试距离不小于10公里。
2.故障点定位误差小于0.5米。
3.电缆路径探测不小于10公里。
电缆故障测试仪的四种实用测定方法电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。
具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。
仪器采用汉字系统,高清晰度显示,界面友好。
一、电缆故障的种类与判断
无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。
电缆故障分为接地、短路、断线三类。
三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断
线或多相断线。
对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。
二、电缆故障点的查找方法
1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。
此方法所用设备为直流耐压试验机。
电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。
当电容器C充电到一定电压值时,球间隙对电缆故障
芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。
查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。
使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。
2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。
该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。
测量电路首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。
再就电缆的另一端测出a’和b’芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a’相和b’相芯线至故障点的一相电阻值。
测完R1与R2后,再按图3所示电路将b’与C’短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。
RL=RX +R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。
因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。
RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。
采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。
3、电容电流测定法电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。
测量电路如图4所示,使用设备为1~2kVA 单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。
测量步骤:
(1)首先在电缆首端分别测出每芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。
(2)在电缆的末端再测量每相芯线的电容电流Ia’、Ib’、Ic’的数值,以核对完好芯线与断线芯线的比容之比,初步可判断出断线距离近似点。
(3)根据电容量计算公式C=1/2πfU可知,在电压U、频率f不变时C与I成正比;因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。
设电缆全长L,芯线断线点距离为x,则Ia/Ic=L/x,x=(Ic/Ia)L。
测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。
4、零电位法零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接线如图5所示。
测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加压E时,相当于在两个并联的均匀电阻丝两端接了电源。
此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零。
反之,电位差为零的两点必然是对应点,因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导电上移动至示值为零时的点与故障点等电位,即故障点的对应点。
图5中K为单相闸刀开关,E为6V蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下:
(1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。
(2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。
(3)合上闸刀开关K,将软导线的断头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。