高二物理竞赛磁场和电磁感应DOC
- 格式:doc
- 大小:807.50 KB
- 文档页数:16
第三讲 磁场§3.1 基本磁现象由于自然界中有磁石(43O Fe )存在,人类很早以前就开始了对磁现象的研究。
人们把磁石能吸引铁`钴`镍等物质的性质称为磁性。
条形磁铁或磁针总是两端吸引铁屑的能力最强,我们把这吸引铁屑能力最强的区域称之为磁极。
将一条形磁铁悬挂起来,则两极总是分别指向南北方向,指北的一端称北极(N 表示);指南的一端称南极§3图I ∆L 点的那么0称为真空的磁导率。
下面我们运用毕——萨定律,来求一个半径为R ,载电流为I 的圆电流轴线上,距圆心O 为χ的一点的磁感应强度在圆环上选一I l ∆,它在P 点产生的磁感应强度2020490sin 4r lI r l I B ∆πμ=∆πμ=∆ ,其方向垂直于I l ∆和r 所确定的平面,将B分解到沿OP 方向//B ∆和垂直于OP 方向⊥∆B ,环上所有电流元在P 点产生的⊥∆B 的和为零,r Rr l I B B ⋅∆=∆=∆20//4sin ,πμαπ⋅μ=∆μ=∆R RIl RI B 23030//为R 示n 3小。
从图中可看到:磁力线是无头无尾的闭合线,与闭合电路互相套合。
磁感线是一簇闭合曲线,而静电场的电感线是一簇不闭合的曲线(或者是从正电荷到图3-2-5负电荷,或者是从正电荷到无穷远处,从无穷远处到负电荷)。
这是一个十分重要的区别,凡是感线为闭合曲线的场都不可能是保守场。
磁感强度是一个矢量,如果两个电流都对某处的磁场有贡献,就要用矢量合成的方法。
如果有a 、b 两根长直通电导线垂直于纸面相距r 放置,电流的大小I I a =,I I b 2=(图3-2-6)那么哪些位置的磁感强度为零呢?在a 、b 连线以外的位置上,两根导线上电流所产生的磁感强度a B 和b B 的方向都不在一直线 上,不可能互相抵消;在a 、b 连线上,a 左边或b 右边的位置上,a B 和b B 的方向是相同的,也不可能互相抵消;因此只有在a 、b 中(33内。
高中物理比赛电学教程 第四讲 电磁感觉第三 磁 § 3。
1基本磁 象因为自然界中有磁石 ( Fe 3O 4) 存在,人 很早从前就开始了 磁 象的研究。
人 把磁石能吸引 ` ` 等物 的性 称 磁性。
条形磁 或磁 是两头吸引 屑的能力最 , 我 把 吸引 屑能力最 的地区称之 磁极。
将一条形磁 挂起来, 两极 是分 指 向南北方向,指北的一端称北极 (N 表示 ) ;指南的一端称南极(S 表示 ) 。
磁极之 有相互作使劲,同性磁极相互排挤,异性磁极相互吸引。
磁 静止 沿南北方向取向 明地球是一个大磁体,它的N 极位于地理南极邻近,S 极位于地理北极邻近。
1820 年,丹麦科学家奥斯特 了 流的磁效 。
第一个揭露了磁与 存在着 系。
直通 能 磁 作用;通 直螺 管与条形磁 作用 就好像条形磁 一般;两根平行通 直 之 的相互作用⋯⋯,所有 些都启 我 一个: 磁 和 流能否在本源上一致 ? 1822 年,法国科学家安培提出了 成磁 的最小 元就是 形 流, 些分子 流定向摆列,在宏 上就会 示出N 、 S 极的分子 流假 。
近代物理指出,正是 子的 原子核运 以及它自己的自旋运 形成了“分子 流”, 就是物 磁性的基本本源。
全部磁 象的本源是 流,以下我 只研究 流的磁 象。
§ 3。
2 磁感觉强度3.2. 1、磁感 度、 奥伐 定律将一个 L ,I 的 流元放在磁 中某一点, 流元遇到的作使劲F 。
当 流元在某一方向 , 个力最大, 个最大的力 F m和 IL 的比 ,叫做 点的磁感 度。
将一个能自由 的小磁 放在 点,小磁 静止N 极所指的方向,被 定 点磁感 度的方向。
真空中,当 生磁 的 流回路确立后,那空 的磁 就确立了,空 各点的B 也就确定了。
依据 流回路而求出空 各点的 B 要运用一个称 奥— 伐 定律的 定律。
— 定律告 我 :一个 流元IL( 如 3-2-1)在相 流元的地点矢量r 的 P 点所KI L sinr 2L 的方向与 r 方向的 角, 生的磁 的磁感 度B 大小, 着 流 IB 的方向可用右手螺旋法 确立,即伸出右手, 先把四指放在 I L 的方向上, 着小于的角 向 r 方向 大拇指方向即 B 的方向。
高中物理竞赛习题之电磁场经典例题一、选择题1. 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )dεq V E 0π4,0==(B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4== 解析: 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
2、在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 解析:由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).3、对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理解析:位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).4.将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).二、计算题5、如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.解析:由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.6、在一半径为R 1 =6.0 cm 的金属球A 外面套有一个同心的金属球壳B .已知球壳B 的内、外半径分别为R 2=8.0 cm ,R 3 =10.0 cm .设球A 带有总电荷Q A =3.0 ×10-8C ,球壳B 带有总电荷Q B =2.0×10-8C .(1) 求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.解析:(1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q B +Q A ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-Q A [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电q A ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-q A ,外表面带电q A -Q A [图(c )].此时球A 的电势可表示为0π4π4π4302010=-+-+=R εQ q R εq R εq V A A A A A 由V A =0 可解出球A 所带的电荷q A ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.解 (1) 由分析可知,球A 的外表面带电3.0 ×10-8C ,球壳B 内表面带电-3.0 ×10-8C ,外表面带电5.0 ×10-8C .由电势的叠加,球A 和球壳B 的电势分别为V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V B A B (2) 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为0π4π4π4302010=+-+-+=R εq Q R εq R εq V A A A A A 30π4R εq Q V A A B +-= 解得C 1012.2831322121-⨯=-+=R R R R R R Q R R q A A 即球A 外表面带电2.12 ×10-8C ,由分析可推得球壳B 内表面带电-2.12 ×10-8C ,外表面带电-0.9 ×10-8C .另外球A 和球壳B 的电势分别为0A V =27.2910V B V =-⨯导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表面的电荷将重新分布,以建立新的静电平衡.7、如图所示球形金属腔带电量为Q >0,内半径为ɑ,外半径为b ,腔内距球心O 为r 处有一点电荷q ,求球心的电势.解析:导体球达到静电平衡时,内表面感应电荷-q ,外表面感应电荷q ;内表面感应电荷不均匀分布,外表面感应电荷均匀分布.球心O 点的电势由点电荷q 、导体表面的感应电荷共同决定.在带电面上任意取一电荷元,电荷元在球心产生的电势Rεq V 0π4d d = 由于R 为常量,因而无论球面电荷如何分布,半径为R 的带电球面在球心产生的电势为R εq R εq V s 00π4π4d ==⎰⎰由电势的叠加可以求得球心的电势. 解 导体球内表面感应电荷-q ,外表面感应电荷q ;依照分析,球心的电势为bεQ q a εq r εq V 000π4π4π4++-= 8、有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .解析:电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dS εC 00= 充电后,极板上的电荷和极板间的电场强度为U dS εQ 00= d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd S εQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSU εεU C C r r -+==011 介质内电场强度 ()δd εδU S εεQ E r r -+=='011 空气中电场强度 ()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd S εC -=02 U δd S εQ -=02 导体中电场强度 02='E 空气中电场强度δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.9、如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。
18复赛四、(22分)如图复18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B 随时间t 变化,0B B kt =-(k 为大于0的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内。
圆环的半径为R ,电阻为r ,相交点的电接触良好.两个环的接触点A 及C 间的劣弧对圆心O 的张角为60︒。
求0t t =时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.图复19届复赛二、 (18 分) 在图复19-2中,半径为R的圆柱形区域内有匀强磁场,磁场方向垂直纸面指向纸外,磁感应强度B随时间均匀变化,变化率/B t K∆∆=(K为一正值常量),圆柱形区外空间没有磁场,沿图中AC弦的方向画一直线,并向外延长,弦AC及半径OA的夹角/4απ=.直线上有一任意点,设该点及A点的距离为x,求从A沿直线到该点的电动势的大小.19届复赛四、(18分)有人设计了下述装置用以测量线圈的自感系数.在图复19-4-1中,E为电压可调的直流电源。
K为开关,L为待测线圈的自感系数,r为线圈的直流电阻,D为理想二极管,r为用L电阻丝做成的电阻器的电阻,A为电流表。
将图复19-4-1中a、b之间的电阻线装进图复19-4-2所示的试管1内,图复19-4-2中其它装置见图下说明.其中注射器筒5和试管1组成的密闭容器内装有某种气体(可视为理想气体),通过活塞6的上下移动可调节毛细管8中有色液注的初始位置,调节后将阀门10关闭,使两边气体隔开.毛细管8的内直径为d.已知在压强不变的条件下,试管中的气体温度升高1K时,需要吸收的热量为C,大气压强为p。
设试管、三通管、注射器和毛细管q皆为绝热的,电阻丝的热容不计.当接通电键K后,线圈L中将产生磁场,已知线圈中储存的磁场能量,I为通过线圈的电流,其值可通过电流表A测量,现利用此装置及合理的步骤测量的自感系数L.1.简要写出此实验的步骤.2.用题中所给出的各已知量(r、Lr、q C、p、d等)及直接测得的量导出L的表达式,21届复赛五、(20分)如图所示,接地的空心导体球壳内半径为R,在空腔内一直径上的P1和P2处,放置电量分别为q1和q2的点电荷,q1=q2=q,两点电荷到球心的距离均为a.由静电感应及静电屏蔽可知:导体空腔内表面将出现感应电荷分布,感应电荷电量等于-2q.空腔内部的电场是由rP2P1θRAOa aq 1、q 2和两者在空腔内表面上的感应电荷共同产生的.由于我们尚不知道这些感应电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感应电荷对腔内电场的贡献,可用假想的位于腔外的(等效)点电荷来代替(在本题中假想(等效)点电荷应为两个),只要假想的(等效)点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内表面的感应电荷的假想(等效)点电荷1q '及q 1共同产生的电场在原空腔内表面所在位置处各点的电势皆为0;由q 2在原空腔内表面的感应电荷的假想(等效)点电荷2q '及q 2共同产生的电场在原空腔内表面所在位置处各点的电势皆为0.这样确定的假想电荷叫做感应电荷的等效电荷,而且这样确定的等效电荷是唯一的.等效电荷取代感应电荷后,可用等效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确定假想等效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .已知A 点到球心O 的距离为r ,OA及1OP 的夹角为.21届复赛七、(25分)xO y v 0c a byd如图所示,有二平行金属导轨,相距l ,位于同一水平面内(图中纸面),处在磁感应强度为B 的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量均为m 的两金属杆ab 和cd 放在导轨上,及导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆及导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆及导轨构成的回路的自感系数L 是恒定不变的.杆及导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.成的扁平薄圆环,其内、外半径分别为a1、a2,厚度可以忽略.两个表面都带有电荷,电荷面密度σ随离开环心距离r变化的规律均为,σ为已知常量.薄圆环绕通过环心垂直环面的轴以大小不变的角加速度β减速转动,t = 0时刻的角速度为ω.将一半径为a0(a0<<a1)、电阻为R并及薄圆环共面的导线圆环及薄圆环同心放置.试求在薄圆环减速运动过程中导线圆环中的张力F及时间t 的关系.提示:半径为r、通有电流I的圆线圈(环形电流),在圆心处产生的磁感应强度为(k为已知常量)23届复赛五、(25分)磁悬浮列车是一种高速运载工具。
高二物理竞赛(7) 磁场和电磁感应班级:_____________ 姓名:_________________ 座号:_____________ 一、位于竖直平面内的矩形平面导线框abcd ,ab 长为l 1,是水平的,bc 长为l 2,线框的质量为m ,电阻为R 。
其下方有一匀强磁场区域,该区域的上、下边界PP '和QQ '均与ab 平行,两边界间的距离为H ,H >l 2,磁场的磁感应强度为B ,方向与线框平面垂直,如图所示。
令线框的dc 边从离磁场区域上边界PP '的距离为h 处自由下落,已知在线框的dc 边进入磁场后,ab 边到达边界PP '之前的某一时刻线框的速度已达到这一阶段的最大值。
问从线框开始下落到dc 边刚刚到达磁场区域下边界QQ '的过程中,磁场作用于线框的安培力做的总功为多少?二、如图1所示,在正方形导线回路所围的区域A 1A 2A 3A 4内分布有方向垂直于回路平面向里的匀强磁场,磁感应强度B 随时间以恒定的变化率增大,回路中的感应电流为I =1.0mA 。
已知A 1A 2、A 3A 4两边的电阻皆为零;A 4A 1边的电阻R 1=3.0k Ω,A 2A 3边的电阻R 2=7.0k Ω。
(1)试求A 1A 2两点间的电压U 12、A 2A 3两点间的电压U 23、A 3A 4两点间的电压U 34、A 4A 1两点间的电压U 41;(2)若一内阻可视为无限大的电压表V位于正方形导线回路所在的平面内,其正负端与连线位置分别如图2、图3和图4所示,求三种情况下电压表的读数V 1、V 2、V 3。
图1 图2 图3 图4三、如图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B 的均匀磁场,其方向平行于轴线远离读者。
在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架△DEF,其中心O位于圆柱的轴线上。
DE边上S点(14DS L)处有一发射带电粒子的源,发射粒子的方向皆在图中截面内且垂直于DE边向下。
发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。
若这些粒子与三角形框架的碰撞均为完全弹性碰撞,并要求每一次碰撞时速度方向垂直于被碰的边,试问:(1)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?(2)这些粒子中,回到S点所用的最短时间是多少?四、一个长为L1,宽为L2,质量为m的矩形导电线框,由质量均匀分布的刚性杆构成,静止放置在不导电的水平桌面上,可绕与线框的一条边重合的光滑固定轴ab转动,在此边中串接一能输出可变电流的电流源(图中未画出)。
线框处在匀强磁场中,磁场的磁感应强度B沿水平方向且与转轴垂直,俯视图如图所示。
现让电流从零逐渐增大,当电流大于某一最小值I min时,线框将改变静止状态。
(1)求电流值I min;(2)当线框改变静止状态后,设该电流源具有始终保持恒定电流值I0不变(I0>I min)的功能。
已知在线框运动过程中存在空气阻力。
试分析线框的运动状况。
五、从z轴上的O点发射一束电量为q(>0)、质量为m的带电粒子,它们速度统方向分布在以O点为顶点、z轴为对称轴的一个顶角很小的锥体内(如图所示),速度的大小都等于v。
试设计一种匀强磁场,能使这束带电粒子会聚于z轴上的另一点M,M点离开O点的经离为d。
要求给出该磁场的方向、磁感应强度的大小和最小值。
不计粒子间的相互作用和重力的作用。
六、如图所示,两条平行的长直金属细导轨KL、PQ固定于同一水平面内,它们之间的距离为l,电阻可忽略不计;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨良好接触,并可沿导轨无摩擦地滑动.两杆的电阻皆为R。
杆cd的中点系一轻绳,绳的另一端绕过轻的定滑轮悬挂一质量为M的物体,滑轮与转轴之间的摩擦不计,滑轮与杆cd 之间的轻绳处于水平伸直状态并与导轨平行。
导轨和金属细杆都处于匀强磁场中,磁场方向垂直于导轨所在平面向上,磁感应强度的大小为B。
现两杆及悬物都从静止开始运动,当ab杆及cd杆的速度分别达到v1和v2时,两杆加速度的大小各为多少?七、如图所示,水平放置的金属细圆环半径为a,竖直放置的金属细圆柱(其半径比a小得多)的端面与金属圆环的上表面在同一平面内,圆柱的细轴通过圆环的中心O。
一质量为m,电阻为R的均匀导体细棒被圆环和细圆柱端面支撑。
棒的一端有一小孔套在细轴O上,另一端A可绕轴线沿圆环作圆周运动。
棒与圆环的摩擦系数为μ。
圆环处于磁感应强度大小为B=Kr、方向竖直向上的恒定磁场中,式中K为大于零的常量,r为场点到轴线的距离。
金属细圆柱与圆环用导线ed连接。
不计棒与轴及与细圆柱端面的摩擦,也不计细圆柱、圆环及导线的电阻和感应电流产生的磁场。
问沿垂直于棒的方向以多大的水平外力作用于棒的A 端才能使棒以角速度ω匀速转动。
注:(x+Δx)3=x3+3x2Δx+3x(Δx)2+(Δx)3。
八、如图所示,两个金属轮A1、A2,可绕通过各自中心并与轮面垂直的固定的光滑金属细轴O1和O2转动,O1和O2相互平行,水平放置,每个金属轮由四根金属辐条和金属环组成,A1轮的辐条长为a1、电阻为R1,A2轮的辐条长为a2、电阻为R2,连接辐条的金属环的宽度与电阻都可以忽略。
半径为a0的绝缘圆盘D与A1同轴且固连在一起,一轻细绳的一端固定在D边缘上的某点,绳在D上绕足够匝数后,悬挂一质量为m的重物P,当P下落时,通过细绳带动D和A1绕O1轴转动,转动过程中,A1、A2保持接触,无相对滑动;两轮与各自细轴之间保持良好的电接触;两细轴通过导线与一阻值为R的电阻相连,除R和A1、A2两轮中辐条的电阻外,所有金属的电阻都不计,整个装置处在磁感应强度为B的匀强磁场中,磁场方向与转轴平行,现将P释放,试求P匀速下落时的速度。
九、图示为一固定不动的绝缘的圆筒形容器的横截面,其半径为R ,圆筒的轴线在O 处,圆筒为有匀强磁场,磁场方向与圆筒的轴线平行,磁感应强度为B ,筒壁的H 处开有小孔,整个装置处在真空中。
现有一质量为m 、电荷量为q 的带电粒子P 以某一初速度沿筒的半径方向从小孔射入圆筒,经与筒壁碰撞后又从小孔射出圆筒。
设:筒壁是光滑的,P 与筒壁碰撞是弹性的,P 与筒壁碰撞时其电荷量是不变的。
若要使P 与筒壁碰撞的次数最少,问: (1)P 的速率应为多少?(2)P 从进入圆筒到射出圆筒经历的时间为多少?十、如图所示,M l M 2和M 3M 4都是由无限多根无限长的外表面绝缘的细直导线紧密排列成的导线排横截面,两导线排相交成120°,OO ʹ为其角平分线。
每根细导线中都通有电流I ,两导线排中电流的方向相反,其中M l M 2中电流的方向垂直纸面向里。
导线排中单位长度上细导线的根数为λ。
图中的矩形abcd 是用N 型半导体材料做成的长直半导体片的横截面,(ab bc <),长直半导体片与导线排中的细导线平行,并在片中通有均匀电流I 0,电流方向垂直纸面向外。
已知ab 边与OO ʹ垂直,bc l =,该半导体材料内载流子密度为n ,每个载流子所带电荷量的大小为q 。
求此半导体片的左右两个侧面之间的电势差。
已知当细的无限长的直导线中通有电流I 时,电流产生的磁场离直导线的距离为r 处的磁感应强度的大小为IB kr=,式中k 为已知常量。
十一、如图所示,ACD是由均匀细导线制成的边长为d的等边三角形线框,它以AD为转轴,在磁感应强度为B的恒定的匀强磁场中以恒定的角速度田转动(俯视为逆时针旋转),磁场方向与AD垂直。
已知三角形每条边的电阻都等于R。
取图示线框平面转至与磁场平行的时刻为t=0。
(1)求任意时刻t线框中的电流;(2)规定A点的电势为0,求t=0时,三角形线框的AC边上任一点P(到A点的距离用x表示)的电势U p,并画出U p与x之间关系的图线。
十二、设空间存在三个相互垂直的已知场:电场强度为E的匀强电场,磁感应强度为B的匀强磁场和重力加速度为g的重力场。
一质量为m、电荷量为q的带正电的质点在此空间运动,已知在运动过程中,质点速度的大小恒定不变。
(1)试通过论证,说明此质点作何种运动(不必求出运动的轨迹方程);(2)若在某一时刻,电场和磁场突然全部消失,已知此后该质点在运动过程中的最小动能为其初始动能(即电场和磁场刚要消失时的动能)的一半,试求在电场、磁场刚要消失时刻该质点的速度在三个场方向的分量。
十三、近代的材料生长和微加工技术,可制造出一种使电子的运动限制在半导体的一个平面内(二维)的微结构器件,且可做到电子在器件中像子弹一样飞行,不受杂质原子射散的影响。
这种特点可望有新的应用价值。
图1所示为四端十字形二维电子气半导体,当电流从1端进入时,通过控制磁场的作用,可使电流从2,3,或4端流出。
对下面摸拟结构的研究,有助于理解电流在上述四端十字形导体中的流动。
在图2中,a 、b 、c 、d 为四根半径都为R 的圆柱体的横截面,彼此靠得很近,形成四个宽度极窄的狭缝1、2、3、4,在这此狭缝和四个圆柱所包围的空间(设为真空)存在匀强磁场,磁场方向垂直于纸面指向纸里。
以B 表示磁感应强度的大小。
一个质量为m 、电荷量为q 的带正电的粒子,在纸面内以速度v 0沿与a 、b 都相切的方向由缝1射入磁场内,设粒子与圆柱表面只发生一次碰撞,碰撞是弹性的,碰撞时间极短,且碰撞不改变粒子的电荷量,也不受磨擦力作用。
试求B 为何值时,该粒子能从缝2处且沿与b 、c 都相切的方向射出。
十四、如图所示,M 1N 1N 2M 2是位于光滑水平桌面上的刚性U 型金属导轨,导轨中接有阻值为R 的电阻,它们的质量为m 0。
导轨的两条轨道间的距离为l 。
PQ 是质量为m 的金属杆,可在轨道上滑动,滑动时保持与轨道垂直,杆与轨道的接触是粗糙的,杆与导轨的电阻均不计。
初始时,杆PQ 位于图中的虚线处,虚线的右侧为一匀强磁场区域,磁场方向垂直于桌面,磁感应强度的大小为B 。
现有一位于导轨平面内的与轨道平行的恒力F 作用于PQ 上,使之从静止开始的轨道上向右作加速运动。
已知经过时间t ,PQ 离开虚线的距离为x ,此时通过电阻的电流为I 0,导轨向右移动的距离为x 0(导轨的N 1N 2部分尚未进入磁场区域)。
求在此过程中电阻所消耗的能量。
不考虑回路的自感。
图1 图2 M 2M 1十五、在如图所示的装置中,离子源A 可提供速度很小的正离子(其速度可视为0),经加速电压加速后从S 点进入匀强磁场,磁场方向垂直纸面指向纸外,虚线框为磁场区域的边界线。
在磁场作用下,离子沿半个圆周运动后射出磁场,射出点P 到S 的距离用x 表示。
(1)当离子源提供的是单一种类的第一种离子时,P 到S 的距离为x 1;当离子源提供的是单一种类的第二种离子时,P 到S 的距离为x 2,已知12x x α=。