李晓飞-谈盾构法隧道管片选型及拼装技术
- 格式:pdf
- 大小:321.54 KB
- 文档页数:2
盾构法隧道施工管片拼装一、一般规定1、拼装前,管片防水密封材料的粘贴效果应验收合格。
2、管片选型应符合下列规定:(1)应根据设计要求,选择管片类型、排版方法、拼装方式和拼装位置;(2)当在曲线地段或需纠偏时,管片类型和拼装位置的选择应根据隧道设计轴线和上一环管片姿态、盾构姿态、盾尾间隙、推进油缸行程差和铰接油缸行程差等参数综合确定。
3、管片应按便于拼装的顺序存放,存放场地基础条件应满足承载力要求。
4、拼装管片时,拼装机作业范围内严禁站人和穿行。
二、拼装作业1、管片拼装前,应对上一衬砌环面进行清理。
2、应控制盾构推进液压缸的压力和行程,并应保持盾构姿态和开挖面稳定。
3、应根据管片位置和拼装顺序,逐块依次拼装成环。
4、管片连接螺栓紧固扭矩应符合设计要求。
管片拼装完成,脱出盾尾后,应对管片螺栓及时复紧。
5、拼装管片时,应防止管片及防水密封条损坏。
6、对已拼装成环的衬砌环应进行椭圆度抽查。
7、当盾构在既有结构内空推并拼装管片时,应合理设置导台,并应采取措施控制管片拼装质量和壁后填充效果。
8、当在富水稳定岩层掘进时,应采取防止管片上浮、偏移或错台的措施。
9、当在联络通道等特殊位置拼装管片时,应根据特殊管片的设计位置,预先调整盾构姿态和盾尾间隙,管片拼装应符合设计要求。
三、拼装质量控制1、管片不得有内外贯穿裂缝、宽度大于0.2mm的裂缝及混凝土剥落现象。
2、管片防水密封质量应符合设计要求,不得缺损,粘结应牢固、平整。
3、螺栓质量及拧紧度应符合设计要求。
4、管片拼装过程中应对隧道轴线和高程进行控制,其允许偏差和检验方法应符合表9.3.4的规定。
表9.3.4 隧道轴线和高程允许偏差和检验方法(mm)注:本表中市政隧道包括给水排水隧道、电力隧道等。
5、施工中管片拼装允许偏差和检验方法应符合表9.3.5的规定。
表9.3.5 管片拼装允许偏差和检验方法注:本表中市政隧道包括给水排水隧道、电力隧道等;6、粘贴管片防水密封条前应将管片密封槽清理干净,粘贴后的防水密封条应牢固、平整和严密、位置应正确、不得有起鼓、超长和缺口现象。
盾构施工中管片的简易选取原则广佛项目部 刘国栋在盾构施工中要精确的控制推进油缸行程,使主机最大限度的沿着设计轴线DTA 前进很重要的一个环节就是管片的选取与拼装。
管片按其形状可分为平行环(标准环)和楔形环(转弯环)两种。
标准环和转弯环按照不同的组合方式可以拟合出不同曲率半径的隧道。
在选取管片的过程中我们主要需要考虑三方面的因素。
一、盾尾间隙;二、推进油缸行程差;三、隧道趋势。
所以在选取管片的时候需要综合考虑,对于选取管片的一些参数我们要做到心中有数。
一、管片选取相关参数以及相互关系计算记u 为上一环管片拼装完成后的油缸行程差,D 为油缸安装直径,因为盾尾间隙的该变量△t 远小于管片的宽度b ,上一环管片拼装完成后的油缸行程差u 远小于油缸安装直径,所以可以得到如下等式:b t =Du →△t =b D u (1) 通过以上计算公式我们可以发现下一环的盾尾间隙的数值可以通过本环的管片拼装完成后的油缸行程差得出,在拼装本环管片时我们就可以通过计算得出本环拼装完成后的盾尾间隙以及本环拼装完成后的油缸行程差,进一步得出下一环的盾尾间隙对下一环的盾尾间隙进行判断,综合主机方向以及DTA ,确定是否需对主机趋势进行改变,以良好的拟合DTA ,同时又保证合理的盾尾间隙。
二、超前量对油缸行程差标准环与转弯环的不同之处在于从拼装好的一环管片顶部看标准环在平面上的投影为一矩形,而转弯环在平面上的投影为对称的梯形。
在管片安装时,如果正在安装的一环为转弯环,且转弯环的中K 块的位置处于隧道的正上方,这时管片腰部的两侧将产生衬砌长度的不同,这种长度的不同称为超前,它的数值称为超前量,超前量的大小因隧道设计曲线的要求而不尽相同。
对于有超前量的管片来说,它的安装点位对隧道设计曲线的拟合的质量好坏影响很大。
对应不同的点位转弯环对油缸行程差以及盾尾间隙的调节作用是不同的。
设每个管环的纵向螺栓孔有N 个,而且这些螺栓孔沿着管环圆周方向均匀分布,所以每两个相邻的螺栓孔之间与管环中心所形成的角度为360/N 。
地铁盾构隧道管片选型与拼装发表时间:2019-03-26T13:10:28.017Z 来源:《建筑细部》2018年第18期作者:杨文超[导读] 在盾构施工中因管片的选型和拼装不当而引起成型隧道管片破损及漏水现象是个普遍现象,结合西安六号线丈八六路站~丈八四路站区间右线的管片选型和拼装质量为研究对象,总结在施工过程中的经验说明了管片选型的原则,从管片不同拼装点位等方面叙述了施工中管片拼装要求。
杨文超中铁六局集团有限公司交通工程分公司北京丰台 100070摘要:在盾构施工中因管片的选型和拼装不当而引起成型隧道管片破损及漏水现象是个普遍现象,结合西安六号线丈八六路站~丈八四路站区间右线的管片选型和拼装质量为研究对象,总结在施工过程中的经验说明了管片选型的原则,从管片不同拼装点位等方面叙述了施工中管片拼装要求。
关键词:盾构机、管片、盾尾间隙、盾构机姿态、油缸行程差1工程概况西安地铁六号线一期TJSG-7标丈八六路站~丈八四路站区间采用盾构法施工,右线区间长度1138.4m,最小曲线半径R=2000m。
区间隧道底部埋深介于17.14-24.52m之间。
隧道从丈八四路站西端以线间距14.0m坡度2‰出站后,以25‰的坡度下行,继续以14‰的坡度下行至区间最低点。
然后以20‰的坡度上行,最终以2‰的坡度进入丈八六路站。
2管片设计2.1本区间隧道管片采用C50P12预制钢筋混凝土管片,管片设计具体参数见下表:3管片选型的影响因素管片作为成型隧道衬砌、是隧道永久支护的一部分,会受到来自土层、地下水压力等特殊外力,如管片选型不当,会引起管片错台、开裂、隧道渗水,所以管片的选型至关重要。
选取管片主要需要考虑3方面的因素:(1)盾尾间隙;(2)推进油缸行程差;(3)铰接油缸行程差。
3.1管片选型首先要考虑盾尾间隙对管片选型的影响本工程采用小松TM614PMX-12号盾构机盾尾外径为6140mm、壁厚为40mm的圆柱形钢结构,管片的外径为6000mm。
盾构管片选型和安装林建平在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。
本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。
一、工程概况客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。
管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。
依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。
二、管片的特征1、管片的拼装点位本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、9、10、11。
管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。
拼环时点位尽量要求ABA(1点、11点)形式。
在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。
管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。
同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。
在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。
(竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)2、隧道管片排序鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。
在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。
盾构始发时的负环是6环,1环零环。
从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。
管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽度800mm(各地洞门的最小宽度要求不同)时,就取余数的一半为洞门长度。
盾构法隧道管片选型及拼装技术文章通过介绍盾构隧道管片的设计依据、楔形量、管片种类及选型、管片拼装点位选择方法和原则、管片拼装过程中应注意的问题等方面,阐述了盾构法隧道施工中的管片选型及拼装技术,以确保施工质量,供读者参考。
标签:盾构法;隧道施工;管片选型;管片拼装引言盾构法隧道施工技术在目前的城市地铁、轨道交通等地下隧道工程中的运用日益广泛,文章结合了深圳地铁5号线、7号线,台山核电站海底取水隧洞工程盾构施工,对盾构隧道施工中管片选型及管片拼装技术进行了总结和探讨。
1 管片选型1.1 盾构隧道管片设计管片宽度、厚度、配筋、砼强度和抗渗等级、分块长度、楔形量、直径等,均是管片设计的要素。
(1)管片厚度和配筋、砼强度和抗渗等级要根据全线的工程地质情况、隧道覆土厚度、施工荷载状况、隧道的使用目的及管片施工条件等多种因素確定,对管片配筋要进行试算和验算。
(2)管片环宽与分块设计主要由管片的制作、防水、运输、拼装、隧道总体线型、地质条件、结构受力性能、盾构掘进机选型等因素确定。
衬砌管片宽度越大,隧道结构的纵向刚度越大,抗变形能力越强;衬砌环纵向接缝越少,漏水环节、螺栓数量越少,施工速度越快,费用越省。
(3)管片楔形量。
楔形管环中最大宽度与最小宽度的差即楔形量。
楔形管片分为单面楔形、双面楔形两种,其中单面楔形又分为前楔形、后楔形两种,即通常所说的左转弯环、右转弯环。
确定楔形量的因素有三个:线路的曲线中心半径R,管片宽度d,管片直径D,标准环与楔形环环数之比U(U不小于1)。
取中心弧长L=(U+1)*d,圆心角β=L/R,外弧长L1=β(R+0.5D),内弧长L2=β(R-0.5D),即可计算出管片楔形量X= L1-L2。
1.2 管片选型应用实例每环管片均由标准块、邻接块、封顶块组成。
在深圳地铁5号线施工中,采用的管片为单面楔形,有标准环、左转弯环、右转弯环三种,外径6m,厚度30cm,宽度1.5m,楔形量38mm,每环分为6块(A1、A2、A3、B、C、K)。
论地铁盾构管片选型世界经济的迅猛发展加速了城市化建设,城市人口和建筑密度的不断增加,加快了城市水电管网及轨道交通的建设。
在城市隧道施工中,由于地面及周边环境复杂,基本上都采用现在已经比较成熟的盾构法施工。
由于城市(重要)建构筑物、桥梁等较多,为节省投资资金,避免风险,保护建构筑物等,盾构隧道的曲线越来越多,半径越来越小,多管片的拼装质量要求越来越高,对管片选型技术要求也越高。
本文结合几个案例分析探讨盾构管片选型技术。
一、管片的结构与拼装形式过去,广州市盾构每环管片由六块管片组成(L1、L2、L3、B、C、K),分为标准环、左转弯、右转弯环,拼装时主要靠调节K块的位置来确定管片的转向,重而与设定的轴线进行耦合。
首先,介绍管片的点位的由来。
考虑管片的受力情况,一般采用错缝拼装的形式进行,由于管片的横向螺栓有十套,因此,管片通常的点位就按10个点位来区分。
如下图所示:图一图二管片的具体形式决定每块管片的角度,任意相邻两点所对应的夹角为36°(图一所示)。
但是,1点和11点中间夹着12点,那么,1点和12点的夹角就是18°,11点和12点的夹角也是18°,同理可证5点和7点的角度是18°。
其次,偏移量的计算公式。
从图二中可得转弯环的管片最大楔形量为38(mm),管片的外径是6000(mm)。
根据Tanа=38/6000=0°21′46.33″ ∵а=в可得到:∴偏移量=Tanв×1500=9.5(mm)通过计算结果得出转弯环的最大偏移量是9.5(mm)。
再次回到正面点位图,可以看出只有12点、3点、6点、9点的时候是最大偏移量的位置,而管片的点位中没有12点和6点,即得3点和9点位置是管片偏移量最大的位置(9.5mm)。
举个例子,左转弯环的管片拼在1点位时,管片的偏移量是如何计算的。
其实1点位的时候,正好是偏离12点位18°,假如左转弯是拼装在12点,根据左手定则(食指和拇指撑开呈90°)可知,食指做指向的方向是代表点位,拇指的方向是最大楔形量的位置(右转弯则用右手定则)。
摘 要:盾构隧道主体结构是由一系列预制的钢筋混凝土管片排列而成的。
而管片的选型、拼装不仅会影响盾构机的姿态、设计线路,同时还会造成成型的隧道管片出现破碎、漏水等影响隧道后期使用的问题。
所以做好管片的选型、拼装尤为重要。
本文结合宁波市轨道交通一号线一期工程某区间使用的通用型楔形管片的工程实例,对通用型楔形管片的选型、拼装进行了分析研究,并提出了控制措施。
关键词:通用型;楔形管片;选型;拼装;控制;措施DOI:10.3772/j.issn.1009-5659.2011.23.022随着社会经济的发展城市人口增多、规模变大,现有的城市交通已经不能满足城市发展的需要。
经济发达的城市开始修建地铁工程,盾构施工技术普遍应用于地铁工程中。
盾构法施工的隧道衬砌方式有两种:单层装配式衬砌和多层混合式衬砌。
在盾构施工中,主要采用单层装配式衬砌,衬砌为预制的钢筋混凝土管片,它们构成了盾构隧道的主体结构并承受四周土体的荷载。
盾构隧道是由一系列管片排列而成的,可以看成一组短折线的集合,近似地拟合成实际线路。
由于采用短折线来代替光滑曲线,实际的线性和设计线性不能完全吻合,两者之间存在一定的偏差。
传统的普通管片对于平面曲线可以通过转弯环来模拟,但对于竖曲线,只能够通过粘贴楔形衬垫来拟合,粘贴工作费时费力,可控性差。
而且,由于加大了环缝间隙,降低了弹性密封垫的压缩率,也不利于防水。
通用型楔形管片可以通过封顶块位置的改变,即选择不同的拼装点位来达到转弯或竖曲线的目的,使得管片的选型灵活多变,随意性较大。
但是不可避免的封顶块位置也需要根据实际情况相对变换,对设备选型和管片的选型及拼装提出了一定的要求。
本文结合宁波市轨道交通一号线一期工程某区间使用的通用型楔形管片的工程实例,对通用型楔形管片的选型、拼装进行了分析研究,并提出了控制措施。
1 管片设计概述本项目盾构区间采用的是预制钢筋混凝土管片,管片外径6200mm,内径5500mm,宽度1200mm,厚度350mm。
2016年10月10期123
谈盾构法隧道管片选型及拼装技术
李晓飞
中交一公局厦门工程有限公司,福建厦门361000
摘要:地铁是目前我国大城市比较流行的一种交通工具,并且很多大中型城市都在建设地铁工程。
盾构法是一种综合的施工手段,管片拼装和安装是地铁盾构施工中比较重要的工序,对整个项目工程的顺利进行有着关键作用。
本文针对上述情况,分析管片选型的影响因素,在此基础上研究管片选型的考虑因素与方法。
并探讨其拼装技术要点与拼装技术施工流程。
以望保障地铁工程的质量。
关键词:盾构法;隧道管片选型;拼装技术
1导言
拼装成环的管片直接成为隧道的最终衬砌。
因此,成洞管片的防水质量和外观质量成为影响隧道质量的直接因素。
如果隧道管片有超限的情况,基本上是无法纠正的,对工程造成的质量影响也是最坏的。
因此,盾构施工对管片拼装质量的要求很高,在掘进控制和管片选型时一定要慎之又慎,施工过程中更要采取各种措施,严防管片出现大的错台、破裂和渗漏,更不能出现偏差超限的情况。
2管片选型的影响因素2.1楔形量
通用管片与普通管片的不同之处就在于:通用管片具有一定的楔形量。
从拼装好的一整环管片顶部看,普通管片在平面上的投影为矩形;而通用管片在平面上的投影为对称的梯形,梯形长边与短边的差值即为楔形量,我们依靠这个楔形量来实现隧道的转向及盾构机的辅助控制。
2.2管片最小旋转角度
由于已拼管片要与后续管片通过纵向螺栓、销钉等连接,纵向连接是环与环之间相对旋转角度的控制因素。
纵向连接的布置要求为:纵向连接螺栓必须沿圆周均匀布置,若采用双螺栓形式,则各螺栓组的中心必须沿圆周均匀布置。
此外,若管片各块的大小不相同时还必须满足a=a 1+a 2,否则,跨缝旋转时就连接不上,见图1。
由于有纵向连接件的限制,所以管片并不能任意旋转,因为连接件为均匀布置,所以管片旋转角度应为最小角度的整数倍。
最小旋转角度在拼装方式一定的情况下,可以取相邻螺栓的夹角的最小公倍数作为最小旋转角度。
管片的旋转角度必须为管片最小旋转角度的整
数倍。
图1纵向螺栓布置示意图
2.3管片的拼装点位
实际拼装过程中,可以根据不同的拼装点位来控制不同方向上的超前量,通过管片的旋转,控制盾构隧道的轴线走向,从而实现隧道的转弯。
当需要调向时,管片与上一环相临管片之间采用短短相连、长长相连的方法,这样不断向前延伸,则隧道就能按照预计方向进行调向,并符合设计曲率半径。
2.4盾尾间隙
盾构机的尾部设有一圈加强环,可以保持盾尾保圆度,另外还可以作为一道止水环,防止泥水进入盾尾密封刷内,加强环高度一般为45一60rorn。
而盾构机在掘进过程中总是有一定的偏移量,这就要求盾壳和管片外表面之间要保持一定的空隙,这个空隙称为“盾尾间隙”,见图
2。
图2盾尾间隙示意图
3管片选型方法
3.1根据隧道设计轴线的拟合偏差选择点位一般情况下,管片选型应以适应盾构机的姿态为主,线形控制为辅。
但当管片拼装线路与原设计轴线的拟合偏差接近隧道施工允许的最大偏差时,点位选择应以线形控制为主。
此时,管片的选型方法与第二章中介绍的线路拟合排版方法相同,依照与设计轴线偏差越小越好的原则来选择预拼环的点位,这里不再赘述。
3.2综合选取点位
根据隧道对轴线的拟合偏差选择点位时,所选的点位最有利于管片向着设计轴线逼近。
但是,此时的拼装点位却未必能使管片的姿态与主机姿态相协调,这就需要我们将这两种情况综合考虑,选择最有利于轴线拟合和主机调控的拼装
点位。
1242016年10月10期
4管片拼装技术要点4.1千斤顶的回缩
管片拼装时要确保千斤顶对工作面的一定压力,所以对千斤顶的回缩要及时,待千斤顶拧紧管片时要进行及时回缩,这样可以减少工作面的压力,但是并不是所有千斤顶都要回缩,对于正在工作的千斤顶要维持工作状态,这样可以保证盾构机的稳定。
4.2管片旋转控制
管片拼装一般采取从下到上的原则,避免长期顺时针或逆时针拼装,否则会引起油缸撑靴与管片纵缝和平面接触面不对称。
管片旋转、管片旋转会造成管片拼装困难。
油缸撑靴顶烂管片,也会造成盾构机VMT 导向系统转站频繁,测量偏差变大。
调整管片旋转的办法:一是通过降低刀盘转速,增大掘进扭矩,改变刀盘旋转方向,利用摩擦力使成环管片顺时针方向回转。
二是每拼装一环管片,对后面两环管片螺栓进行全部复紧,以减小相邻环管片的旋转错位。
三是调整盾构姿态和盾尾间隙,使管片状态和盾构姿态相对应,盾尾间隙、管片与开挖地层间隙均匀。
4.3拼装前卡控
管片宽1.5m,为防止安装管片时管片因与油缸撑靴或盾构机管线碰撞而破损产生质量或安全事故,每环掘进油缸行程1750~1850mm 之间拼装最佳。
管片拼装前,工程师应该根据工况,选择最佳拼装点位;并仔细检查管片质量,发现不合格的要立即更换。
5管片拼装流程
其具体步骤为:第一,通过管片输送器将管片送至拼装
机可以拿到的范围;第二,吊装螺栓与拼装机锁住;第三,收回不处于工作状态的千斤顶;第四,利用管片拼装机将管片放到准备拼装的区域,做好准备工作;第五,利用拼装机机械手将管片拼装到指定位置,然后利用千斤顶将管片和螺栓拧紧;第六,待拧紧管片后,将拼装机机械手转回提升管片的区域进行下一块管片的操作,直至所有管片拼装完毕;第七,通过拼装完两侧管片后,对封顶块的管片进行拼装,也是利用管片拼装机进行操作,但是在保证封顶块顺利插入时要使用油脂涂抹密封止水带,这样也是为了避免管片的损坏;第八,所有管片拼装完毕后要对千斤顶和盾尾之间的间隙进行测量,并将测量结构记录下来以供对螺栓进行二次拧紧操作。
6结论
综上所述,通过以上分析我们可以看出,地铁盾构管片的拼装施工和安装是个比较复杂的工程项目。
在进行管片拼装施工时要从管片选择、起动顺序、管片起吊和移动、管片拼装等方面进行综合考虑,在进行盾构管片安装时要注意避免管片受损、管片安装按照图纸操作、千斤顶回缩及时等问题,只有这样才能确保地铁盾构管片拼装施工和安装的顺利进行。
参考文献
[1]吴坤,栗文伟.盾构法施工中隧道管片开裂原因分析及应对措施[J].市政技术,2011
[2]孙熙才.盾构隧道管片扭转原因分析及预防措施[J].山东交通科技,2011。