机械设计基础课外习题-杨可祯精选ppt
- 格式:ppt
- 大小:427.00 KB
- 文档页数:15
第17章 联轴器、离合器和制动器17-1 由交流电动机直接带动直流发电机供应直流电。
已知所需最大功率为18~20 kW ,转速3000 r /min ,外伸轴轴径d =45 mm 。
(1)试为电动机与发电机之间选择一只恰当类型的联轴器,并陈述理由。
(2)根据已知条件,定出型号。
解:(1)选择型号:由于此类机组一般为中小型,所需传递的功率中等,直流发电机载荷平稳,轴的弯曲变形较小,联接之后不再拆动,因此,选用传递转矩大、结构简单的固定式刚性联轴器,如凸缘联轴器。
(2)计算其传递的最大转矩:由于载荷平稳,选取载荷系数,因此计算转矩:根据计算转矩、轴的转速及外伸轴直径d =45 mm ,查机械设计手册选取铰制孔型凸缘联轴器YL9。
其许用转矩为[]400T N m =⋅,许用最大转速4100max n r /min =。
17-2 在发电厂中,由高温高压蒸汽驱动汽轮机旋转,并带动发电机供电。
在汽轮机与发电机之间用什么类型的联轴器为宜?理由何在?试为3000 kW 的汽轮发电机机组选择联轴器的具体型号,设轴颈d =120 mm ,转速为3000 r /min 。
解:(1)选择型号:由于汽轮发电机组的转子较重,传递的转矩较大,因此轴有一定的弯曲变形;由于工作环境为高温高压蒸汽,轴有伸长,因此选用耐温的齿式联轴器。
(2)该联轴器传递的转矩:因载荷较平稳,取载荷系数,计算转矩:根据计算转矩、轴的转速及轴径d =120 mm ,查手册,选用鼓型齿式联轴器GCLD7。
其许用转矩为[]14000T N m =⋅,许用最大转速3000max n r /min =。
17-3 如图17-1所示,有两只转速相同的电动机,电动机1连接在蜗杆轴上,电动机2直接连接在O2轴上(垂直于图纸平面,图中未标出),O2轴的另一端连接工作机。
这样,当开动电动机1(停止电动机2)时,电动机1经蜗杆蜗轮减速后驱动O2轴,是慢速挡。
若开动电动机2(停止电动机1)直接驱动O2轴,是快速挡。
第10章连接10-1 试证明具有自锁性的螺旋传动,其效率恒小于50%。
证明:螺旋传动的效率,自锁时有螺旋升角小于等于当量摩擦角,即ψρ'≤,故有,则:其中,。
因此,。
命题得证。
10-2 试计算M120、M20×1.5螺纹的升角,并指出哪种螺纹的自锁性较好。
解:M20螺纹的螺距p=2.5 mm,由于相同公称直径情况下,螺距小则螺纹升角小,因此M20×1.5的螺纹自锁性较好。
10-3 用12英寸扳手拧紧M8螺栓。
已知螺栓力学性能等级为4.8级,螺纹间摩擦系数f=0.1,螺母与支承面间摩擦系数f0=0.12,手掌中心至螺栓轴线的距离l=240 mm。
试问当手掌施力125 N时,该螺栓所产生的拉应力为若干?螺栓会不会损坏?(由设计手册可查得M8螺母dw=11.5 mm,d0=9 mm)。
解:查取手册可知M8螺栓的有关几何参数:螺距p=1.25 mm,中径d2=7.188 mm,小径d1=6.647 mm则其螺纹升角:当量摩擦角:拧紧螺母时力矩:,且T=FL,代入数据可得此时的轴向载荷:根据已知螺栓等级可得,该螺栓的屈服极限为。
拉应力:因此螺栓会损坏。
10-4 一升降机构承受载荷Fa为100 kN,采用梯形螺纹,d=70 mm,d2=65 mm,P=10 mm,线数n=4。
支承面采用推力球轴承,升降台的上下移动处采用导向滚轮,它们的摩擦阻力近似为零。
试计算:(1)工作台稳定上升时的效率,已知螺旋副当量摩擦系数为0.10。
(2)稳定上升时加于螺杆上的力矩。
(3)若工作台以800 mm/min的速度上升,试按稳定运转条件求螺杆所需转速和功率。
(4)欲使工作台在载荷Fa作用下等速下降,是否需要制动装置?加于螺杆上的制动力矩应为多少?图10-1解:(1)梯形螺纹的螺纹升角:当量摩擦角:故工作台稳定上升时的效率:。
(2)稳定上升时加于螺杆的力矩:。
(3)螺杆的转速:所需的功率:。
(4)由(1)可知螺纹升角>当量摩擦角,该梯形螺旋副不具有自锁性。
第14章轴14-1 在图14-1中1、Ⅱ、Ⅲ、Ⅳ轴,是心轴、转轴、还是传动轴?图14-1解:I为传动轴,II、IV为转轴,III为心轴。
14-2 已知一传动轴传递的功率为37 kW,转速n=900 r/min,如果轴上的扭切应力不许超过40 MPa,试求该轴的直径。
解:按扭转强度估算轴颈,可得:d 。
取37mm14-3 已知一传动轴直径d=32 mm,转速n=1725 r/min,如果轴上的扭切应力不许超过50 MPa,问该轴能传递多少功率?解:轴扭转强度条件:该轴能传递的功率:。
14-4 图14-2所示的转轴,直径d=60 mm,传递的转矩T=2300 N·m,F=9000 N,a=300 mm。
若轴的许用弯曲应力[σ-1b]=160 MPa,求x。
图14-2解:分析可知该轴的最危险截面位于F点作用截面处,且最大弯矩值为:认为该轴的扭转切应力为脉动循环,则当量弯矩:根据弯扭强度条件可得:即有:解得:。
14-5 图14-3所示为起重机动滑轮轴的两种结构方案,轴的材料为Q275,起重量w =10 kN,求轴的直径d。
图14-3解:最大弯矩发生在跨中截面处,值为:。
a)该方案中轴为转动心轴,弯曲应力为对称循环应力,取许用应力[σ-1b]=45 MPa。
根据弯曲强度校核条件可得:由于该轴上有键槽,因此将轴颈增大,取。
b)该方案中为固定心轴,弯曲应力按脉动循环,取许用应力[σ+1b]=75 MPa。
根据弯曲强度校核条件可得:d 。
取26mm14-6 已知一单级直齿圆柱齿轮减速器,用电动机直接拖动,电动机功率P=22 kW,转速n1=1470 r/min,齿轮的模数m=4 mm,齿数z1=18,z2=82,若支承间跨距l =180 mm(齿轮位于跨距中央),轴的材料用45号钢调质,试计算输出轴危险截面处的直径d。
解:根据轴的材料为45钢调质查表得其许用弯曲应力[σ-1b]=60 MPa输入轴传递的扭矩:作出输出轴的受力简图,如图14-4(a)所示,其中作用力:分别作出在圆周力和径向力作用下的弯矩图,如图14-4(b)(c)所示。
1-1至1-4解机构运动简图如下图所示。
图 1.11 题1-1解图图1.12 题1-2解图图1.13 题1-3解图图1.14 题1-4解图1-5 解1-6 解1-7 解1-8 解1-9 解1-10 解1-11 解1-12 解1-13解该导杆机构的全部瞬心如图所示,构件 1、3的角速比为:1-14解该正切机构的全部瞬心如图所示,构件 3的速度为:,方向垂直向上。
1-15解要求轮 1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。
则:,轮2与轮1的转向相反。
1-16解( 1)图a中的构件组合的自由度为:自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。
( 2)图b中的 CD 杆是虚约束,去掉与否不影响机构的运动。
故图 b中机构的自由度为:所以构件之间能产生相对运动。
题 2-1答 : a ),且最短杆为机架,因此是双曲柄机构。
b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。
c ),不满足杆长条件,因此是双摇杆机构。
d ),且最短杆的对边为机架,因此是双摇杆机构。
题 2-2解 : 要想成为转动导杆机构,则要求与均为周转副。
( 1 )当为周转副时,要求能通过两次与机架共线的位置。
见图 2-15 中位置和。
在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号)。
综合这二者,要求即可。
( 2 )当为周转副时,要求能通过两次与机架共线的位置。
见图 2-15 中位置和。
在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。
( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题 2-3 见图 2.16 。
图 2.16题 2-4解 : ( 1 )由公式,并带入已知数据列方程有:因此空回行程所需时间;( 2 )因为曲柄空回行程用时,转过的角度为,因此其转速为:转 / 分钟题 2-5解 : ( 1 )由题意踏板在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。