35kV变电站线路工程建设防雷措施
- 格式:doc
- 大小:16.50 KB
- 文档页数:5
35kV输电线路防雷措施发布时间:2022-08-17T06:53:08.324Z 来源:《福光技术》2022年17期作者:郭晓东[导读] 雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。
因此,输电线路的雷击过电压及其防护问题不容忽视。
加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。
长庆油田分公司清洁电力开发项目部陕西省西安市 717600摘要:雷击是导致高压线路跳闸停电事故的最重要因素,雷击线路还会产生雷电过电压波,经过高压线路输入到变电所,严重危害变电所设备安全运行。
因此,输电线路的雷击过电压及其防护问题不容忽视。
加强高压输电线路的防雷措施可以有效减少输电线路遭遇雷击导致跳闸的概率,是保障电力系统安全稳定运行的重要环节。
关键词:输电线路;防雷;感应雷电压一、35kV输电线路雷击问题形成的原因1.1雷击地面问题形成原因雷击地面造成电网跳闸的主要原因是因为产生雷击感应的电压,针对35kV以及以下输电线路来说是很大的,在此基础之上自然也就会引发线路跳闸的问题。
之所以会产生感应电压是因为雷击大地问题发生的基础上会使线路相互之间产生感应过电压,但是笔者提及的这种感应过电压对高压输电线路并不会造成很大的影响。
1.2雷击电线杆雷击电线杆一般情况之下是在荒野当中发生的,电线杆的高度是要比周围的地势高出一些的,在此基础之上更为容易受到雷击放电问题的影响,自然也就会引发雷击问题;雷击电线杆的情况之下是会产生过大的电流,除去一小部分经由电线杆之上的避雷针进行倒流之外,其余的就是在对杆塔以及附属接地电阻具体构成结构加以一定程度的应用的基础上进入到大地当中,从而也就会在接地电阻领域中产生巨大的电压降,引发超出杆塔绝缘子串50%的放电电压的基础上是会引发绝缘子闪络问题以及反击过电压问题,在此基础之上自然也就会引发跳闸这样一种问题。
35kV架空输电线路与防雷措施XueshuJiaoliu◆学术交流l35kV架空输电线路与防雷措施叶开芳(福建省尤溪县供电有限公司,福建尤溪365100)摘要:结合35kV架空输电线路与防雷的实践经验,分析,总结多种防雷措施;在雷电活动频繁的"易击段,易击点及易击相"以及山区和高土壤电阻率地区,采用综合防雷措施,能使线路投资省,改造快,效果好,是值得推广的技术.关键词:35kV;架空输电线路;防雷措施我国电力工业的高速发展对电网输电线路运行的安全可靠性要求也越来越高.停电不仅影响人们的正常工作和生活,还会造成巨大的经济损失和社会影响.据统计,由雷电引起的跳闸事故占总跳闸次数的70%~80%,尤其是在多雷,土壤电阻率高,地形复杂的区域,架空输电线路遭受雷击的概率更高,严重威胁着电网安全和可靠运行.目前,我国电力行业的常规做法:66kV及以上的架空输电线路,沿全线架设避雷线;220kV及以上的架空输电线路,设置双避雷线.然而,对于35kV的架空输电线路,由于历史,经济等方面的原因,没有采用沿全线架设避雷线的方法,一般只在变电站和发电厂的进出线段架设1--2km的避雷线.35kV单回输电线路,途经高山多雷地带,年雷电日55天以上,雷击故障频繁.为了提高电网运行的安全可靠性,我们采取在变电站进出线段架设1~2km架空避雷线和安装线路型避雷器等综合防雷措施,取得了良好效果.1架设避雷线架空避雷线是高压输电线路最基本的防雷措施,其主要作用:(1)接闪作用,防止雷直击导线.(2)雷击塔顶时,分流雷电流,降低塔顶电位.(3)对导线的耦合作用,降低雷击杆塔时塔头绝缘(绝缘子串和空气间隙)上的电压.(4)对导线的屏蔽作用,降低导线上的感应过电压.35kv架空避雷线的技术要求:(1)杆塔上避雷线对边导线的保护角越小,其遮蔽效果也越好,一般采用2O.左右,山区单避雷线线路采用25.左右. (2)杆塔上两根避雷线之间的距离,不应超过避雷线与导线间垂直距离的5倍.(3)线路档距中央导线与避雷线间的最小距离,按雷击档距中央避雷线时不使二者问的问隙击穿来确定.一般档距按规程SDJ一79推荐的经验公式计算:S≥0.012L+1式中,S为导线与避雷线间的距离(m);L为档距(m).2安装避雷针用避雷针来保护架空输电线路是不经济的,一般较少采用.当遇有下列情况时,可考虑使用避雷针.(1)在雷害情况特别严重而又不能架设避雷线的线路段上,像杆塔机械强度不够等情况下.(2)变电站进出线段未设置避雷保护线,而该段线路经过地区的土壤电阻率又不高时.(3)旋转电机的直配线路.3降低杆塔接地电阻对于一般的杆塔,改善其接地方式,降低其接地电阻,是架空输电线路抗击雷电,防止跳闸事故最经济而有效的措施.因接地不良而形成的较高接地电阻,会使雷电流泄放通道受阻,提升了杆塔的电位.因此,必须加强接地网的改造工作,认真处理好接地系统的薄弱环节,使避雷线与接地体有可靠的电气连接.有避雷线的线路杆塔不接避雷线时的工频接地电阻,在雷季干燥时,不宜超过表1所列数值.表1土壤电阻率及接地电阻如果土壤电阻率很高,接地电阻难以达N30Q时,可采用6~8根总长不超过500m的放射形接地体或连续伸长接地体,这时其接地电阻可不受限制.当土壤电阻率(p)过高,为了达到规定的接地电阻,降低土壤电阻率比增加接地体数量或面积而更有利时,可用人工处理方法来降低土壤电阻率.该方法是使用价廉,腐蚀性弱的盐类或电阻率较低的物质与土壤相混合,或将其埋于接地体附近.也可因地制宜,安装引外接地体,把接地体敷设在土壤电阻率较低的地区,或采用井式或深钻式接地体.4加强线路外绝缘增加绝缘子串片数,可提高架空输电线路的防雷性能.绝缘子片数越多,其耐雷击的能力也越强.但是,绝缘子片数的增加受杆塔塔头结构及投资的限制,一般杆塔只可增加2~3片.另外,增加绝缘子片数对改善线路整体的防雷效果不是十分明显.5安装线路型避雷器各地实践表明,避雷线的防雷效果在平原地区很好,而在山区,因地形,地貌的影响,经常出现绕击,侧击等现象,使得避雷线屏蔽作用失效.而35kV及以下线路,按规程一般只在发电厂,变电站的进出线段架设1~2km(下转第159页)机电信息2009年第36期总第246期1575RB试验及其参数5.1送风机RB试验5.1.1送风机R_B试验时的机组条件机组负荷稳定在245MW以上;所有辅机运行状态良好,备用可靠;锅炉燃油系统备用良好;最少4台以上磨煤机运行:风烟系统两侧均运行;锅炉MFT各项保护投入;汽机ETS各项保护投入;所有辅机的保护根据实际运行状态投入:CCS方式投入,磨煤机,给煤机在自动调节状态,风量在自动调节状态,过热汽温,再热汽温在自动调节投入,除氧器水位,炉膛负压,氧量,一次风压等主要自动投入.5.1.2送风机Pd3试验需进行的操作及要求关注的问题热控人员检查Pd3逻辑状态,参数设置情况是否正确;确认DCS系统R.B功能投入;确认DEH系统1LB功能投入;运行人员需根据辅机运行状态选择一台送风机手动跳闸;然后,检查1t13报警状态;检查跳闸送风机的动叶应联锁关闭;检查跳闸送风机的出口挡板应联锁关闭;检查运行送风机的动叶以较快速度开启;检查磨煤机自动停止动作情况,应保留3台磨煤机运行;检查对应给煤机自动停止情况;检查对应磨煤机进出口风门挡板情况;检查运行磨煤机的给煤量应为23.33t/h,并保持60s内不能操作;检查总燃料量应在79.6t/h左右;检查给水流量应有较快的下降趋势;检查油枪自动投入动作情况;CCS控制方式应为TF状态;检查压力控制方式应为滑压状态:观察主汽压力,机组负荷下降趋势;分屏观察给水,汽温,风烟,负荷中心画面上参数控制情况;观察其他辅机运行情况;待机组负荷下降N2ooMw左右,机组进入稳定运行后,运行人员启动跳闸的送风机.之后,在CCS画面上调出Pd3复位按钮,复位RB状态,重新投入RB功能.5.1.3送风机P.J3试验安全注意事项发生油枪未正常投入时,运行人员手动启动相应的油层程序,投入油枪:除非剩余磨煤机不足3台,否则不得投入其他油枪;如果负压自动设定与测量值偏差大于等于正负800Pa并XueshuJiaoliu◆学术交流无回头迹象时,运行人员切除负压自动,采用手动控制:若风量自动设定与测量值偏差大于等于正负250t/h并无回头迹象时,运行人员切除风量自动,采用手动控制;如果一次风压自动设定与测量值偏差大于等于正负5kPa并无回头迹象时,运行人员切除一次风压自动,采用手动控制;如果给水流量水煤比低于5或大于12并无回头迹象时,运行人员切除给水调节自动,采用手动控制;发生汽机ETSt~闸时,按照运行规程处理等程序进行操作;发生锅炉MFT跳闸时,按照运行规程处理程序进行操作;本R_13试验重点关注风烟系统自动,汽温自动. 5.2一次风机及l风机RB试验一次风机Pd3试验时机组条件与送风机试验条件基础上,将一次风量保护增加15s延时,尽量维持机组运行,以观察各项参数变化情况.一次风机RB试验需进行的操作及要求关注的问题也与上个试验基本相同,只是复位时,要待负荷降至175MW以下.安全注意事项,同送风机试验时一样.引风机R_B试验与上述辅机跳闸试验步骤及关注事项基本一样, 不再重述.6结语(1)350Mw超临界直流炉发生RB时,其共性关键点在于控制合适的水煤比,以避免机组出现水冷壁超温或汽温下降过快,幅度过大等现象.这就要求机组燃料,给水控制回路的设计应充分考虑不同工况下机组对燃料,给水扰动的动态响应特性差异,以实现合理解耦.(2)通过对350MW超临界机组Pd3控制策略优化,完善,现场各工况下的Pd3动态试验证明只要机组相关设计合理,严谨,350MW超临界机组就能够成功投运Pd3功能,并将有利于机组及电网的安全运行.窭收稿日期:2009—12—03作者简介:文兵(1976一),男,本科,助工,从事火电厂热力过程自动化专业维护工作,主要负责机组MCS控制系统.(上接第157页)避雷线,并不沿全线架设.因此,35kV及以下线路因雷击而跳闸的事故非常频繁,电网的运行安全受到很大威胁.我们通过多年实践证明在线路上安装线路型复合外套金属氧化物避雷器,可极大地提高架空输电线路的抗雷击性能,降低线路雷击跳闸率.我公司从2007年开始,安排大量大修资金,对所有35kV架空输电线路进行防雷改造,在各杆塔增补接地的同时,在每条线路地处高山,多雷区,易击段等安装使用6~12组不等避雷器,运行情况良好,有力地保障了线路运行的安全与可靠性.6结语总之,架设避雷线,对提高反击耐雷有重要作用,但存在绕击或侧击现象;加强外绝缘,受杆塔尺寸及投资的限制,无法有效地降低雷击的跳闸率;装设避雷针,投资较大,一般极少采用;降低杆塔接地电阻,对减少雷击反击跳闸率有决定性作用,但高土壤电阻率地区难以降阻,并且超过耐雷水平的雷电流仍将引起线路跳闸.所以,高山多雷区地带没有全线架设避雷线的35kV及以下架空输电线路,安装线路型避雷器是较合适的选择,它具有安装方便,性能可靠,维护简单,体积小,重量轻等优点. 安装线路型避雷器与全线架设避雷线的杆塔比较,能降低杆塔的高度及机械强度,降低施工难度,具有加快工程施工速度,节约投资,避免绝缘子闪络,减少跳闸停电等优点.35kV 架空输电线路的防雷实践表明,在雷电活动严重的"易击段, 易击点及易击相"以及山区或高土壤电阻率地区,采用综合防雷措施,投资省,改造快,效果好,很有推广价值.圜收稿日期:2009—1卜10机电信息2009年第36期总第246期159。
35kV架空线路的防雷保护措施本文介绍了35kV线路遭受雷击后的危害。
采用典型的防雷保护接线;在35kV线路变电所进出线段架设避雷线;降低杆塔接地电阻;在无避雷线杆塔上装设金属性消雷器,这些防雷技术措施,可以使35kV线路免受雷击的危害。
标签:大气过电压;避雷线;不平衡绝缘;金属性消雷器;避雷器;自动重合闸一、前言35kV线路一般分布很广,雷雨季节遭受雷击机会很多。
线路遭受雷击有三种情况:一是雷击于线路导线上,产生直击雷过电压;二是雷击避雷线后,反击到输电线上;三是雷击于线路附近或杆塔上,在输电线上产生感应过电压。
雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、主变压器绝缘损坏等事故,直接影响了变电站的安全运行。
为了提高供电的可靠性,减少因大气过电压造成的危害,对35kV架空线路应采取必要的防雷保护措施。
二、35kV架空线路应采取的的防雷保护措施1、选择典型的防雷保护接线防止35kV线路直击雷和进行波最有效的方法是架设避雷线。
但因雷击避雷线时,避雷线上产生的电位相当高,35kV线路的绝缘水平承受不了这个高电压,容易造成反击,同样会引起线路跳闸,同时避雷线线路造价又高,因此,35kV 线路只在变电所進出线段,根据变压器容量,架设1~2公里避雷线,以限制流进避雷器的雷电流和限制入侵波的陡度。
为了降低侵入波的峰值和陡度,35kV 线路除架设避雷线外,限制侵入波峰值的办法是在避雷线两端杆塔上还加装管型避雷器或保护间隙。
为此,35kV线路和变电所要选择典型防雷保护接线,如图1所示:图中:HY5W2-52.7/134型氧化锌避雷器;GB1-2-GXS(35/2-10)型管型避雷器。
2、35kV线路防雷保护的设计要求2.1避雷线的选择2.1.1带避雷线杆塔的选择带地线的35kV线路,要选用定型的杆塔,以确定避雷线悬点高度和与导线间垂直距离h和避雷线的保护角α=tg-1S/h(度)。
一般水泥双杆h为3.25m-4m 为双根避雷线,铁塔h为5.7m为单根避雷线,以满足角α为20°~30°的要求。
探讨35kV输电线路防雷措施35kV输电线路是电力系统中较高电压的输电线路之一,需要特别注意防雷措施。
以下是对35kV输电线路防雷措施的探讨。
1. 地线防雷:地线是输电线路中的一部分,其主要作用是将感应到的雷电能量迅速引入大地,减少对其他设备的干扰。
对于35kV输电线路,地线的导体应采用符合规定标准的裸导线,以确保良好的接地效果。
还需注意地线的布设,尽量减少接地电阻,提高抗雷击能力。
2. 减少结构突出部分:为了减小35kV输电线路遭受雷击的风险,可尽量减少结构部件的突出部分,如减少绝缘子串数量,降低杆塔高度等。
这样可减少雷电击中的可能性,提高线路的抗雷击能力。
3. 良好的绝缘性能:35kV输电线路的绝缘设计需符合相关标准和规范要求,以确保绝缘性能良好。
绝缘子的选择应遵循正常工作电压和附加电压等要求,防止中间相间隙电晕放电和绝缘子表面电晕放电产生,从而提高绝缘系数和耐电气击穿性能。
4. 防雷接地装置:35kV输电线路应配备有效的防雷接地装置。
这些装置包括避雷针、防雷带、防雷网等,通过引雷和集流放电的作用,将雷电能量迅速引入大地,保护线路设备。
5. 防雷检测:定期进行防雷设备的检测和维护工作,对电力线路的防雷设备进行定期的巡检和测试,发现问题及时处理,确保防雷设备的有效性。
6. 防雷杆塔绝缘和绝缘子串绝缘:对于35kV输电线路的钢管杆塔,应对其表面进行绝缘处理,以防止雷击短路。
绝缘子串在安装时应满足规范要求,确保良好的绝缘性能。
35kV输电线路的防雷措施需要从多个方面综合考虑,包括地线防雷、减少突出部分、良好的绝缘性能、防雷接地装置、防雷检测以及杆塔绝缘和绝缘子串绝缘等。
通过合理的设计和配备有效的防雷设备,能够有效提高35kV输电线路的抗雷击能力,确保电力系统的稳定运行。
35kv变电站防雷接地保护方案一、背景与目标随着电力系统的不断发展,35kv变电站的数量逐渐增多,其运行安全问题也日益突出。
雷电是导致变电站故障的重要因素之一,因此,制定一套有效的防雷接地保护方案至关重要。
本方案旨在提高35kv变电站的防雷接地能力,确保其在雷雨天气下的正常运行。
二、方案设计1.避雷针安装在变电站的进出线架构、变压器和开关设备等重要设施上安装避雷针,以防止直击雷对设备造成的损害。
避雷针应选择具有优良导电性能的材料,并按照规范进行安装,以确保其保护效果。
2.接地网设计设计一个覆盖全站的接地网,确保所有设备均能通过低阻抗路径连接到地网。
接地网的设计应考虑以下几点:(1) 确定合理的接地电阻值,以确保地网与大地之间的导电性能良好;(2) 选择合适的接地体材料,如镀锌钢等;(3) 按照规范的施工方法进行接地体的埋设和连接。
3.浪涌保护器设置在变电站的电源、信号等关键部位设置浪涌保护器,以吸收雷电过电压和操作过电压等瞬时能量,保护设备免受雷电冲击。
浪涌保护器的选择应符合设备的额定电压、持续运行电压等参数。
4.合理布线对进出变电站的线路进行合理布线,避免线路交叉跨越或近距离平行排列,减少雷电感应过电压对设备的影响。
同时,对重要设备进行屏蔽措施,如采用屏蔽电缆等。
5.维护与监测定期对防雷接地系统进行检查和维护,确保其正常运行。
同时,安装接地电阻在线监测系统,实时监测地网的电阻值变化,及时发现并处理问题。
三、实施步骤1.调研与设计阶段:对变电站的地形地貌、建筑结构、设备布局等进行详细调研,确定避雷针安装位置、接地网设计方案等。
2.材料采购与施工准备阶段:根据设计方案采购必要的材料和设备,包括避雷针、接地体、浪涌保护器等。
同时,做好现场施工准备工作,如清理场地、准备施工工具等。
3.避雷针安装与接地网施工阶段:按照设计方案和施工规范进行避雷针的安装和接地网的施工。
注意确保避雷针与设备之间的安全距离,以及接地体的埋设深度和连接质量。
35kV输配电线路雷击故障及防雷措施摘要:35kV输配电线路是比较常用的配电线路,在我国电力系统中有着重要地位,但由于35kV输配电线路本身的特征,增加了输配电线遭受雷击闪络或跳闸事故的几率,所以加强35kV输配电线路的防雷措施就显得尤为重要。
这就要求相关技术人员能够排除配电线路防雷措施中的隐患,提升配电线路的安全性,从而保障区域供电的正常运行。
本文主要论述35kV输配电线路防雷措施的重要性、35kV输配电线路雷击故障类型与雷击故障判别类型,以及具体的防雷措施,希望提供读者有价值的信息。
关键词:35kV输配电线路防雷措施;雷击故障类型;故障判别1.35kV输配电线路防雷措施的重要性35kV输配电线路是我国电网系统中主要的配电线路,但由于其本身的性质,使得配电线路在防雷电方面表现的并不理想,增加了遭受雷击的几率。
在我国沿海地区,输配电线出现故障的事情时有发生,其中由雷电引起的配电事故更是占了很大的比重,严重威胁了区域供电的稳定和安全,也影响了居民的用电需要。
因此,相关人员必须加强配电线路的防雷措施,用自身的专业能力去维护配电线路的稳定和安全,保障区域配电的供电需要,为社会的稳定发展作出贡献。
2.35kV输配电线路雷击故障类型与雷击故障判别类型2.1雷电过电压的故障类型与跳闸率问题在配电线路的雷击故障中,雷击的过电压一般分为三种,分别是直击雷过电压、反击雷过电压、感应雷过电压。
专业人员可以通过杆塔位置、闪络位置等进行雷击事故的判别,其中直接雷过电压是指天空的雷云在放电的过程中导致线路产生一定的抗阻,随着电流电压的逐渐升高,线路内产生极强的冲击力,使线路内出现极大的直击雷过电压。
同样,天空的雷云放电的过程中,杆塔中的阻抗与其他线路的阻抗共同作用产生了电压降,由于杆塔顶端高电位的影响,导致线路的电流电压快速升高,绝缘子被击穿的过程就产生了反击雷过电压。
而感应雷过电压也是因为天空中雷云的关系,使线路内产生束缚电荷。
-89-科技论坛35kV 配电线路的防雷措施刘德平(崇左广信电力建设有限公司,广西崇左532200)35kV 配电线路是属于我国配电网的重要线路,它是以直接的方式向广大用户分配电能的形式来运作的。
35kV 配电线路的防雷措施对于它的运作是非常重要的,其的防雷保护本身就是属于一个系统的工程,只有很好的保护好其防雷的功能才能保证电力系统的安全并且稳定的运行。
135kV 配电线路1.135kV 配电线路的基本概念35kV 属于中压网络,也是中国的主要配电网络,一般没有避雷线保护且线路绝缘水平较低。
再加上网络结构复杂,构架结构多样等特点,一旦遇到雷害天气。
配电网不但直击雷能造成雷害事故,且感应雷也能造成较大的危害[1]。
对某供电公司下属的35kV 配电线路进行雷害事故调查发现:该地平均雷暴日为60天左右,雷击跳闸率占其总故障率的80%以上。
有些变电所在雷电活动强烈时,所有35kV 线路几乎全部失压,极大地影响了配电网的供电可靠性和电网运行安全。
因此,通过研究找出一种相对完善的防雷保护措施,保证配电网的安全稳定运行,对提高该地的供电可靠性来说显得至关重要。
35kV 线路是我国配电网的重要线路,直接向广大用户分配电能,配电线路由于本身所具有的特点,耐雷水平普遍不高,一旦发生雷击,容易导致线路元件损坏甚至整条线路跳闸的恶性事故发生。
35kV 配电网线路防雷保护是一个系统的工程,通常需要从线路本身所处的地形、地貌、雷击易击点、线路本身的防雷保护措施以及自身的运行管理的方式入手,才能最终降低雷击对配网线路所造成的危害,提高配网的供电可靠性,从而保证电力系统的安全稳定运行。
1.235kV 配电线路的目前的防雷现状长期以来,为了减少电力线路的雷击事故,提高供电的可靠性,人们采取了各种综合防雷措施。
德国于19l4年提出利用避雷线防雷的理论,认为其作用在于降低绝缘上的感应过电压。
到20世纪30年代初期,避雷线虽己使用多年,对其作用仍无统一认识。
变电站的防雷保护措施变电站是电力系统中重要的设备,也是较为脆弱的环节。
雷电是造成电力设备损坏的主要原因之一,因此对于变电站的防雷保护措施非常重要。
以下是变电站常用的几种防雷措施:1.接闪器的安装:接闪器是变电站中常用的防雷设备,它主要通过对雷电电流进行导引,将雷电电流引入地下,保护变电设备。
在变电站的高处,如厂房屋顶、铁塔等地方安装接闪器,以确保变电站安全。
2.金属屋顶和金属网的应用:在变电站的建筑物周围,可采用金属板覆盖屋顶以及安装金属网,它们可以起到导电、接地的作用,将雷电电荷集中引向地下。
金属屋顶和金属网是一种比较传统的防雷方法,在变电站中仍然被广泛使用。
3.外部接地系统的建设:外部接地系统是变电站防雷措施中非常关键的一环,它可以将变电站系统中的雷电电荷引入地下,从而保护变电设备。
这要求变电站建设时,考虑到土壤的特性和变电设备的类型,合理设计外部接地系统,确保接地电阻低于规定标准。
4.防雷装置的使用:变电站内部设备中常常使用一些防雷装置,如避雷器、过压限流器等。
避雷器是一种能够快速放电吸收过电压能量的装置,它可以保护变电设备免受雷击。
过压限流器可以通过限制过压电流,保护变电设备不受损坏。
5.设备的绝缘:绝缘是保护变电设备免受雷击的重要手段之一、在变电站中,应合理选择绝缘材料,对设备进行绝缘处理,从而减少雷电对设备的影响。
6.监测系统的建设:变电站防雷措施的有效性需要通过监测系统进行实时监测与分析。
通过安装合适的监测设备,及时发现可能存在的雷电威胁,并采取相应的处理措施,可以有效降低雷电对变电站的影响。
总结起来,变电站的防雷保护措施主要包括接闪器的安装、金属屋顶和金属网的应用、外部接地系统的建设、防雷装置的使用、设备的绝缘以及监测系统的建设等。
通过综合应用这些措施,可以有效保护变电站设备免受雷电的侵害,确保电力系统的正常运行。
35kV输电线路雷击及防雷建议在我国电力系统各类事故、障碍中,输、配电线路的雷害事故占有很大的比例.由于输电线路对于保“网”的重要地位,如何减少输电线路雷害事故引起的跳闸,不但影响电力系统正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上落雷,雷电波还会沿线路侵入变电所甚至用户,影响人身财产安全。
而在电力系统中,线路的绝缘最强,变电所次之发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。
1输电线路遭受雷击的原因输电线路雷击闪电由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应过电压。
按雷击的性质可分为直击雷和感应雷:1)直击雷。
当带电的雷云接近输电线路时雷电流沿空中通道注入雷击点,如避雷线、杆(塔)顶部导线等产生直击雷过电压。
雷云放电时,引起很大的雷电流,可达几十甚至几百kA,从而产生极大的破坏作用;2)感应雷。
当雷击于输电线路附近的大地或物品时,导致产生静电感应,致使先导路径附近的导线上积累了大量的异号束缚电荷,雷击后,主放电开始,导线中感应电压就会很大。
根据实测,感应雷电压幅值一般为300~400kV,击穿60~80cm的空气间隙,对于35kV及以下水泥杆线引起一定的闪络事故.雷电主要危害有以下几种:1)电流高压效应会产生高达数万伏甚至十万伏的冲击电压,如此巨大的电压瞬间冲击电力设备,足以击穿绝缘体,使设备发生短路,导致燃烧、爆炸等直接灾害。
2)电流高热效应会放出几十至上百千安的强大电流,并产生大量热能,在雷击点温度会很高,可导致金属熔化,引起火灾和爆炸。
3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象,导致财产损失和人员伤亡。
输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带.输电线路的安全运行,直接影响到了电网的稳定和向用户可靠供电。
论析35kV变电站的防雷与接地保护措施1 雷电对35kV变电站的主要入侵途径分析通过对大量的雷电灾害事故进行分析后发现,雷电流一般会经由以下三种途径侵入至35kV变电站,并对站内的电气设备造成雷击损坏:1.1 经由电源线入侵当感应雷过电压达到一定幅值后,雷电波便会沿着线路向变电站内传输,虽然雷电流经过进线段以及母线侧的避雷器后会被削弱,但其幅值仍然较高,这部分较高幅值的电压经由变压器绕组间的电磁耦合作用感应到变压器的低压侧,最终会耦合至低压二次系统。
如果电压幅值大于变电站内二次设备电子元器件的最大耐压值,便会导致设备被击穿,从而影响变电站正常运行。
1.2 经由信号线入侵通常情况下,当雷电波通过天线或是卫星等信号线时,其便会被转化成为相应的电流或是电压信号,如果此时的电流或电压信号高于变电站内二次设备的整定值,就会造成二次设备损坏。
虽然经过转化之后的电流或电压信号也会被防雷装置所削弱,但是在微机综合保护或是监控装置上的电流或电压值仍然相对较高,故此其也会对站内的二次设备造成危害。
不仅如此,信号线当中流过的电流或电压经过电磁或电容耦合后,会产生出较高的过电压,这部分电压会对电源线或通信线路的正常运行带来一定程度的影响。
1.3 经由接地线入侵当雷电直接击中避雷线或是避雷针时,雷电流会经由防雷引下线被导入到大地当中,然而,由于大地本身电阻的原因,进入到地下的电荷无法与大地电荷完全中和,由此一来,便会引起地电位的局部上升,这部分较高的电压施加在变电站内的二次设备上,会对设备造成极大程度的危害。
2 35kV变电站的防雷接地保护措施为了有效降低雷击对35kV变电站的危害,必须采取合理、可行的防雷接地措施。
2.1 进线段的防雷措施对于35kV变电站而言,其进线一般有两种情况:一种是架空进线,另一种则是电力电缆进线。
鉴于此,在进行防雷时,应针对这两种分别采取不同的防雷保护措施。
2.1.1 架空进线段防雷。
对于此种情况,可在距离变电站1~2km的某段线路上采取防雷防护措施。
35kV线路的防雷设计摘要:本文对雷击的形成以及雷击对35kV线路的危害进行了简要介绍,并就35kV架空线路的防雷,试图从设计角度对现有防雷措施作初步探讨。
关健词:35kV;防雷;设计1引言我单位所在地为金衢盆地东侧,称“七山二水一分田”。
所属35kV线路所经地区,多为丘陵或山地,地形起伏较大,天气多变,属雷雨密集区。
近年来,35kV 线路因雷击而引起的事故约占全部35kV线路事故的3/4左右,对其安全运行构成了严重威胁。
因此,35kV线路防雷保护显得尤为重要。
2 雷电的形成雷电是自然界中雷云之间或雷云与大地之间的一种强放电现象,产生于积雨云中,积雨云在形成过程中,某些云团带正电荷,某些云团带负电荷,它们对大地的静电感应,使地面或建(构)筑物表面产生异性电荷,当电荷积聚到一定程度时,不同电荷云团之间,或云团与大地之间的电场强度可以击穿空气,开始游离放电,我们称之为“先导放电”。
云对地的先导放电是云向地面跳跃式逐渐发展的,当到达地面(地面上的建筑物,架空输电线等),便会产生由地面向云团的逆导主放电。
在主放电阶段里,会出现很大的雷电流并随之发生强烈的闪电和巨响,这就形成了雷电。
雷电的特点是电流大,能量释放时间短。
一般还伴有阵雨,有时还会出现局部的大风、冰雹等强对流天气。
3雷击的形式3.1直击雷带电云层与大地上某一点之间发生迅猛的放电现象。
直击雷威力巨大,雷电压可达几百万伏,瞬间电流可达几百千安,在雷击通路上可产生电能效应、热效应和机械力效应等,对物体造成危害。
在送电线路可表现为击中杆塔顶部或顶部的避雷线(无避雷线可表现为击接击中导线),一般会造成该塔一相或多相瓷瓶闪络或避雷线被高温灼伤甚至熔化断线。
3.2绕击雷在有避雷线的情况下,雷击绕过避雷线而击于导线上,绕击雷多发于大跨越档和线路周围空旷地区,一般会造成边相瓷瓶串闪络,该边相应是迎着雷云走向的一侧,有时会因雷电流较大,雷绕击导线后雷电流沿导线两侧游走,造成该档相邻的杆塔同相瓷瓶串闪络,同时由于雷电流大,通过杆塔入地时会造成塔顶电位高,引起反击,造成其它相瓷瓶的闪络。
35kV输电线路防雷措施发布时间:2022-12-06T03:18:28.784Z 来源:《福光技术》2022年23期作者:何璇[导读] 如今,随着我国气候的不断变化,输电线路遭受雷电灾害时有发生,严重威胁着我国电网运行的安全性和可靠性。
雷击是导致线路跳闸并引起灾害的主要原因,甚至严重的时候会顺着电线传播而破坏变电所。
因此,我们应该采取有效的措施,避免输电线路遭受雷击。
遵义供电局贵州省遵义市 563000摘要:如今,随着我国气候的不断变化,输电线路遭受雷电灾害时有发生,严重威胁着我国电网运行的安全性和可靠性。
雷击是导致线路跳闸并引起灾害的主要原因,甚至严重的时候会顺着电线传播而破坏变电所。
因此,我们应该采取有效的措施,避免输电线路遭受雷击。
为了避免上述的现象发生,我们通常采用的主要防雷措施有:有效的降低杆塔接地电阻;在输电线路上增设避雷线;加装一定数量的耦合地线;进一步提高输电线路的绝缘水平等。
但是有些问题还是未能找到有效的解决办法,例如遇到土壤电阻率较高时或绕击雷对输电线路的影响等。
为此,这就需要我们采取更加有效的方法来提高输电线路的耐雷水平,减少可能出现的雷击跳闸率。
如今,在输电系统中应用范围最广的是在输电线路的两端或易雷击段安装避雷器,这种防雷技术在我国已经开始日趋完善。
关键词:输电线路;防雷;措施1输电线路遭受雷击的原因及所造成的损坏 1.1输电线路遭受雷击的原因输电线路遭受雷击是由于大气的过电压通过输电线路的杆塔形成一定的放电通道,最终导致输电线路的绝缘层被雷电击穿,该过电压又称大气过电压,可以分为两类,即感应过电压和直接过电压。
感应过电压是由于雷击能量较大,当大气中的雷电击到输电线路附近的地面上,线路中的三根导线因感应而产生较高的电压,该类过电压的电压幅值通常为300~400kA,可以有效的击穿空气间隙大概60~80cm,容易使一些线杆出现闪络事故。
直接过电压是由于输电线路直接遭受雷击,并且危害到设备绝缘的电压,该类过电压会引起很大的雷电流,有时可以达到几十甚至几百千安,对输电设备产生较大的破坏。
35KV输电线路防雷措施【摘要】近年来,随着天气的不断变化,电网遭到雷电击害的事故也频频发生,给电网的供电安全及可靠性带来了巨大威胁。
我国虽通过各种途径加强改进供电工程,但由于电网设备的供电水平有限,部分地区遭受雷击的现象时常发生,预防因雷击而导致跳闸事故发生的工作尚未得到改进。
因此,不断完善我国输电线路的防雷制度尤为重要。
下文是笔者根据根据多年的实际经验针对35KV 避雷器的型号选择及安装方式进行探讨。
【关键词】避雷器;防雷措施;接地网前言气候的变化莫测,使得电网遭受雷害的事故不断发生,给电网的供电安全造成了巨大威胁。
1 35kV避雷器的型号选择及安装1.1 35kV避雷器的型号选择输电线路的避雷器主要包括无串联间隙与带串联间隙两种。
由于输电线路的避雷器需安装在输电线路的导线上,因此,在选择避雷器的型号时,应选择体积小、结构单一及质量较轻特征的型号,而无串联间隙的避雷器刚好符合其需求,因此,无串联间隙的避雷器是最佳选择。
如,涡北煤矿所选取的避雷器就是无串联间隙的避雷器,它的型号为HY5WZ-42/134。
1.2 35KV避雷器的安装方式在安装避雷器时,可选择两种方式进行。
一是可将避雷器垂吊在导线上;二是将其竖直地安装在横杆上。
但是在具体安装避雷器的过程中,应结合周围的实际情况而定。
若在安装35kV无串联间隙的避雷器时,周围未架有连接地面线路以及两边线路的双杆塔,则应在横杆上进行竖直安装避雷器,以确保避雷器能很好的起到防雷功效。
35KV避雷器的技术性能主要有:首先,线路系统额定的电压为35KV,避雷器的额定电压则为42KV。
其次,避雷器上的工频电压应小于其持续运转电压。
2 当前雷电对线路的影响效果分析2.1 直击雷的应用情况由于雷电直接应用于线路设备或者导线,导致输电线路的设备或者绝缘体损坏严重。
直击雷是雷电波在输电线路中侵入的主要路径,由于雷电波直接击破导线、反击导线,进而在输电线路中形成过高的过电压。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改浅析35KV线路接地电阻与防雷(标准版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes浅析35KV线路接地电阻与防雷(标准版)摘要:本文介绍了宜宾芙蓉电力公司35KV供电系统的运行方式及线路特点,分析了35KV供电线路接地和防雷系统上存在的一些问题;论述了35KV线路接地设计的必要性和接地装置的设计原则;阐述了接地电阻的降阻措施和如何提高35KV线路的防雷措施,提出了使用“避雷器在线监测仪”技术方案的建议,通过避雷器在线监测仪的使用,不断掌握本地的雷电参数、输电线路的落雷次数,从而有针对性地、逐步地完善、优化35KV供电系统的防雷体系。
关键词:35KV线路接地电阻防雷一、35KV供电系统概况宜宾芙蓉电力公司供电系统,由宜宾供电局武家岩110/35KV变电站供电,通过巡电东(344)、巡电西(345),两条专线至电厂35KV 中央变电站,又通过35KV中央变电站分别向:白皎变电所、杉矿变电所、红卫变电所、珙泉变电所、新林变电所供电,形成了以电厂35KV中央变电站,为中心的川煤芙蓉集团公司珙县区域的供电网络。
电厂35KV中央变电站已于2007年实现了微机综合自动化系统改造。
白皎变电所、杉矿变电所分别在2010、2012年也进行了微机综合自动化系统改造。
1、系统正常运行方式宜宾供电局武家岩110/35KV变电站,通过两台40MVA变电器,分别以馈出开关344(巡电东)、345(巡电西)向电厂35KV中央变电站Ⅰ、Ⅱ母线供电;35KV中央变电站为单母线系统,母联开关(300)断开,Ⅰ、Ⅱ母线分段运行,形成分别以白皎、杉矿、珙泉变电所进行的双回供电;红卫、新林变电所单回供电的供电体系。
35kV变电站线路工程建设防雷措施
1、雷电的形成
雷电形成的主要原因是云之间的摩擦而引起的放电。
首先地表的水在高温下蒸发形成水蒸气并且不断上升,当大量的蒸气汇聚时就成了热气流。
众所周所,离地表越高,空气就越稀薄,空气的温度也随之下降,根据相关数据统计,从地表往上每上升1km,空气的温度会随之下降10°左右。
在高空中,当热气流遇到冷空气时,水蒸气就再次凝结成较小的水滴,这就是云。
云并不是静止不动的,它随着风的运动而运动,从地面到空中5kmX围内,云主要带正电荷,而空中5~10kmX围内,云主要带负电荷,这样使得云和地面之间形成了很大的电场,当云与云之间发生碰撞和摩擦时,如果所带电荷不同,就会发生放电现象,这也就是雷电。
一般来说雷电向下放电,这样地面较高的建筑物就有了被雷击的危险。
另外,雷云还存在不同的电荷放射区,当一个电荷区在放电完成以后还可能会引发其它电荷区的放电。
2、变电站遭受雷击的来源和防X措施
2.1雷击的来源
变电站遭受雷击一般是下行雷,其承受对象主要包括两个方面,第一个方面是雷击对变电站的电气设备损坏,另外一个是变电站电线在雷击后雷电进入变电站对站内的设备造成破坏,为此,要采取避雷的防X措施。
2.2变电站的防雷措施
为了防止雷击,最常见的方法是安装避雷针,避雷针是具有很强的导电性,当发生雷击时就可以将雷电吸引到自己身上,从而避免其它建筑物或者建筑设施遭受雷击。
下面介绍一下变电站避雷针的安装要点。
2.2.1安装避雷针的原则
避雷针安装的首要原则是能保护其它建筑设施不受雷击,从而起到很好的保护作用。
雷电在碰到避雷针时,对于地面来说,避雷针的电位比较高,如果它和其它电气设备的距离太近,那么也有可能出现避雷针对这些设备放电的现象,这也会使这些电气设备受损,或者使其不能正常工作,这也叫做反击。
为了防止反击,避雷针要与这些电气设备保持一定的距离,还要使避雷针的地下引线远离被保护的对象。
一般来说,把避雷针和电气设备不会发生反击的距离叫做最小安全距离。
最小安全距离要符合一定的原则:s≥
o.3rch+0.1h,其中s代表最小安全距离,rch代表避雷针的接地电阻,h表示避雷针校验点的高度,s的最小距离都不能低于3m,而避雷针和被保护对象间的高度不能少于5m,但在一般情况下,s 应尽可能大些,这样才能保护电气设备的安全。
2.2.2避雷针及其接地装置装设的有关规定
(1)避雷针在接地时要有单独的接地装置,一般来说它的工频接地电阻不能超过10,但在特殊情况下,如果电阻超过10,那么就应该使避雷针和被保护对象的水平距离加大,另外,避雷针可能
会反击35 kv变电站的设备,为了防止这一现象的发生,可以将避雷针和35 kv的设备的地线进行连接,并且避雷针的接地体的地中距离不能小于20m。
这样当发生雷击时,就可以使雷击的反击强度减弱,对于35 kv变电站的相关设备也不会造成太大的影响。
除此之外,避雷针的地下装置不应设在人群通行之处,在避雷针地下装置的地表铺洒碎石,以保证人群的绝对安全。
(2)35kv变电站的其它配置或者建筑的房顶最好不要设避雷针,否则,可能会引发多次反击而使变电站的基础设施受到损害,而对于63 kv或者以上的变电站一般来说不会发生反击现象,但在特殊条件下,如土壤的电阻率超过1000.m时,也应安装独立的避雷针,避雷针一般安装在房屋的构架上,并且和接地网相连,在避雷针的附近还需要进行接地装备的集中安装。
(3)由于变电站进线的终端杆塔至变电站的配电装置进线构架之间的距离可能比较远,如果允许将终端杆塔上的避雷线引至变电站的构架上,这段导线将受到保护,比用避雷针经济。
由于避雷线有两端分流的特点,当雷击时要比避雷针引起的电位升高4。
110kv 及以上配电装置,可将线路的避雷线引到进线构架上,土壤电阻率p≥1000q.m的地区,应装设集中接地装置。
35~63kv配电装置,在土壤电阻率p5000.m时,避雷线应终止在线路终端杆塔,此时从线路终端杆塔到变电站配电装置进线构架的一档线路的保护,可采用独立避雷针,也可在线路终端杆塔上装设避雷针(应装设集中接地装置,接地电阻小于4)进行保护。
(4)变电站侵入波过电压的保护。
因为雷击线路的机会远比雷直击变电站多,所以架空线路的雷电感应过电压和直击雷过电压形成的雷电波过电压沿线路侵入变电站,是导致变电站雷害的主要原因。
如不采取措施,势必造成变电站电气设备绝缘损坏,引发事故。
侵入雷电波过电压保护的主要措施是在变电站内装设避雷器,其主要作用是限制雷电波过电压的幅值,使电气设备的过电压不至于超过其冲击耐压值。
2.2.3变电站的进线保护
运行经验证明,变电站侵入波过电压引起的雷害事故约50%是由离变电站ikm以内的雷击线路引起的,约71%是3km以内雷击线路引起的。
因此,加强进线段的防雷对变电站十分重要。
我们一般把变电站附近1—2km的一段线路叫进线段。
为防止或减少近区雷击闪络,对未全线架设避雷线的35~110kv架空线路,应在变电站1~2 km的进线段架设避雷线,避雷线的保护角不宜超过20°,最大不超过30°。
变电站进线段的作用,是限制雷电流的幅值和降低侵入雷电波的陡度。
变电站35kv及以上电缆进线段,在电缆与架空线的连接处应装设避雷器,其接地端应与电缆的金属外皮连接。
对三芯电缆,末端的金属外皮应两端同时直接接地。
对单芯电缆,为防止电缆外皮中产生环流,只允许将电缆一端的外皮直接接地,另一端经过电压保护间隙接地。
2.2.4变压器的保护
变压器的基本保护措施是靠近变压器安装避雷器,避雷器至变压
器的距离愈近则保护作用愈大,可以有效防止侵入雷电波过电压损坏变压器绝缘。
装设避雷器时,要尽量靠近变压器,并尽量减少连线的长度,以便减少雷电流在连接线上的压降。
当避雷器与变压器的电气距离超过允许值时,应在变压器附近增设一组避雷器。
同时,避雷器的接线应与变压器的金属外壳及低压侧中性点连接在一起,这样,当侵入波使避雷器动作时,作用在高压侧主绝缘上的电压就只剩下避雷器的残压了(包括接地电阻上的电压压降),就减少了雷电对变压器破坏的机会。
2.2.510kv配电装置的防雷
在每路架空出线上安装—组避雷器。
对为电缆出线的架空线路,应在电缆两头装设避雷器。
在每组母线上安装一组避雷器。
2.2.6接地网
当变电站的防雷保护满足要求以后,还应根据规程有关接地的要求敷设一个统一的接地网,然后将避雷器、构架避雷针等防雷装置与主接地网连接,独立避雷针则单独敷设接地网。
3、结语
综上所述,35kv变电站的防雷对于变电站的正常运转来说至关重要,不仅要提高防雷的安全意识,还要从技术上提高防雷的措施,在安装避雷针时要对安装进行全面地考虑,从而杜绝安全隐患,总而言之,必须按照相关的标准进行防雷。