电工基础两种电源模型的等效变换
- 格式:doc
- 大小:57.50 KB
- 文档页数:2
实际电压源与电流源的两种模型及其等效变换 - 电工基础1.实际电压源一个实际电压源,可用一个抱负电压源 us 与一个电阻 Rs 串联的支路模型来表征其特性。
当它向外电路供应电流时,它的端电压 u 总是小于 us ,电流越大端电压 u 越小。
us = Us时,其外特性曲线如下:Rs :电源内阻,一般很小。
2.实际电流源一个实际电流源,可用一个电流为 iS 的抱负电流源和一个内电导 GS 并联的模型来表征其特性。
当它向外电路供应电流时,并不是全部流出,其中一部分将在内部流淌,随着端电压的增加,输出电流减小。
Gs:电源内电导,一般很小。
iS = IS时,其外特性曲线如下:3.两种实际电源的等效互换实际电压源、实际电流源两种模型可以进行等效变换,所谓的等效是指端口的电压、电流在转换过程中保持不变。
即:通过比较,得等效的条件:留意事项(1)“等效”是指“对外”等效(等效互换前后对外伏—安特性全都),对内不等效。
开路的电压源中无电流流过 RS;开路的电流源可以有电流流过并联电导GS 。
电压源短路时,电阻RS有电流;电流源短路时,并联电导GS中无电流。
(2)留意转换前后US与IS的方向。
(3)进行电路分析和的计算时,恒压源(或受控电压源)串联电阻的支路和恒流源(或受控电流源)并联电阻的支路之间均可等效变换。
其中RS不肯定是电源内阻。
(4)抱负电压源和抱负电流源之间不能等效互换。
应用:利用电源转换可以简化电路计算。
例7.例8.受控源间的等效变换与独立电源相同可以用两种受控电源等效互换的方法简化受控源电路。
但简化时留意不能把把握量化简掉。
否则会留下一个没有把握量的受控源电路,使电路无法求解。
电工电子技术第一套单项选择题(共8题,共40分)1.题图所示电路中,电阻R1支路的电流I为。
(B)A -3AB 5AC 2A2.三相电路中,三相对称负载做Y连接,三个线电流均为3A,则中线电流是。
(C)A 3AB 6AC 0A3.题图所示变压器,已知初级绕组N1=300匝,R=8Ω,从原方看入的电阻R i是72Ω,则变压器次级绕组N2为。
(C)A 200匝B 300匝C 100匝4.当0<s<1时,说明异步电机工作在状态。
(A)A 电动机B 发电机C 电磁制动5.题图所示电路中,硅稳压二极管VZ1的稳定电压为6V,VZ2的稳定电压为8V,两管的正向压降均为0.7V,则输出端的电压U o为。
(C)A 14VB 8V C8.7V6.放大电路引入电压串联负反馈,可以使电路的输入电阻。
(A)A增大 B 减小 C 不变7.数字电路内部电路器件如二极管、三极管、场效应管,它们一般处于___工作状态。
(C)A 截止 B 导通C 截止或导通8.JK触发器除了具有基本的置位和复位功能,还有功能。
(C)A 保持 B 翻转 C 保持和翻转判断题(共6题,共30分)1.基尔霍夫定律的理论依据是电荷守恒定律及能量守恒定律,对电路中各元件的种类、性质需加以限制。
错2.三相交流电路中,无论负载是对称还是不对称,三相电路总的有功功率都等于各相负载的有功功率之和。
对3.在三相异步电动机的三个单相绕组中,三相对称正弦交流电的幅值相等,相位互差150°。
错4.基本放大电路在输入端无输入信号时的状态被称为静态,此时电路内器件各点电位、各支路电流作静态运行,几乎不消耗直流电源提供的能量。
错5.当电路引入深度负反馈时,放大倍数A f可以认为与原放大倍数A无关,它取决于反馈回路的反馈系数F的大小。
对6.组合逻辑电路的电路结构中包含门电路和触发器。
错分析计算题(共2题,共30分)1.现有一台三相异步电动机,已知其额定功率为10KW,额定电压为380V,额定转速980r/min,额定工作效率η=95%,额定工作电流I N=18A,启动能力系数为1.5,过载系数为2.2。
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
《电工基础》试题库说明:『1』本试题库使用专业:机电系大专专业『2』课程考核要求与知识点第一章电路的基本概念和基本定律1、识记:基本概念基本定律2、理解:(1)电位、电功率、电能的概念。
(2)电压、电流及它们的参考方向。
(3)电阻元件电压与电流关系,欧姆定律。
(4)电压源和电流源的电压与电流关系(5)基尔霍夫电流定律和电压定律。
3、运用:(1)参考方向的应用;(2)应用KCL、KVL求未知电流和电压第二章电路的分析方法1、识记:(1)电阻并、串联特性;(2)电阻星、三角连接的等效互换公式(3)两种电源模型的等效互换条件;(4) 戴维宁定理的条件和内容2、理解:(1)等效变换的概念。
(2)两种电源模型的等效互换条件;(3)戴维宁定理的条件和内容(4)叠加定理的条件和内容3、运用:(1)电阻串联、并联、混联的连接方式和等效电阻、电压、电流、功率的计算,电路中各点电位的计算。
(2)支路电流法、网孔法、节点法求解电路的方法(3)应用戴维宁定理确定负载获得最大功率的条件(4)运用叠加定理分析含有两个直流电源的电路。
第三章正弦交流电路1、识记:(1)正弦量的频率、角频率、周期的关系;(2)正弦量有效值、最大值、平均值的关系;(3)正弦量的相量表示法;(4)各种元件的复阻抗;(5)R、L、C元件电压与电流关系,感抗、容抗,平均功率(有功功率)、无功功率。
2、理解:(1)正弦交流电路量的特点;(2)R、L、C元件在正弦交流电路中电压和电流的各种关系;(3)串、并联谐振;3、运用:(1)RL、RC串、并联电路的分析(2)RLC串、并联电路的分析(3)有功功率、无功功率、视在功率、功率因数的计算第四章三相正弦交流电路1、识记:(1)对称三相正弦量(2)星形、三角形两种联结方式下线电压、相电压的关系,线电流、相电流、中性线电流的关系(3)对称三相电路的功率2、理解:(1)对称三相电路的分析方法(2)不对称三相电路的分析方法及中线的作用3、运用:(1)对称三相电路的分析计算(2)不对称三相电路的分析计算第五章磁路与变压器1、识记:(1)磁路的基本概念和定律;(2)变压器的特性参数2、理解:(1)铁磁性物质的磁化性能与磁化曲线和磁路的欧姆定律(2)交流铁心线圈电路磁通与外加电压的关系(3)变压器的结构和工作原理(4)特殊变压器的使用第六章供电与安全用电1、识记:安全用电和节约用电常识2、理解:发电、输电及工企供电配电第七章电工测量1、识记:(1)电工仪表与测量的基本常识;(2)万用表的使用方法2、理解:万用表的的结构3、运用:电压、电流的测量;电阻的测量;电功率的测量;电能的测量『3』考试命题内容具体分配情况(1)试题对不同能力层次要求的比例为:识记约占15%,理解约占45%,运用占40%;(2)试卷中不同难易度试题的比例为:较易占20%,中等占70%,较难占10%;(3)期末试题从本试题库中抽取。
第2章 习 题2-1 求图2-40电路二端网络的等效电阻。
2-2 计算图2-41电路中的电流I 。
2-3 利用两种电源模型等效变换将图2-42所示电路化成最简形式。
2-4 利用电源的等效变换求图2-43所示电路中的电流I 。
2-5 列出用支路电流法求图2-44所示电路的方程。
2-6 如图2-45所示,列出用网孔法求解电路的方程,并将支路电流用网孔电流表示。
图2-40 习题2-1图图2-41 习题2-2图图2-42 习题2-3图2-43 习题2-4图图2-44 习题2-5图图2-45 习题2-6图图2-46 习题2-7图2-7如图2-46所示,用网孔法求各支路电流。
2-8 用网孔法求解图2-47所示电路中各支路电流。
2-9 如图2-48所示,分别用支路电流法、网孔法和节点法求各支路电流。
2-10 用节点法求解图2-49所示电路中各电阻上的电流。
2-11列出用节点法求解图2-50所示电路的方程。
2-12 用叠加原理计算图2-51中的电流I 和电压U 。
2-13用叠加原理求图2-52电路中的电流I 。
2-14 用戴维南定理将图2-53电路化简。
图2-49 习题2-10图图2-50 习题2-11图2-51 习题2-12图图2-52 习题2-13图图2-53 习题2-14图图2-48 习题2-9图图2-47 习题2-8图2-15用戴维南定理求图2-54电路中的电流I 。
2-16用戴维南定理求图2-55电路中的电压U 。
2-17用诺顿定理将图2-53电路化简。
2-18如图2-56所示电路,电阻R 为多大时能获得最大功率?并计算电阻上的最大功率。
2-19 列出用节点法求解图2-57所示电路的方程。
2-20 用叠加原理求解图2-58所示电路的电压U 。
2-21 用戴维南定理求图2-59所示电路的电流I 。
图2-54 习题2-15图图2-55 习题2-16图图2-56 习题2-18图图2-57 习题2-19图图2-58 习题2-20图图2-59 习题2-21图测试题1、填空题(10分)(1)两只电阻并联,电阻的阻值之比为2︰3,则这两只电阻上电流之比为 。
课 题 3-5两种电源模型的等效变换(2课时) 时间:10月15日教学目标 1.建立电压源和电流源的概念。
2.掌握电压源与电流源的等效变换。
教学重点 电压源与电流源的等效变换条件和应用场合。
教学难点 应用电压源与电流源的等效变换解题。
学情分析 学生在前面的学习中已接触过电压源。
课前复习戴维宁定理的内容。
第五节 两种电源模型的等效变换一、电压源1.电压源:为电路提供一定电压的电源。
2.恒压源:电源内阻为零,电源提供恒定不变的电压。
3.恒压源的特点(1)它的电压恒定不变。
(2)通过它的电流可以是任意的,且决定于与它连接的外电路负载的大小。
4.符号二、电流源1.电流源:为电路提供一定电流的电源。
2.恒流源:电源内阻为无穷大,电源将提供恒定不变的电流。
3.恒流源的特点(1)它提供的电流恒定不变,不随外电路而改变。
(2)电源端电压是任意的,且决定于外电路。
4.符号三、电压源与电流源的等效变换1.电压源 = 理想电压源串联内阻R 0电流源 = 理想电流源并联内阻R 02.电压源U = U S - I R 0I =0S R U U - 电流源I = I S -SR U 对外等效0S R U U - = I S - S R U 所以I S = 0S R U = SS R U ,R 0 = R S 3.结论(1)一个电压源与电阻的串联组合,可用一个电流源与电阻的并联组合来等效代替。
条件:I S = U S / R 0,R S = R 0,如下图(2)一个电流源与电阻的并联组合,可用一个电压源与电阻的串联组合来等效代替。
条件:U S = I S R S,R0 = R S如下图。
四、举例例1:例1例2:例2注意:(1)I S与U S的方向一致。
(2)等效变换对外电路等效,对电源内部不等效。
(3)恒压源和恒流源之间不能等效。
五、电源等效变换及化简原则1.注意点(3)2.两个并联的电压源不能直接合并成一个电压源,但两个并联的电流源可以直接合并成一个电流源。
电工电子技术基础与技能知识点汇总1.电路:由电源、用电器、导线和开关等组成的闭合回路。
电源:把其他形式的能转化为电能的装置。
用电器:把电能转变成其他形式能量的装置。
2.电路的状态:通路(闭路)、开路(断路)、短路(捷路):短路时电流很大,会损坏电源和导线,应尽量避免。
3.电流:电荷的定向移动形成电流。
形成条件(1) 要有自由电荷。
(2) 必须使导体两端保持一定的电压(电位差)。
方向规定:正电荷定向移动的方向为电流的方向。
4.电流的大小等于通过导体横截面的电荷量与通过这些电荷量所用时间的比值。
I = tq 5.电阻定律:在保持温度不变的条件下,导体的电阻跟导体的长度成正比,跟导体的横截面积成反比,并与导体的材料性质有关。
R = ρ Sl 6.一般金属导体,温度升高,其电阻增大。
少数合金电阻,几乎不受温度影响,用于制造标准电阻器。
超导现象:在极低温(接近于热力学零度)状态下,有些金属(一些合金和金属的化合物)电阻突然变为零,这种现象叫超导现象。
7.电能:电场力所做的功即电路所消耗的电能W = U I t 。
.电流做功的过程实际上是电能转化为其他形式的能的过程。
1度 = h k W 1⋅ = 3.6 ⨯ 106 J8.电功率:在一段时间内,电路产生或消耗的电能与时间的比值。
P = tW 或P = U I 9.焦耳定律:电流通过导体产生的热量,跟电流的平方、导体的电阻和通电时间成正比。
Q = I 2 R t10、电源的电动势:等于电源没有接入电路时两极间的电压。
用符号E 表示。
(1)电动势由电源本身决定,与外电路无关。
(2)电动势方向:自负极通过电源内部到正极的方向。
11、电动势与外电路电阻的变化无关,但电源端电压随负载变化,随着外电阻的增加端电压增加,随着外电阻的减少端电压减小。
当外电路断开时,R 趋向于无穷大。
I = 0,U = E - I R 0 = E ;当外电路短路时,R 趋近于零,I 趋向于无穷大,U 趋近于零。
第三章复杂直流电路
---两种电源模型及其等效变换
一.填空
1.为电路的电源称为电压源,如果电压源内阻为,电源将提供,则称为理想电压源简称恒压源。
为电路的电源称为电流源,如果电流源内阻为,电源将提供,则称为理想电流源简称恒流源。
2.电压源与电流源的等效变换中对等效,对不能等效。
3.电压源变换为等效电流源的公式为,内阻R0的数值,改为联;电流源变换为电压源的公式为内阻r的数值,改为联;
4.两种电源模型的等效变换时,I
S 与U
S
的方向应当一致,即I
S
的端与U
S
的应互相对应。
二.是非判断
1.恒压源和恒流源之间也能等效变换。
()
2.理想电流源的输出电流和电压都是恒定的,是不随负载而变化的。
()
3.理想电压源的输出电流和电压都是恒定的,是不随负载而变化的。
()三.将下图中的电流源和电压源进行互换
四.计算
1.用电压源与电流源等效变换法,求图所示电路中流过R的电流。
其中E1=E2=3V,E3=9V,R1=R2=R3=3Ω,R=1Ω。
2.利用电源的等效变换计算图中的电流I
3。
3.试用电压源与电流源等效变换的方法计算图中2Ω电阻中的电流I。