数字高程模型
- 格式:ppt
- 大小:1.61 MB
- 文档页数:15
数字高程模型(DEM)——知识汇总一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:式中,X i,Y i是平面坐标,Z i是(X i ,Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1. 来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2. 数字高程数据类型1) 分辨率①. 10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②. 12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(Advanced Land Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(AVNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③. 不同分辨率下的晕渲图对比10m分辨率数据12.5m分辨率数据来源: databox.store/product/Details/344图1 不同分辨率下的晕渲图2) 遥感测量方法a) SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。
数字高程模型数字高程模型(Digital Elevation Model,简称DEM)是一种用于表示地球表面高程信息的数字模型。
它通常是基于地理空间数据采集和处理技术得到的数字地形模型,反映了地表不同位置的高程值。
数字高程模型在地理信息系统、地貌分析、水文模拟等领域具有广泛的应用价值。
数字高程模型的原理和构建方法数字高程模型是通过采集地表高程信息,构建数学模型,并进行数字化表达得到的。
构建数字高程模型的最基本方法是通过激光雷达、全球定位系统(GPS)等技术采集地面高程点,并据此构建高程表面模型。
另一种常用的方法是通过航空或卫星影像获取地表高程信息,并结合插值算法生成数字高程模型。
数字高程模型生成的过程中,需要考虑地球椭球体形状、椭球体参数、大地水准面等因素,并进行数学变换和处理以得到准确的高程数据。
常用的数字高程模型包括数字地面模型(DSM)、数字地形模型(DTM)等,它们之间的区别在于对地物表面和地表以下构造的不同描述。
数字高程模型在地理信息系统中的应用数字高程模型在地理信息系统中有广泛的应用,主要包括地形分析、三维可视化、洪水模拟、景观规划等方面。
在地形分析中,数字高程模型可以用于提取地形特征,计算坡度、坡向、流域分割线等地形参数,进而实现地貌分类、地形图绘制等功能。
三维可视化是数字高程模型应用的一个重要领域,通过将数字高程模型与空间数据结合,可以实现虚拟地形的构建和沉浸式视角的展示。
在洪水模拟和预测方面,数字高程模型可以用于模拟雨水径流路径、洪水淹没范围等,为防洪减灾提供重要的数据支持。
数字高程模型的发展趋势随着遥感技术、地理信息系统技术以及计算机处理能力的不断提升,数字高程模型的精度和分辨率也在不断提高。
未来,数字高程模型将更加精细化、高分辨率化,应用领域也将更加广泛,涉及城市规划、资源管理、环境保护等方面。
另外,数字高程模型的数据融合、多源信息整合、模型开放共享等方向也是未来发展的重点。
1、数字高程模型:它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型(简称DTM)的一个分支,是表示区域D上的三维向量有限序列。
2、DTM:数字地形模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一个简单的统计表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
地形表面形态的属性信息一般包括高程、坡度、坡向等。
3、TIN:不规则三角网,通过从不规则分布的数据点生成的连续三角面来逼近地形表面。
4、测绘4D产品(即DLG数字线划图、DRG数字栅格影像、DEM、DOM数字正射影像):DLG:现有地形图上基础地理要素分层存储的矢量数据集。
数字线划图既包括空间信息也包括属性信息。
DRG:数字栅格地图是纸制地形图的栅格形式的数字化产品。
DEM:数字高程模型是以高程表达地面起伏形态的数字集合。
DOM:数字正射影像利用航空相片、遥感影像,经象元纠正,按图幅范围裁切生成的影像。
5、连续不光滑DEM:指每个数据点代表的只是连续表面上的一个采样值,而表面的一阶导数或更高阶导数不连续的情况。
6、数字地貌模型:是地貌形体及其空间组合的数字形式,是一维、二维、三维、四维空间地貌的可视描述和模拟。
7、DEM误差:DEM高程值与真实值的差异9、插值:根据不同数据集的不同方式,DEM建模可以使用一个或多个数学函数对地表进行表示。
根据若干相邻参考点的高程求出待定点上的高程值。
(内插)14、不规则镶嵌数据模型:用相互关联的不规则形状与边界的小面块集合来逼近不规则分布的地形表面15、行程编码结构:对于一幅栅格图像,常常有行或列方向上相邻的若干点具有相同的属性代码,因而可采取某种方法压缩那些重复的记录内容,即只在各行或列数据的代码发生变化时依次记录该代码以及相同代码重复的个数,从而实现压缩16、细节层次模型:对同一个区域或区域中的局部使用具有不同细节的描述方法得到的一组模型。
一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:V i=(X i,Y i,Z i);i=1,2,…,n式中, X i, Y i是平面坐标, Z i是(X i, Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1.来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2.数字高程数据类型1)分辨率①.10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②.12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(AdvancedLand Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(A VNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③.不同分辨率下的晕渲图对比图 1 不同分辨率下的晕渲图2)遥感测量方法a)SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。
数字高程模型的概念一、引言数字高程模型(Digital Elevation Model,简称DEM)是地球表面地形形态和特征的数字表达。
它是一种数据格式,用于存储、管理和显示地球表面某一特定范围内的高程数据。
DEM在地理信息系统(GIS)、遥感(RS)、全球定位系统(GPS)等领域有着广泛的应用。
二、高程数据高程数据是数字高程模型的基础,它描述了地球表面某一特定范围内的高程信息。
高程数据可以是绝对高程或相对高程。
绝对高程是以地球质心为参考点,测量得到的高程;相对高程则是相对于某一特定基准面(如海平面)的高程。
高程数据的精度和分辨率直接影响数字高程模型的精度和详细程度。
三、地形形态地形形态是地球表面地形的高低起伏状态,包括山峰、山谷、平原、高原等地形。
数字高程模型通过表达地形形态,可以反映地球表面地形的高低起伏变化。
地形形态是数字高程模型的重要特征之一,它对于地貌分析、土地利用、水资源管理等领域具有重要意义。
四、地形特征地形特征是指地球表面地形上的特殊点或区域,如山峰、河流、湖泊等。
数字高程模型通过表达这些地形特征,可以提供更丰富的地理信息。
例如,通过提取山峰数据,可以分析山脉的分布和高度;通过提取河流数据,可以分析流域的水文特征。
地形特征对于环境监测、城市规划、交通布局等领域具有重要应用价值。
五、总结数字高程模型是地球表面地形形态和特征的数字表达,它通过高程数据、地形形态和地形特征等要素,提供了丰富的地理信息。
数字高程模型在地理信息系统、遥感、全球定位系统等领域有着广泛的应用,为地貌分析、土地利用、水资源管理、环境监测、城市规划等领域提供了重要的支持和参考。
随着科技的发展,数字高程模型的应用范围还将不断扩大,为人类提供更全面、更准确的地理信息。
+第一章绪论数字地形图:在测绘领域,地形图是一个专有名词。
国内的地形图(国外的不了解)一般特指那些特定比例尺系列、有着固定分幅范围的、全面表达地表面的地形、地物特征的地图。
其内容特点是全面、均衡、不突出表达某种要素。
一般包括:测量控制点、居民地、水系、交通、管线、地貌、植被等内容。
数字地形图的历史形态是模拟地形图,一般是纸质的。
数字高程模型(DEM):地形图上的地貌是用等高线、高程点、陡坎、陡崖等表达的。
等高线和高程点,外加陡坎、陡崖及其比高构成了一种“高程模型”。
通过对他们的判读,可以得到对地表高程的总体印象,是对实际地貌的一种模拟。
数字地形图上的等高线和高程点是数字高程模型的一种。
不规则三角网、规则格网都可以是数字高程模型,其核心特点是都可以对地表高程信息进行完整的模拟。
数字地面(地形)模型(DTM):地形是“地表形态”或“地貌形态”的简称。
地形可以用高程来描述,也可以用坡度、坡向等信息来描述。
数字地形模型包括数字高程模型、数字坡度模型、数字坡向模型等。
数字表面模型(DSM):DEM必须是高程信息,是对地形和地貌的模拟,DSM可以是地物表面的模拟,包括植被表面、房屋的表面,对DSM进行加工,去掉房屋、植被等信息,可以形成DEM。
模型(Model):用来表现其它事物的一个对象或概念,是按比例缩减并转变为能够理解的事物本体。
模型可用来表示系统或现象的最初状态,或表现某些假定或预测的情形。
三个层次:概念模型----基于个人的经验与知识在大脑中形成的关于状况或对象的模型。
物质模型----模拟的模型。
如沙盘,塑料地形模型。
数学模型----基于数字系统的定量模型。
用数学的语言、方法去近似地刻划实际,是由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。
•(1)按照模型的应用领域(或所属学科)如人口模型,生物模型,生态模型,交通模型,作战模型等。
•(2)按照建立模型的数学方法(或所属数学分支)如初等模型,微分方程模型、网络模型、运筹模型、随机模型等。
数字高程模型(Digital Elevation Models, DEM)主要用于描述地面起伏状况,可以用于各种地形信息提取,如坡度、坡向等,并进行可视化分析等应用分析。
DEM在土木工程设计、军事指挥等众多领域被广泛使用。
一、基于DEM的信息提取(一)、坡度的计算地表单元的坡度就是其切平面的法线方向与Z轴的夹角。
若需求格网点上的坡度时,可取3×3的格网单元进行计算。
也可求出该格网点八个方向上的坡度,再取其平均值。
(详细的计算方法)(二)、坡向的计算坡向是地表单元的法向量在OXY平面上的投影与X轴之间的夹角。
(详细的计算方法)二、基于DEM的可视化(一)、剖面分析研究地形剖面,常常可以以线代面,研究区域的地貌形态、轮廓形状、地势变化、地质构造、斜坡特征、地表切割强度等等。
如果在地形剖面上叠加上其它地理变量,例如坡度、土壤、植被、土地利用现状等,可以提供土地利用规划、工程选线和选址等的决策依据。
坡度图的绘制应在格网DEM或三角网DEM上进行。
已知两点的坐标A(x1,y1),B(x2,y2),则可求出两点连线与格网或三角网的交点,以及各交点之间的距离。
然后按选定的垂直比例尺和水平比例尺,按距离和高程绘出剖面图。
在格网或三角网交点的高程通常可采用简单的线性内插算出,且剖面图不一定必须沿直线绘制,也可沿一条曲线绘制,但其绘制方法仍然是相同的。
(剖面分析例图)(二)、通视分析通视分析是指以某一点为观察点,研究某一区域通视情况的地形分析。
通视分析的核心是通视图的绘制。
绘制通视图的基本思路是:以以O为观察点,对格网DEM或三角网DEM上的每个点判断通视与否,通视赋值为1,不通视赋值为0。
由此可形成属性值为0和1的格网或三角网。
对此以0.5为值追踪等值线,即得到以O为观察点的通视图。
因此,判断格网或三角网上的某一点是否通视成为关键。
(通视分析例图)另一种利用DEM绘制通视图的方法是,以观察点O为轴,以一定的方位角间隔算出0°~360°的所有方位线上的通视情况。
测绘技术中常见的数字高程模型介绍测绘技术在现代社会中发挥了重要的作用,尤其是在城市规划、土地利用以及自然灾害防治等方面。
数字高程模型(Digital Elevation Model, DEM)是测绘技术中常见且重要的一个概念。
本文将介绍数字高程模型的概念、应用以及构建方法。
一、数字高程模型的概念数字高程模型指的是一种描述地表形态及其相关信息的数学模型。
它用离散的数据点或像元来表示地面的高程信息。
数字高程模型能够精确表达地表的高低起伏,并且能够提供用于分析和测量的几何和地形属性,如高度、坡度和坡向等。
二、数字高程模型的应用数字高程模型在测绘技术中有着广泛的应用。
首先,它在地图制作中起到了至关重要的作用。
数字高程模型能够提供地形的三维信息,帮助测绘人员更加准确地绘制地图。
其次,数字高程模型也是土地规划和建设工程设计的重要工具。
通过数字高程模型,规划师和工程师能够深入了解地表形态特征,为城市规划和建设提供科学依据。
此外,数字高程模型在环境保护、水资源管理以及自然灾害预测和防治等领域也有着广泛的应用。
三、数字高程模型的构建方法数字高程模型的构建有多种方法,主要包括测量和遥感两种方式。
测量方式包括地面实地测量和空中摄影测量。
地面实地测量通常使用全站仪或GPS等测量仪器对地面进行测量,然后通过插值法将测量数据构建成数字高程模型。
空中摄影测量则是通过航空器从空中获取影像,再通过摄影测量技术提取地面高程信息,并通过数字影像处理软件构建数字高程模型。
遥感方式则是利用航天卫星或航空器搭载的遥感传感器获取地表影像数据,通过图像处理技术提取高程信息,并构建数字高程模型。
这种方式可以快速且经济地获取大范围的地表高程信息。
四、数字高程模型的分类根据数据的来源和表示方式,数字高程模型可以分为灰度 DEM、三角网 DEM 和等高线 DEM。
灰度 DEM 是最常见的一种数字高程模型,它使用灰度图像来表示地表的高程信息。
三角网 DEM 是通过将地表划分为多个三角网单元,利用分析网格单元内的高程数据构建数字高程模型。