35kV架空线路防雷措施分析
- 格式:doc
- 大小:20.50 KB
- 文档页数:2
乏,科等冬,。
凰35kV架空电力线路防雷措施探讨郭晋平霍艳丽(LI l西省阳泉供电分公司,LJJ西阳泉045011)哺要】本文通过分析35kV苇西线雷击掉闸情况,对35kV线路如何提高耐雷水平.降倚掉闸率,提高供电可靠性,提出有关整改措施,选到减少35kV架空线路雷击跳闸事故的目的,保证线路的安全运行和对用户不间断地供电。
法蔓蜘]防雷;措施;探讨架空电力线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
35K V电压等级的输电线路由于电压等级较低,重要程度一般,衡销叶耐的耐雷水平偏低。
加之阳泉山区、丘陵地区地形复杂,土壤电阻率高,接地电阻难以达到规范要求。
由于雷雨季节雷电活动频繁,且呈上升趋势,雷击事故频繁,严重影响了线路的安全可靠供电,防雷措施成为运行单位考虑的重点工作。
积极开展山区35K V线路雷害治理工作,显得至关重要,本文就我公司所属的35K V苇西线的防雷措施改进进行分析,;屎讨35k V架空电力线路的有效防雷措施。
1雷击故障类型直击雷是线路的主要危害。
直击雷有反击和绕击两种形式。
雷击造成输电线路事故—般有3种情况:接地电阻超标,造成输电线路耐雷水平降低,此时雷击避雷线或塔顶,杆塔电位升高引起反击使线路跳闸:接地电阻合格,但是由于雷电流太大,超过了线路设计的耐雷水平,此时雷击避雷线或塔顶,反击使线路跳闸:雷绕击到线路,使线路跳闸。
由于35kV线路无全线架设避雷线,因此雷电直击线路的可制生较大。
235K V线路的防雷设计对于35K V及以下电压等级线路,即使发生雷击造成短路或接地故障后,故障电流也不是非常的大,一般不超过5A o所以对于35K V 及以下电压等级线路,一般不采用全线架设避雷线的方式。
35K V及以下系统采用中性点不接地或者经消弧线圈接地的方式。
这样就可以使得雷击造成的大多数单相接地故障能够自动消除,不致引起两相短路和跳闸。
架空线路遭雷击原因及防雷措施架空线路遭雷击的原因主要包括以下几个方面:1. 天气条件:雷击通常发生在雷暴天气中,具有较高的雷暴和闪电频率。
这种天气条件下,雷电活动较为频繁,增加了架空线路遭雷击的可能性。
2. 线路高度:架空线路一般处于较高的位置,容易成为雷击的目标。
由于架空线路一般处于地面以上几米至十几米的高度,正好处于雷击发生的范围之内,因此更容易受到雷击。
3. 线路走向:架空线路通常呈线性分布,较长的线路更容易遭到雷击。
较长的线路增大了受雷击的概率,因为雷电所产生的电磁波会在一定范围内传播,而较长的线路更容易成为电磁波的目标。
4. 架空线路金属材质:架空线路一般由金属材质制成,比如铝合金等。
金属材质具有良好的导电性能,容易将雷击电流导向地面,从而减少线路遭到雷击的概率。
5. 线路绝缘性能:架空线路的绝缘性能对遭雷击起着关键的作用。
如果线路的绝缘性能较差,就容易形成电弧,进而导致线路发生击穿,从而造成雷击事故。
为了防止架空线路遭雷击,可以采取以下一些防雷措施:1. 架设避雷针:在架空线路附近的高空地段,可以设置避雷针来吸引雷电,减小对线路的影响。
避雷针可以通过导线或者金属尖端与大地连接,并且应安装在距离线路较近和较高的地方。
2. 提高线路绝缘性能:应选择具有良好绝缘性能的材料进行线路绝缘处理,比如使用绝缘塑料或者涂覆绝缘漆等。
要定期对线路进行绝缘检查,以确保绝缘性能正常。
3. 设置避雷器:避雷器可以将雷电能量引导到地面,起到隔离和保护线路的作用。
在架空线路附近安装合适的避雷器,可以有效降低线路遭到雷击的概率。
4. 加强接地措施:对于架空线路来说,良好的接地系统可以将雷击电流迅速引入地面,保护线路不受雷击的影响。
要定期检查和维护接地装置,确保其电阻足够小,接地效果良好。
5. 增加支架数目:在较长的线路中增加支架的数量,可以减小线路的长度,减少受雷击的概率。
增加支架还可以增加线路的稳定性和强度,提高线路的抗雷击能力。
35kV架空线路的防雷保护摘要:结合工作经验,以及我国35kV输电架空线路的现状,分析、总结多种防雷措施;在雷电活动频繁的“易击段、易击点及易击相”以及山区和高土壤电阻率地区,采用综合防雷措施,能使线路投资省、效果好,是值得推广的技术。
关键词:35kV架空线路;防雷;避雷35kV电网在我国电力工业中特别是在以架空线为主的城市近郊及农村供电网中占有相当重要的地位。
以架空线为主的35kV线路多经过山区,连绵不断地分布在旷野上,极易遭雷击。
绝大多数35kV线路为3~4片绝缘子,本身的绝缘水平较低。
当雷击架空线路时,不论是感应雷过电压还是直击雷过电压都极易引起绝缘子闪络。
通过降低线路杆塔接地电阻等措施在一定程度上可提高线路耐雷水平和降低绝缘子闪络概率,但要保证绝缘子不发生闪络是不大可能的。
因此降低35kV线路雷击跳闸率的关键是使线路因雷击引起单相接地时的工频续流尽早熄弧,避免单相接地发展成相间短路而导致线路跳闸。
一、35kV线路雷电性能分析35kV线路常用杆塔除两端外无架空地线,绝缘水平低。
感应雷、直击雷、反击雷均可能威胁安全运行。
图1中a和b分别为上、下层横担的长度,mm;L1为抱箍上装设角钢的长度,m。
图135kV线路典型杆型图1.感应雷害:对一般高度的线路,规程建议,当雷击点与线路的距离d>65m 时,Ug≈25Ihd/d (1) 式中,Ug为导线雷击感应最大过电压,kV;I为雷电流辐值,kA;hd=12.4-2f/3,为导线平均高度,m;d为雷击点距线路的距离,m;f为导线弧垂,m。
f取为4m,Ug为374.5kV,绝缘子串的3片X-4.5的绝子串临界雷闪电压U50%=100+84.5×3=353.5kV,故至少需4片悬瓶组成绝缘串或S-380瓷横担才不会造成绝缘闪络。
2.直击雷害:雷击导线时绝缘子串闪络的雷电流I2=U50%/100=3.5kA,据lgP=-I/88,P为雷电流幅值概率,超过此雷电流的概率为91%,即91%的雷电流都可能造成绝缘子串闪络。
35kV架空线路的防雷保护措施本文介绍了35kV线路遭受雷击后的危害。
采用典型的防雷保护接线;在35kV线路变电所进出线段架设避雷线;降低杆塔接地电阻;在无避雷线杆塔上装设金属性消雷器,这些防雷技术措施,可以使35kV线路免受雷击的危害。
标签:大气过电压;避雷线;不平衡绝缘;金属性消雷器;避雷器;自动重合闸一、前言35kV线路一般分布很广,雷雨季节遭受雷击机会很多。
线路遭受雷击有三种情况:一是雷击于线路导线上,产生直击雷过电压;二是雷击避雷线后,反击到输电线上;三是雷击于线路附近或杆塔上,在输电线上产生感应过电压。
雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、主变压器绝缘损坏等事故,直接影响了变电站的安全运行。
为了提高供电的可靠性,减少因大气过电压造成的危害,对35kV架空线路应采取必要的防雷保护措施。
二、35kV架空线路应采取的的防雷保护措施1、选择典型的防雷保护接线防止35kV线路直击雷和进行波最有效的方法是架设避雷线。
但因雷击避雷线时,避雷线上产生的电位相当高,35kV线路的绝缘水平承受不了这个高电压,容易造成反击,同样会引起线路跳闸,同时避雷线线路造价又高,因此,35kV 线路只在变电所進出线段,根据变压器容量,架设1~2公里避雷线,以限制流进避雷器的雷电流和限制入侵波的陡度。
为了降低侵入波的峰值和陡度,35kV 线路除架设避雷线外,限制侵入波峰值的办法是在避雷线两端杆塔上还加装管型避雷器或保护间隙。
为此,35kV线路和变电所要选择典型防雷保护接线,如图1所示:图中:HY5W2-52.7/134型氧化锌避雷器;GB1-2-GXS(35/2-10)型管型避雷器。
2、35kV线路防雷保护的设计要求2.1避雷线的选择2.1.1带避雷线杆塔的选择带地线的35kV线路,要选用定型的杆塔,以确定避雷线悬点高度和与导线间垂直距离h和避雷线的保护角α=tg-1S/h(度)。
一般水泥双杆h为3.25m-4m 为双根避雷线,铁塔h为5.7m为单根避雷线,以满足角α为20°~30°的要求。
试论35kV架空线路的防雷措施摘要: 对于高山多雷区地带架设35kv 及以下架空输电线路,技术规程不要求全线架设避雷线,安装线路型避雷器是较合适的选择,它具有安装方便、性能可靠、维护简单、体积小、重量轻等优点。
安装线路型避雷器与全线架设避雷线的杆塔比较,能降低杆塔的高度及机械强度,降低施工难度,具有加快工程施工速度、节约投资、避免绝缘子闪络、减少跳闸停电等优点。
文章主要针对电力35kv架空线路的防雷施工措施进行了简要的分析研究。
关键词:电力35kv;架空线路;防雷措施abstract: to altitude minefield zone set up more than 35 kv overhead transmission lines, technical rules don’t require all bileixian erection, installation of lightning arrester is more appropriate line of choice, it has setup convenient, reliable in performance, simple maintenance, small volume, light weight, etc. installation of lightning arrester and set up across the line of bileixian do more, can reduce the height of the tower, mechanical strength and reduce the difficulty in construction, have to speed up the construction speed, saving investment, avoid insulator, reduce power flash winding trip, etc. this article mainly in the power of the 35 kv overhead lines lightning protection construction measures brief analysis of research.keywords: 35 kv power;overhead lines; lightning protection measures中图分类号:tm726文献标识码:a 文章编号:一、引言随着我国电力工业的高速发展,对输变电线路运行的安全可靠性要求也越来越高。
架空线路遭雷击原因及防雷措施架空线路是指在空中悬挂的输电线路,它是电力系统中非常重要的一部分,负责输送电力到各个地方。
架空线路常常容易遭到雷击,造成电力系统的故障,给人们的生产生活带来很大的影响。
那么,架空线路遭雷击的原因是什么?我们又该如何采取防雷措施呢?一、架空线路遭雷击的原因1. 大气环境当大气中出现局部电荷分离,形成雷云时,就会产生雷电。
雷电的产生是由于云层中的冰晶和水滴之间发生碰撞,使云层内各处带电,产生了电场。
2. 架空线路高度架空线路一般都建立在高处,比如山顶、高层建筑等地方,而雷电会比较容易袭击高处的物体。
3. 气候一般来说,夏季是雷电活动的高发期,因为夏季大气湿度大,云层构成较多。
架空线路所采用的金属或者合金等材料,特别是高张力、高性能的导线,很容易成为雷电袭击的目标。
二、防雷措施1. 防雷装置在架空线路上安装防雷装置是最常见的预防措施。
这些装置一般采用封闭式避雷器,其原理是在雷电侵击时,将其引入大地,分散电流,保护线路和设备不受雷击影响。
2. 避雷线为了减少雷电对架空线路的影响,可以在线路上方安装一根金属绳——避雷线。
这样可以将雷电引向地下,减少对线路本身的影响。
3. 架设钢塔架设钢塔是确保架空线路安全运行的关键。
钢塔具有良好的导电性和耐腐蚀性,可以降低雷电对架空线路的影响。
4. 专业巡检定期对架空线路进行巡检,及时发现线路的损坏和老化情况,进行维护和修复,可以减少线路遭雷击的可能性。
5. 提高设备的耐雷水平对于电力设备,提高其耐雷水平也是很重要的防雷措施。
采用抗雷冲击能力强的设备替代易受雷电影响的设备,可以保障电力系统的安全运行。
通过以上防雷措施,我们可以有效地减少架空线路遭雷击的可能性,保障电力系统的正常供电。
还需要注意的是,在架空线路遭雷击后,需要及时对设备和线路进行维护和修复,确保电力系统的安全和稳定。
提升防雷意识,加强防雷设备的维护与更新,对于保障电力系统正常运行具有非常重要的意义。
35kV架空线路防雷措施分析雷电对35kV架空线路的安全运行危害很大。
文章结合刘田庄-下寨35kV架空线路改造的经验,对比改造前后的防雷效果,提出增设避雷线、降低杆塔接地电阻、装设线路用避雷器、加强绝缘等防雷措施。
根据线路的具体情况,对各种防雷措施进行了分析。
标签:35kV架空线路;防雷措施;避雷线;接地电阻;避雷器架空线路地处旷野,遭受雷击的概率很高。
35kV架空线路一般仅在进出线两端的1-2km范围内架设避雷线,中间部分无避雷线、避雷器等防雷措施,线路绝缘水平低,接地装置简单,接地电阻较高,尤其在地势较高的地方,雷击杆塔概率更高,所以应针对线路的具体情况采取有效的防雷措施,从而减少雷击事故,保证线路安全运行。
1 架空线路的感应雷过电压架空线路上出现的雷电过电压有两种,一种是雷击线路附近地面或接地的杆塔塔顶时,由于电磁感应在绝缘导线上产生的感应电压,称为感应雷过电压;另一种是雷击于线路时雷电流流过被击物体的阻抗产生的压降,称为直击雷过电压。
刘田庄-下寨35kV架空线路(以下简称刘下线)处于丘陵地区,年均雷暴日39.6d,属中雷区。
改造前刘下线采用的是单杆,单根避雷线,只在进出线段架设了避雷线,杆塔多处于坡顶,容易遭到雷击;改造后采用双杆、双避雷线,杆型如图1所示。
图1 杆型图当雷击点离线路的距离S>65m时,由于雷击地面时雷击点的自然接地电阻较大,雷电流幅值IL一般不超过100kA。
导线上感应雷过电压最大值Ug=25ILhd/S,式中:IL为雷电流幅值,kA;hd=11.87-2f/3,为导线平均高度,m;S为雷击点与线路之间的距离,m;f为导线弧垂,m;因本线路最大档距<200m,取f=3m。
Ug=379.6kV,这可能引起35kV线路闪络。
因避雷线与导线的耦合作用,U’g=Ug(1-k0)式中:k0为导线与避雷线间的几何耦合系数,计算得0.304;U’g=264.2kV。
当雷击点离线路更近,雷击实际上会被线路吸引而击于线路自身。
浅谈35Kv架空供电线路的防雷措施摘要:35Kv架空供电线路是电力系统的重要基础,在实践过程中,线路防雷工作应结合自身实际情况科学的做好防雷措施,使雷击造成的损失降到最低,确实保障电网运行安全,文中对供电线路防雷的改进措施进行梳理和总结,以期更好地保障供电线路的安全运行。
关键词:35Kv;架空供电线路;防雷措施1导言35Kv架空供电线路进行全线改造,将原先的砼杆更换为铁塔,架设避雷线,安装线路避雷器、杆塔消雷器,以实现供电系统各项运行参数均在允许范围内,安全可靠地为企业提供供电保障。
2防雷现状根据近几年的数据统计,在输电能力为6~35kV的线路中,雷击经常会导致电闸、避雷器、变压器、绝缘子等防雷设备的损害,不能保证人民生产生活的正常需要。
配电线路的雷电损坏可分为直接雷电和雷电感应两种。
感应雷是指由于线路与雷之间的电磁感应产生较大的电压,造成线路跳闸。
早期的避雷器利用空气的这一特性,将高电压变成低电压,从而实现对供电线路的保护。
然而,由于开放的空气间隙容易受环境影响,空气放电会造成电极的氧化等。
目前,国内外常用的配网防雷方案有保护绝缘子串、设置避雷器和设置消弧线圈等。
2.1保护绝缘子串防雷保护间隙是绝缘子串的一种保护装置。
在绝缘子串两端设置防雷保护间隙,与自动重合闸配合使用时,不仅可以及时将线路中的雷电流导入大地,还可以保障线路不间断供电,维持线路的正常运行。
防雷保护间隙适用范围广,不仅适用于35kV、135kV及以上的各级配电线路,还不受地形环境的影响,山区、高原、平原和雷电多发地区都可以使用防雷保护间隙来保护绝缘子串。
同时,防雷保护间隙的制造方便,制作成本低,具有良好的经济适用性。
对于绝缘子串的保护,国外已有较为成熟的经验,其中日本、德国和俄罗斯的研究最具代表性。
日本常用引弧角来保护绝缘子串。
引弧角的结构较为简单,受线路的电压、绝缘子直径、绝缘子片数和绝缘子串的长度等因素影响。
日本对于引弧角的研究较为透彻,1979年颁布的规程中介绍了32种型式、280多个类别。
浅谈35kv、10kv架空线路防雷措施摘要:架空线路的防雷措置对线路安全极为重要,因此防雷安全措施不可忽视。
依照规定,35kv以下架空线路不沿全线架设避雷线,但根据不同地区地形不同、雷击现象是否频繁,应给予相应的防雷措施。
本文就35kv、10kv架空线路的防雷措施做简单论述。
关键词:避雷线防雷措施前言架空输电线路是电力系统及电力网的重要组成部分。
由于它运行在大自然之中, 故极易受到外界条件的影响和损害, 其中最主要的因素之一就是雷击。
尤其在旷野或丘陵、高山, 遭遇雷击的几率更大。
雷击架空输电线路会引起线路开关跳闸, 线路元件及电气设备损坏、供电中断, 甚至系统瓦解等恶性事故。
因此, 架空输电线路防雷是电力系统防雷工作的一项重要内容。
1 架空线路遭雷击原因及防雷指标1.1 线路遭雷击原因架空线路遭受雷击跳闸,分为直击雷和绕击雷,雷电流幅值也有大有小,遭受雷击概率最大的是杆塔接地网的接地电阻过高和避雷线保护角过大的线路。
现将雷击事故主要原因分析如下:(1)安全技术措施严重不足部分配电线路设备未能按设计规范要求装设相应的防雷装置, 部分10kV 配电线路设备的设计未考虑防雷的安全技术措施, 或未根据地区特点采取相应的防雷安全措施。
(2)杆塔存在隐患某些主网线路中水泥杆是通过内部钢筋接地的, 一旦大的雷电流通过杆内部钢筋, 极容易引起水泥杆爆裂, 造成杆塔的破坏, 尤其是那些运行后出现表面有裂纹或风化严重的水泥杆, 是目前防雷存在的严重隐患之一。
(3)架空地线存在的问题某些线路保护角偏大对绕击不利。
例如某些多雷区, 就不满足规程规定的 220kV 输电线路双避雷线保护角不大于 20的防雷要求。
1.2 防雷指标输电线路防雷性能的优劣,在工程上主要用耐雷水平和雷击跳闸率这两个指标来衡量。
耐雷水平是指线路遭受雷击时不致引起绝缘闪络的最大雷电流幅值,它是表征线路耐雷性能的一个基本参数。
为保证输电线路运行安全, 当线路经过一般土壤电阻率地区时, 装设地线的 500kV 线路耐雷水平一般不低于 125~ 175kA, 大跨越档中央和发电厂、变电所进线保护段耐雷水平不低于 175kA。
架空线路遭雷击原因及防雷措施架空线路遭雷击是指在雷电天气中,架空输电线路遭到雷击而导致停电或设备损坏的现象。
雷击是一种自然灾害,如果不能有效防范和应对,将给电力系统运行带来严重影响。
了解架空线路遭雷击的原因以及采取有效的防雷措施至关重要。
我们来看一下架空线路遭雷击的原因。
架空线路遭雷击的主要原因包括以下几点:1. 雷击频率高:架空线路位于室外,暴风雨天气时容易遭受雷击。
特别是在山区、高地等地形复杂的地区,雷电活动频繁,架空线路遭雷击的概率相对较高。
2. 线路长距离:架空线路一般都是长距离输电,线路越长,遭雷击的概率也越高。
3. 雷电能量巨大:雷电能量巨大,一次雷击就能产生几十万伏特的电压。
当架空线路遭雷击时,会造成电缆或导线瞬间过压,导致设备损坏或停电。
接下来,我们谈谈如何防范架空线路遭雷击。
防雷措施主要从以下几个方面着手:1. 定期检查维护:对架空线路进行定期检查,及时发现并处理存在的隐患和故障。
包括检查线路架设是否符合要求,绝缘子是否完好,接地系统是否良好等。
2. 安装避雷设备:在架空线路附近或者线路跨越雷电频繁地区,安装避雷设备是非常必要的。
避雷设备包括避雷针、避雷带等,能够吸引雷电,并将雷电导入地下,保护线路不受雷击。
3. 提高设备耐雷能力:对于输电线路和设备,提高其耐雷能力也是防雷的重要手段。
采取合理的接地措施,增大接地电阻,减小设备对雷电的影响。
4. 增强技术监控:运用先进的技术手段,监控架空线路的状态,及时发现线路异常情况,采取相应的措施,保障线路安全稳定运行。
5. 人员培训和应急预案:加强员工的防雷知识培训,并建立完善的应急预案,一旦发生雷击事故,能够及时、有效地处置,减少事故损失。
架空线路遭雷击是一种不可避免的自然灾害,但我们可以通过科学的防雷措施和技术手段,有效降低架空线路遭雷击的风险,保障电力系统的安全稳定运行。
希望各地的电力部门和相关单位能够高度重视架空线路遭雷击问题,加强防雷意识和技术水平,共同提高架空线路的抗雷能力,确保电力系统的正常运行。
35kV架空输电线路与防雷措施摘要:本文笔者主要针对35kV架空输电线与防雷措施开展分析,希望通过笔者的分析可以提升架空输电线路的防雷能力,确保输电线路的有效运行。
关键词:35kV;输电线;防雷;措施在电力系统中架空输电线发挥着重要的作用,它会受各种因素的影响,造成输电线的出现运行安全问题,因此想要保护电力系统,做好35kV架空输电线的防雷工作是非常重要的。
因此,笔者认为开展35kV架空输电线路与防雷措施方面的分析是非常必要的。
一、雷击的含义分析雷击的形式主要分为绕击雷和直击雷。
当架空输电线没有采取避雷措施时会造成雷过电压的情况,从而影响输电线路的运行。
电线杆塔是输电线设施的重要部分,在输配电的过程中具有重大的作用。
随着我国经济发展,输电线路不断增多,输电线线路的防雷保护也是电力建设施工、运行的重中之重。
同时电线杆塔也会直接影响到输电线路,一旦遇到雷击杆塔的事件就会将电感直接传输至架空输电线,导致输电线路的电位升高,从而影响到电力系统的运行。
二、35kV架空输电线路雷击原因(一)输电线路自身原因35kV架空输电线路受雷击的主要原因大部分是由于输电线路的自身原因。
由于架空输电线路周边也会有其他线路,在这种情况下很容易受到雷击的影响。
另外,其他线路的防雷技术存在不同,如果不对架空输电线路进行深度的研究,不采取有效的防雷措施,也无法达到防雷效果,从而受到雷击的影响。
虽然部分架空输电线路已经使用绝缘子,但仍然存在很多问题,当绝缘子被雷击中很难找出故障,尤其是后期维修工作,延长了维修的时间,也加大了维修的难度。
(二)外部环境原因架空输电线被雷击也会受到外部原因的影响。
尤其是在一些乡镇地区,架空输电线路受到雷击是一种常见现象,也存在当地居民对接地线偷盗情况,由于输电线路长期暴露在外部的环境下,经常会受到一些外部的因素造成一些安全事故,例如在雷雨天气,架空输电线路就会受到雷击,从而导致输电线路的运行失常,甚至出现失灵的情况。
35kV输电线路雷击及防雷建议在我国电力系统各类事故、障碍中,输、配电线路的雷害事故占有很大的比例.由于输电线路对于保“网”的重要地位,如何减少输电线路雷害事故引起的跳闸,不但影响电力系统正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上落雷,雷电波还会沿线路侵入变电所甚至用户,影响人身财产安全。
而在电力系统中,线路的绝缘最强,变电所次之发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。
1输电线路遭受雷击的原因输电线路雷击闪电由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应过电压。
按雷击的性质可分为直击雷和感应雷:1)直击雷。
当带电的雷云接近输电线路时雷电流沿空中通道注入雷击点,如避雷线、杆(塔)顶部导线等产生直击雷过电压。
雷云放电时,引起很大的雷电流,可达几十甚至几百kA,从而产生极大的破坏作用;2)感应雷。
当雷击于输电线路附近的大地或物品时,导致产生静电感应,致使先导路径附近的导线上积累了大量的异号束缚电荷,雷击后,主放电开始,导线中感应电压就会很大。
根据实测,感应雷电压幅值一般为300~400kV,击穿60~80cm的空气间隙,对于35kV及以下水泥杆线引起一定的闪络事故.雷电主要危害有以下几种:1)电流高压效应会产生高达数万伏甚至十万伏的冲击电压,如此巨大的电压瞬间冲击电力设备,足以击穿绝缘体,使设备发生短路,导致燃烧、爆炸等直接灾害。
2)电流高热效应会放出几十至上百千安的强大电流,并产生大量热能,在雷击点温度会很高,可导致金属熔化,引起火灾和爆炸。
3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象,导致财产损失和人员伤亡。
输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带.输电线路的安全运行,直接影响到了电网的稳定和向用户可靠供电。
架空线路遭雷击原因及防雷措施架空线路是电力传输和分配系统的重要组成部分,承载着巨大的电力负荷。
在雷电天气中,架空线路往往成为遭受雷击的重要目标,架空线路遭雷击会给电力系统造成严重影响,甚至导致停电事故。
了解架空线路遭雷击的原因,以及采取有效的防雷措施是非常重要的。
架空线路遭雷击的原因1. 雷电活动频繁雷电活动频繁的地区,架空线路遭雷击的风险会大大增加。
气象部门通常会发布雷电预警,建议人们在雷电天气里尽量避免户外活动,而电力系统也需要提前做好防雷准备。
2. 架空线路高耸架空线路通常横跨在高大的电力铁塔上,这些铁塔在雷电天气中成为了雷击的重要目标。
雷电是一种极其强大的自然现象,对高耸的目标有着极强的吸引力,架空线路处在雷电活动的中心地带。
3. 大型风暴大型风暴往往伴随着雷电活动,风暴时架空线路遭雷击的风险也会大大增加。
风暴给电力系统带来了很大的不稳定因素,不仅会让架空线路遭雷击,还可能给电力系统带来更大的损害。
防雷措施1. 定期检查维护对架空线路进行定期的检查和维护工作是非常重要的。
及时发现并解决线路上的隐患可以有效预防雷击事故的发生。
2. 安装避雷装置避雷装置是架空线路防雷的重要手段之一。
在电力铁塔上安装避雷针,能够有效地引导雷电释放,减少雷击对架空线路的危害。
3. 加强线路绝缘对架空线路的绝缘工作也非常重要。
良好的绝缘能够减少雷击对线路的影响,保障电力系统的稳定运行。
4. 架空线路距地面保持一定距离架空线路距离地面的高度也直接影响着遭雷击的风险。
保持一定高度可以减少线路遭雷击的可能性,提高电力系统的安全性。
架空线路遭雷击是一种常见而且危险的情况,了解其原因并采取有效的防雷措施是非常重要的。
通过不断加强对架空线路的检查维护、安装避雷装置、加强线路绝缘等措施,可以有效减少架空线路遭雷击的风险,保障电力系统的稳定运行。
希望相关部门和单位能够重视架空线路的防雷工作,确保电力系统的安全稳定。
分析35kV架空输电线路与防雷措施摘要: 在35kV架空输电线路运行中,雷击导线断线或跳闸成为了运行的危害之一。
本文对35kV架空输电线路的防雷措施进行分析,以确保输电线路有效运行。
关键词: 架空线路;防雷技术;对策分析引言:架空输电线在电力系统中发挥着重要作用,但同时也会受各种因素的影响,据此电力部门应做好电力保护工作,促进架空输电线的有效运行。
笔者将对雷击的发生原因加以分析,并提出一系列防雷措施,确保 35kV 架空输电线路的有效运行。
1.35kV 架空输电线路雷击原因分析1.1雷击形式(1)雷击形式通常包括绕击雷雨直击雷。
如果架空输电线未采取避雷措施便会导致雷过电压的情况,影响到输电线路的有效运行。
(2)反击:雷击杆塔时,由于杆塔接地电阻高或线路自身绝缘较弱,雷电流释放通道受阻,作用在绝缘子上的压差大于绝缘子的冲击放电电压,发生自杆塔向导线的绝缘闪络,形成反击。
1.2架空输电线路被雷电击中的原因分析(1)输电线路自身因素。
由于架空输电线路周边会有其他电路,在这种密集环境下,被雷击中的频率会更高。
与其他防雷技术不同的是,架空输电线研究力度不够深入,其防雷方式也未能得到有效应用,从而导致雷击现象产生。
针式绝缘子具有较好的防雷效果,但也存在许多问题,当针式绝缘子被雷击中,其故障便难以找出,维修难度加剧,维修时间延长。
(2)外部环境因素。
在乡镇地区十分常见的一种现象,当地居民偷盗接地线,导致输电线路长期暴露在外部环境,难免会产生诸多隐患,导致事故的发生。
在雷雨天气下容易受到雷击,从而失灵[2]。
(3)错误的防雷方式。
对于架空线路的防雷措施,我国大部分地区都是采取接地的方式:利用接地线接地,并在接地处安装低电阻装置。
这种方法在地表电阻比较小的平原地区还是比较实用的,但是在山地丘陵地区,这种接地方法的效果就不太明显,原因是在铺设接地网时,需要在四个塔脚处铺设一个较大面积的接地网,并分别安装低电阻装置,在雷击降下时,因接地线长,所以附加的电感会比较大,使得塔顶的电位相对较高,更容易遭受雷击,降低了35kV 架空线路防雷能力。
- 137 -生 产 与 安 全 技 术一、35kV输电线路雷害分析以及防雷的重要性1.35kV 输电线路的雷害分析一般来说,35kV 输电线路的架空线路遭受雷击主要分为4个阶段:雷击后的过电压对输电线路的作用;架空线路的闪络现象;输电线路的工频电压趋于稳定以及线路短路跳闸导致停电事故发生。
雷击危害一般有3种形式,分别是:(1)雷电直击。
雷电直击是35kV 输电线路中常发的雷击事故。
当雷击产生的电流较大时,雷击产生的过电压也会相对较高,这种过高的雷击过电压会对35kV 输电线路附近的绝缘子进行对地放电,然后造成电力线路的闪络现象。
如果雷击过电压特别高时,会引发更为严重的闪络现象,导致线路出现断线、击穿绝缘子等故障发生。
(2)雷电反击。
雷电反击主要是因为雷电击打在线路杆塔或者避雷线上,造成35kV 输电线路绝缘体上的电压超出绝缘体的冲击放电电压范围,然后导致线路杆塔到导线之间产生绝缘反击现象。
反击产生的电压相当于线路杆塔和导线之间的电位差。
与此同时,雷击到线路杆塔上时,会使雷击电流全部流经线路杆塔以及杆塔的接地装置,并且随着雷击电流在线路杆塔中的时间增加,会造成线路杆塔电位的大幅度降低,影响线路杆塔的稳定性和安全性,进而影响电力线路的防雷效果。
(3)雷电绕击。
雷电绕击就是指雷电直接击中电力线路的相线。
架空线路上雷电的定向先导和迎面先导会影响雷击的概率。
如果发生雷击时的迎面先导从导线往上发展,就会导致雷电绕击现象发生。
导致雷电绕击产生的原因有:导线的数量和分布,35kV 输电线路附近的电力线路影响,档距中导线的弧度等。
2.对35kV 输电线路进行防雷的重要性我国的城市化进程不断加快,经济水平和科学技术手段也在不断提高,人们对电力需求出现很大变化:不仅对电力能源的使用量增加,并且对电力系统的安全性和稳定性也有更高的要求。
而输电线路是直接影响用户的用电体验的电力设施,如果输电线路发生故障或者问题,就会对用户的用电需求产生不良影响,影响电力企业的形象以及经济效益。
35kV线路的防雷设计摘要:本文对雷击的形成以及雷击对35kV线路的危害进行了简要介绍,并就35kV架空线路的防雷,试图从设计角度对现有防雷措施作初步探讨。
关健词:35kV;防雷;设计1引言我单位所在地为金衢盆地东侧,称“七山二水一分田”。
所属35kV线路所经地区,多为丘陵或山地,地形起伏较大,天气多变,属雷雨密集区。
近年来,35kV 线路因雷击而引起的事故约占全部35kV线路事故的3/4左右,对其安全运行构成了严重威胁。
因此,35kV线路防雷保护显得尤为重要。
2 雷电的形成雷电是自然界中雷云之间或雷云与大地之间的一种强放电现象,产生于积雨云中,积雨云在形成过程中,某些云团带正电荷,某些云团带负电荷,它们对大地的静电感应,使地面或建(构)筑物表面产生异性电荷,当电荷积聚到一定程度时,不同电荷云团之间,或云团与大地之间的电场强度可以击穿空气,开始游离放电,我们称之为“先导放电”。
云对地的先导放电是云向地面跳跃式逐渐发展的,当到达地面(地面上的建筑物,架空输电线等),便会产生由地面向云团的逆导主放电。
在主放电阶段里,会出现很大的雷电流并随之发生强烈的闪电和巨响,这就形成了雷电。
雷电的特点是电流大,能量释放时间短。
一般还伴有阵雨,有时还会出现局部的大风、冰雹等强对流天气。
3雷击的形式3.1直击雷带电云层与大地上某一点之间发生迅猛的放电现象。
直击雷威力巨大,雷电压可达几百万伏,瞬间电流可达几百千安,在雷击通路上可产生电能效应、热效应和机械力效应等,对物体造成危害。
在送电线路可表现为击中杆塔顶部或顶部的避雷线(无避雷线可表现为击接击中导线),一般会造成该塔一相或多相瓷瓶闪络或避雷线被高温灼伤甚至熔化断线。
3.2绕击雷在有避雷线的情况下,雷击绕过避雷线而击于导线上,绕击雷多发于大跨越档和线路周围空旷地区,一般会造成边相瓷瓶串闪络,该边相应是迎着雷云走向的一侧,有时会因雷电流较大,雷绕击导线后雷电流沿导线两侧游走,造成该档相邻的杆塔同相瓷瓶串闪络,同时由于雷电流大,通过杆塔入地时会造成塔顶电位高,引起反击,造成其它相瓷瓶的闪络。
架空线路遭雷击原因及防雷措施架空线路是电力系统中常见的输电方式,但在雷电天气下,架空线路容易受到雷击,造成电力系统的瘫痪,给电力线路及设备带来极大的损失甚至危险。
因此,对于架空线路的防雷问题,需进行有效的措施进行预防。
1.地面电位上升:在雷电天气下,雷电放电与地面形成高电位,形成地面电位上升。
当架空线路的地线产生电位差时,就会对架空线路形成放电通路,引发雷击。
2.气象条件恶劣:雷电落点的选择取决于气象条件,当气象条件恶劣时,则容易引发雷电,使架空线路遭受雷击。
3.线路的结构和特性:架空线路的结构和特性也会对雷击起到影响。
例如,电力系统的架空线路一般是由导线、绝缘子、杆塔等部分组成,其中导线的直径、绝缘子的距离、杆塔的高度、形状等都会影响到架空线路的抗雷能力。
二、架空线路遭雷击的危害1.影响电力系统稳定运行:架空线路遭雷击后,会导致电力系统的停机,给用电用户带来影响。
2.影响电力设备寿命:架空线路遭雷击后,电力设备也会受到影响,如绝缘子、变压器和开关等设备都可能损坏,从而缩短设备的寿命。
3.危及人身安全:架空线路遭雷击后,存在电击危险,从而对人身安全和生命造成威胁。
1.加强线路绝缘:架空线路在设计时应对导线的绝缘进行特别注意,保证导线表面不会发生击穿现象。
同时,要通过改变距离和电压等因素来改善线路的绝缘状况。
2.增加接地:增加架空线路的接地,可以有效的降低地面电位的升高,从而减少了雷击的可能性。
在土壤较差的情况下,还可以考虑使用更多的接地。
3.增加避雷针:避雷针是与地面之间距离较高且形状特殊的金属装置,可以有效的吸收雷击,使导电体和架空线路免受雷击威胁。
4.加强雷击监测:为了更好地监测雷电危险,可以在要塞、边防、军事设施等敏感区域安装雷击监测器,及时发现雷电危险并进行预警,从而避免雷电事故的发生。
总之,架空线路遭雷击是电力系统中常见的事情,对于此类事件,必须采取有效的措施进行预防。
除了上述措施,还需要在设计和施工过程中进行严格的管控和监督,确保架空线路有良好的防雷能力,保障电力系统的稳定运行。
35kV架空线路防雷措施分析
摘要:雷电对35kV架空线路的安全运行危害很大。
文章结合刘田庄-下寨35kV架空线路改造的经验,对比改造前后的防雷效果,提出增设避雷线、降低杆塔接地电阻、装设线路用避雷器、加强绝缘等防雷措施。
根据线路的具体情况,对各种防雷措施进行了分析。
关键词:35kV架空线路;防雷措施;避雷线;接地电阻;避雷器
架空线路地处旷野,遭受雷击的概率很高。
35kV架空线路一般仅在进出线两端的1-2km范围内架设避雷线,中间部分无避雷线、避雷器等防雷措施,线路绝缘水平低,接地装置简单,接地电阻较高,尤其在地势较高的地方,雷击杆塔概率更高,所以应针对线路的具体情况采取有效的防雷措施,从而减少雷击事故,保证线路安全运行。
1 架空线路的感应雷过电压
架空线路上出现的雷电过电压有两种,一种是雷击线路附近地面或接地的杆塔塔顶时,由于电磁感应在绝缘导线上产生的感应电压,称为感应雷过电压;另一种是雷击于线路时雷电流流过被击物体的阻抗产生的压降,称为直击雷过电压。
刘田庄-下寨35kV架空线路(以下简称刘下线)处于丘陵地区,年均雷暴日39.6d,属中雷区。
改造前刘下线采用
的是单杆,单根避雷线,只在进出线段架设了避雷线,杆塔多处于坡顶,容易遭到雷击;改造后采用双杆、双避雷线,杆型如图1所示。
图1 杆型图
当雷击点离线路的距离S>65m时,由于雷击地面时雷击点的自然接地电阻较大,雷电流幅值IL一般不超过100kA。
导线上感应雷过电压最大值Ug=25ILhd/S,式中:IL为雷电流幅值,kA;hd=11.87-2f/3,为导线平均高度,m;S为雷击点与线路之间的距离,m;f为导线弧垂,m;因本线路最大档距。