自润滑衬垫磨损表面润滑覆盖层的形成及其性质
- 格式:pdf
- 大小:1.61 MB
- 文档页数:4
第2章磨擦、磨损及润滑概述(一)教学要求掌握摩擦副分类及基本性质、磨损过程及润滑剂类型。
(二)教学的重点与难点摩擦副基本性质、典型磨损过程及润滑剂的选择(三)教学内容§2.1 摩擦摩擦——两接触的物体在接触表面间相对滑动或有一趋势时产生阻碍其发生相对滑动的切向阻力,——这种现角叫磨擦磨损——由于摩擦引起的摩擦能耗和导致表面材料的不断损耗或转移,即形成磨损。
使零件的表面形状与尺寸遭到缓慢而连续破坏→精度、可靠性↓效率↓直至破坏润滑——减少摩擦、降低磨损的一种有效手段。
摩擦学——包含力学、流变学、表面物理、表面化学及材料学、是边缘和交叉学科。
一、干摩擦——两摩擦表面直接接触,不加入任何润滑剂的摩擦而实际上,即使很洁净的表面上也存在脏污膜和的氧化膜,实际f比在真空中测定值小很多。
机理:②机械摩擦理论→认为两个粗糙表面接触时,接触点相互啮合,摩擦力为啮合点问切向阻力的总和,表面越粗糙,摩擦力就越大。
但不能解释光F越大,且与滑动速度V 滑表面间的摩擦现象——表面愈光滑、接触面越大,f有关。
二、边界摩擦(边界润滑)——摩擦面上有一层边界膜起润滑作用边界膜物理吸附膜——润滑油中脂肪酸极性分子与金属表面相互吸引而引成的吸附膜,其摩擦如图2-4a和2-4b所示,图2-5为吸附在金属表面上的多层分子膜模型,距表面愈远吸附能力愈弱,剪切强度愈低,f随层数而下降。
膜——边界膜较薄(一个分子长约2nm,如膜有10个分子厚,其厚度为0.02μm,远小于两摩擦表面的粗糙度之和),∴磨损不可避免。
另外,温度对物理吸附膜影响较大→受热膜易脱附、乱向甚至破坏,∴适于常温、轻载、低速下工作。
化学吸附膜——由润滑油中的分子靠分子键与金属表面形成化学吸附的称——强度、稳定性好于物理吸附膜,受热后熔化温度较高,适合于中等载荷、速度和温度下工作。
化学反应膜——润滑油中加入硫、磷等元素的化合物(即添加剂)与金属表面进行化学反应而形成的膜——较厚、熔点较高、剪切强度较低、稳定性较好,∴适合于重载、高速和高温。
自润滑复合材料论文-自润滑材料及其摩擦特性摘要:自润滑复合材料是材料科学研究领域的一个重要发展方向,由于其在特殊使用条件下具有优良的摩擦学特性而受到人们的广泛关注。
本文主要介绍国内外自润滑复合材料的开发与进展,讨论了对材料摩擦学性能的影响因素。
关键词:固体润滑摩擦磨损自润滑复合材料一、前言:液态润滑(润滑油、脂)是传统的润滑方式,也是应用最为广泛的一种润滑方式。
但液体润滑存在一下问题:1.高温作用下添加剂容易脱落;2.随温度升高,其粘性下降,承载能力下降;3.高温环境下其性能衰减等问题;4.液体润滑会增加成本,如切削加工中的切削液;5.液体润滑会造成环境污染。
所以,自润滑材料已成为润滑领域的一类新材料,成为目前摩擦学领域的重要研究热点。
二、自润滑材料的种类自润滑材料一般分为金属基自润滑材料、非金属基自润滑材料和陶瓷自润滑材料。
其制备方法通常为粉末冶金法,此外,等离子喷涂、表面技术和铸造法也被应用于自润滑复合材料的制备。
1金属基自润滑材料金属基自润滑复合材料是以具有较高强度的合金作为基体,以固体润滑剂作为分散相,通过一定工艺制备而成的具有一定强度的复合材料。
目前已开发的金属基自润滑复合材料,如在铁基、镍基高温合金中添加适量的硫或硒及银基和铜基自润滑材料,都已得到一定程度的应用。
2非金属基自润滑材料非金属基自润滑材料主要是指高分子材料或高分子聚合物,如尼龙等。
它在航空航天、汽车制造、电子电气、医疗和食品加工等领域得到广泛应用。
目前高分子基自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度;通过添加各类固体自润滑剂来提高摩擦性能。
3陶瓷自润滑材料陶瓷材料以其独特的特点和优点,使得陶瓷及陶瓷复合材料的自润滑研究已经引起了较为广泛的重视。
三、自润滑减摩材料的特点、性能1 粉末冶金法制造减摩材料的特点(1)在混料时可掺入各种固体润滑剂(如石墨、硫、硫化物、铅、二硫化钼、氟化钙等),以改善该材料的减摩性能;(2)利用烧结材料的多孔性,可浸渍各种润滑油,或填充固体润滑剂,或热敷和滚轧改性塑料带等,使材料更具自润滑性能,减摩性能特佳;(3)优良的自润滑性,使它能在润滑剂难以到达之处和难以补充加油或者不希望加油(如医药、食品、纺织等工业)的场合,能安全和无油污染的使用;(4)较易制得无偏析的、两种以上金属的密度差大的铜铅合金—钢背、铝铅合金—钢等双金属材料;(5)材料具有多孔的特性,能减振和降低噪声;(6)材质成分选择灵活性大,诸如无机材料金属及合金、非金属、化合物和有机材料聚合物等,均可加入其中,并能获得较理想的减摩性能,例如高石墨含量的固体润滑减摩材料等;(7)特殊用途的减摩材料,如空气轴承、液压轴承、耐腐蚀性轴承等,更发挥了粉末冶金减摩材料的特点。
润滑名词解释(精制知识)润滑类(1)润滑(Lubrication)用润滑剂减少两摩擦表面之间的摩擦和磨损或其它形式的表面破坏。
(2)润滑类型(Types of Lubrication)润滑剂在两表面间存在的条件和状态。
(3)流体润滑(Fluid Lubrication) 作相对运动的两固体表面被具有体积粘度特性的流体润滑剂完全隔开时的润滑状态。
(4)混合润滑(Mixed Lubrication) 在两固体的摩擦表面之间同时存在着干摩擦、边界润滑或流体润滑的混合状态下的润滑状态。
(5)固体润滑(Solid Lubrication) 作相对运动的两固体表面之间被粉末状或薄膜状固体润滑剂隔开时的润滑状态。
(6)边界润滑(Boundary Lubrication) 作相对运动的两固体表面之间的摩擦磨损特性取决于两表面的特性和润滑剂与表面间的相互作用及所生成边界膜的性质的润滑状态。
(7)极压润滑(Extreme-pressure Lubrication) 作相对运动的两固体表面之间的摩擦磨损特性取决于润滑剂在重载下与摩擦表面产生化学反应的润滑状态。
(8)流体动压润滑(Hydrodynamic Lubrication) 依靠运动副滑动表面的形状在相对运动时形成一层具有足够压力的流体膜,从而将两表面分隔开的润滑状态。
又称流体动力润滑。
(9)流体静压润滑(Hydrostatic Lubrication) 依靠外部的供油系统将具有一定压力的润滑剂供送到支承中,在支承油腔内形成具有足够压力的润滑油膜将两表面分隔开的润滑状态。
又称流体静力润滑。
(10) 弹性流体动压润滑(Elasto-hydrodynamic Lubrication) 相对运动两表面之间的摩擦和流体润滑剂膜的厚度取决于表面弹性形变以及润滑剂在表面接触区的流变特性的润滑状态。
又称弹性流体静力润滑。
(11)气体润滑(Gas Lubrication)相对运动两表面被气体润滑剂分隔开的润滑。
自润滑关节轴承衬垫磨损机理研究作者:董炳武邓四二张文虎来源:《智能制造》2020年第08期摘要:为了研究自润滑衬垫材料PTFE织物复合材料在高频轻载条件下的磨损性能,本文以高频轻载自润滑关节轴承关键部件自润滑衬垫为研究对象,深入研究了自润滑材料的失效模式,结合高速压摆轴承试验机对自润滑衬垫材料磨损性能进行分析。
结果表明:在相同条件下,外加载荷越大,材料温度上升越高,磨损量也越大;在相同条件下,摆动频率越大,材料温度上升越高,磨损量也越大。
关键词:自润滑关节轴承;衬垫材料;磨损机理1 引言在自润滑关节轴承中,失效模式主要为自润滑衬垫材料的磨损失效,刘建等[1]研究了PTFE编织复合材料在不同摆动频率、载荷下对摩擦因数的影响规律,表明材料的摩擦因数随载荷增大呈稳定降低趋势,最后趋于平稳且载荷对摩擦因数的影响大于频率的影响,对不同载荷频率下产生的PTFE编织复合材料转移膜的分析,从微观上解释了摆动频率、载荷对PTFE 编织复合材料摩擦因数的作用机理。
张智源等[2,3]研究了循环次数和循环温度对PTFE编织复合材料摩擦因数的影响,表明随着循环次数的增加PTFE编织复合材料的摩擦因数先升高后趋于平稳,在达到极限磨损量后,摩擦因数急剧上升,材料发生失效;同时摩擦温度的升高会导致PTFE编织复合材料进入非正常磨损状态。
King R.B[4]研究了自润滑衬垫在常温和高温下的磨损特性,表明在高温条件下自润滑衬垫更容易发生失效。
王彻[5]制备TiC/Y2O3/TiAl基自润滑材料制备的关节轴承并在高温条件下进行试验,表明该基体磨损率远低于普通的关节轴承。
综上所述,国内外专家学者对自润滑关节轴承衬垫材料的磨损性能进行了大量研究,但是缺乏对于该材料在高频轻载工况下的磨损机理研究。
鉴于此,本文研究了自润滑衬垫材料PTFE织物复合材料在高频轻载条件下的磨损性能,为高频轻载自润滑关节轴承磨损寿命模型提供了理论基础。
2 试验方法自润滑关节轴承一般运动模式为绕内圈外球面进行摆动,是一种简单的滑动摩擦,参考ISO-7148-1999[6]。