材料力学有答案
- 格式:doc
- 大小:112.50 KB
- 文档页数:5
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 导电性答案:D2. 根据胡克定律,当材料受到正应力时,其应变与应力成正比,比例系数称为:A. 杨氏模量B. 剪切模量C. 泊松比D. 屈服强度答案:A3. 在材料力学中,材料的屈服强度是指:A. 材料开始发生塑性变形的应力B. 材料发生断裂的应力C. 材料发生弹性变形的应力D. 材料发生脆性断裂的应力答案:A4. 材料的疲劳寿命与下列哪一项无关?A. 材料的疲劳极限B. 应力循环次数C. 材料的弹性模量D. 应力循环的幅度答案:C5. 在材料力学中,下列哪一项不是材料的力学性能指标?A. 硬度B. 韧性C. 密度D. 冲击韧性答案:C二、简答题(每题5分,共10分)6. 简述材料力学中弹性模量和剪切模量的区别。
答:弹性模量,也称为杨氏模量,是描述材料在受到正应力作用时,材料的纵向应变与应力成正比的比例系数。
剪切模量,也称为刚度模量,是描述材料在受到剪切应力作用时,材料的剪切应变与剪切应力成正比的比例系数。
7. 什么是材料的疲劳寿命,它与哪些因素有关?答:材料的疲劳寿命是指材料在反复加载和卸载过程中,从开始加载到发生疲劳断裂所需的循环次数。
它与材料的疲劳极限、应力循环的幅度、材料的微观结构和环境因素等有关。
三、计算题(每题15分,共30分)8. 一根直径为20mm的圆杆,材料的杨氏模量为200GPa,当受到100N的拉力时,求圆杆的伸长量。
答:首先计算圆杆的截面积A = π * (d/2)^2 = π * (0.02/2)^2m^2 = 3.14 * 0.01 m^2。
然后根据胡克定律ΔL = F * L / (A * E),其中 L 为杆长,假设 L = 1m,代入数值得ΔL = 100 * 1 / (3.14* 0.01 * 200 * 10^9) m = 7.96 * 10^-6 m。
一、一结构如题一图所示。
钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa,长度l =1m 。
制造时3杆短了△=0。
8mm.试求杆3和刚性梁AB 连接后各杆的内力。
(15分)aalABC123∆二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力bs[]200 MPa σ=,试求许可载荷][F 。
(15分)三、题三图所示圆轴,受eM 作用。
已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。
(15分)四、作题四图所示梁的剪力图和弯矩图。
(15分)五、小锥度变截面悬臂梁如题五图所示,直径2bad d =,试求最大正应力的位置及大小。
(10分)六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E .试用积分法求截面A 的得分评分人F键40633400Aal bM eBd a a aqqaqa 2dbBda AF挠度w A 和截面C 的转角θC .(15分)七、如图所示工字形截面梁AB ,截面的惯性矩672.5610zI -=⨯m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。
(15分)一、(15分)(1)静力分析(如图(a))1N F2N F3N F图(a)∑=+=231,0N N N yF F F F(a)∑==31,0N N CF F M(b)(2)几何分析(如图(b))1l∆2l∆3l∆∆图(b)wql /3x lhb 0b (x )b (x )BAC 50kN AB0.75m303030140150zya∆=∆+∆+∆3212l l l(3)物理条件EA l F l N 11=∆,EA l F l N 22=∆,EAl F l N 33=∆ (4)补充方程∆=++EAlF EA l F EA l F N N N 3212 (c) (5)联立(a)、(b)、(c)式解得:kN FkN FF N N N 67.10,33.5231===二、(15分)以手柄和半个键为隔离体,S0, 204000OM F F ∑=⨯-⨯=取半个键为隔离体,bsS20F F F ==由剪切:S []s FA ττ=≤,720 N F = 由挤压:bs bs bs bs[][], 900N FF Aσσ=≤≤取[]720N F =.三、(15分)eABM M M +=0ABϕ=, A B M a M b ⋅=⋅得 e B a M M a b =+, e A b MM a b=+当a b >时 e316π ()[]M ad a b τ≥+;当b a >时 e316π ()[]M bd a b τ≥+。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 硬度D. 韧性2. 材料在拉伸过程中,当应力达到屈服点后,材料将:A. 断裂B. 产生永久变形C. 恢复原状D. 保持不变3. 材料的弹性模量是指:A. 材料的密度B. 材料的硬度C. 材料的抗拉强度D. 材料在弹性范围内应力与应变的比值4. 根据材料力学的胡克定律,下列说法正确的是:A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变无关D. 应力与应变成线性关系5. 材料的疲劳寿命是指:A. 材料的总寿命B. 材料在循环加载下达到破坏的周期数C. 材料的断裂寿命D. 材料的磨损寿命6. 材料的屈服强度是指:A. 材料在弹性范围内的最大应力B. 材料在塑性变形开始时的应力C. 材料的抗拉强度D. 材料的极限强度7. 材料的断裂韧性是指:A. 材料的硬度B. 材料的抗拉强度C. 材料抵抗裂纹扩展的能力D. 材料的屈服强度8. 材料力学中的泊松比是指:A. 材料的弹性模量B. 材料的屈服强度C. 材料在拉伸时横向应变与纵向应变的比值D. 材料的断裂韧性9. 在材料力学中,下列哪一项是衡量材料脆性程度的指标?A. 弹性模量B. 屈服强度C. 断裂韧性D. 泊松比10. 材料在受力过程中,当应力超过其极限强度时,将:A. 发生弹性变形B. 发生塑性变形C. 发生断裂D. 恢复原状答案1. C2. B3. D4. A5. B6. B7. C8. C9. C10. C试题二、简答题(每题10分,共30分)1. 简述材料力学中材料的三种基本力学性质。
2. 解释什么是材料的疲劳现象,并简述其对工程结构的影响。
3. 描述材料在拉伸过程中的四个主要阶段。
答案1. 材料的三种基本力学性质包括弹性、塑性和韧性。
弹性指的是材料在受到外力作用时发生变形,当外力移除后能够恢复原状的性质。
塑性是指材料在达到一定应力水平后,即使外力移除也无法完全恢复原状的性质。
习题2-2一打入基地内的木桩如图所示,杆轴单位长度的摩擦力fkx2,试做木桩的后力图。
解:由题意可得:l 1 0 fdx F 有kl 3 F k 3F / l 3 3 l FN x1 3Fx 2 / l 3dx F x1 / l 3 0习题2-3 石砌桥墩的墩身高l 10m ,其横截面面尺寸如图所示。
荷载 F 1000kN ,材料的密度2.35kg / m 3 ,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:N F G F Alg 2-3 图1000 3 2 3.14 12 10 2.35 9.8 3104.942kN 墩身底面积: A 3 2 3.14 12 9.14m 2 因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
N 3104.942kN 339.71kPa 0.34MPa A 9.14m 2习题2-7 图示圆锥形杆受轴向拉力作用,试求杆的伸长。
2-7 图解:取长度为dx 截离体(微元体)。
则微元体的伸长量为:Fdx l F F l dx d l ,l dx EA x 0 EA x E 0 A x r r1 x r r d d1 d ,r 2 1 x r1 2 x 1 ,r2 r1 l l 2l 2 d d1 d d1 d d1 2 d d A x 2 x 1 u2 ,d 2 x 1 du 2 dx 2l 2 2l 2 2l 2l 2l dx d d 2l du dx du ,2 2 1 du 2 d 2 d1 A x u d1 d 2 u l F F l dx 2 Fl l du 因此,l dx 0 u 2 0 EA x E 0 A x E d1 d 2 l 2 Fl 1 l 2 Fl 1 u E d d d d E d1 d 2 0 2 2 d 1 1 x 1 2l 2 0 2 Fl 1 1 E d1 d 2 d 2 d 1 dd1 l 1 2l 2 2 2 Fl 2 2 4 Fl E d1 d 2 d 2 d1 Ed 1 d 2习题2-10 受轴向拉力 F 作用的箱形薄壁杆如图所示。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,弹性模量E的单位是()。
A. N/mB. N·mC. PaD. m/N答案:C2. 材料力学中,材料的屈服强度通常用()表示。
A. σyB. σsC. σbD. E答案:A3. 根据胡克定律,当应力超过材料的弹性极限时,材料将()。
A. 保持弹性B. 发生塑性变形C. 发生断裂D. 无法预测答案:B4. 材料力学中,第一强度理论认为材料破坏的原因是()。
A. 最大正应力B. 最大剪应力C. 最大正应变D. 最大剪应变答案:A5. 下列哪种材料不属于脆性材料()。
A. 玻璃B. 铸铁C. 混凝土D. 铝答案:D6. 材料力学中,梁的弯曲应力公式为()。
A. σ = Mc/IB. σ = Mc/IbC. σ = Mc/ID. σ = Mc/Ib答案:C7. 在材料力学中,梁的剪应力公式为()。
A. τ = VQ/IB. τ = VQ/ItC. τ = VQ/ID. τ = VQ/It答案:B8. 材料力学中,梁的挠度公式为()。
A. δ = (5PL^3)/(384EI)B. δ = (5PL^3)/(384EI)C. δ = (PL^3)/(48EI)D. δ = (PL^3)/(48EI)答案:C9. 材料力学中,影响材料屈服强度的因素不包括()。
A. 材料的微观结构B. 加载速度C. 温度D. 材料的密度答案:D10. 材料力学中,影响材料疲劳强度的因素不包括()。
A. 应力集中B. 表面粗糙度C. 材料的硬度D. 材料的导热性答案:D二、填空题(每题2分,共20分)1. 材料力学中,材料在外力作用下,其形状和尺寸发生的变化称为______。
答案:变形2. 材料力学中,材料在外力作用下,其内部产生的相互作用力称为______。
答案:应力3. 材料力学中,材料在外力作用下,其内部产生的相对位移称为______。
答案:应变4. 材料力学中,材料在外力作用下,其内部产生的单位面积上的力称为______。
华科材料力学课后答案1. 弹性力学。
1.1 问题一。
根据胡克定律,弹簧的伸长量与所受外力成正比。
即伸长量ΔL与外力F满足ΔL=kF,其中k为弹簧的弹性系数。
根据题意,当外力为100N时,弹簧的伸长量为5mm,求弹簧的弹性系数k。
解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=kF。
代入已知条件ΔL=5mm,F=100N,解得k=0.05N/mm。
1.2 问题二。
一根钢棒的长度为2m,横截面积为2cm²,弹性模量为2×10^11N/m²。
当外力作用在钢棒上时,钢棒的伸长量为多少?解,根据胡克定律,伸长量ΔL与外力F成正比,即ΔL=FL/AE,其中F为外力,L为长度,A为横截面积,E为弹性模量。
代入已知条件F=100N,L=2m,A=2cm²=2×10^-4m²,E=2×10^11N/m²,解得ΔL=0.1mm。
2. 塑性力学。
2.1 问题一。
一块材料的屈服强度为200MPa,抗拉强度为400MPa。
求这种材料的屈服应力和极限应力。
解,屈服应力即屈服强度,为200MPa;极限应力即抗拉强度,为400MPa。
2.2 问题二。
一块材料在拉伸过程中,当外力达到1000N时发生塑性变形,而当外力继续增加到1500N时,材料发生断裂。
求这种材料的屈服强度和极限强度。
解,屈服强度为1000N,极限强度为1500N。
3. 疲劳力学。
3.1 问题一。
一根钢材在交变应力作用下,发生疲劳破坏,其疲劳极限为200MPa。
求该钢材在交变应力为150MPa时的寿命。
解,根据疲劳极限的定义,当交变应力小于疲劳极限时,材料不会发生疲劳破坏,因此寿命为无穷大。
3.2 问题二。
一根铝材在交变应力为100MPa时,其寿命为1000次循环。
求该铝材的疲劳极限。
解,根据题意,当交变应力为100MPa时,寿命为1000次循环,代入疲劳极限的定义,得到疲劳极限为100MPa。
材料力学试题一、填空题(共15分)1、 (5分)一般钢材的弹性模量E = 210 GPa ;吕材的弹性模量E = 70 GPa2、 (10分)图示实心圆锥杆受扭转外力偶作用,材料的剪切弹性模量为G ,该杆的man τ1、(5(A )各向同性材料;(B )各向异性材料; (C 正确答案是 A 。
2、(5分)边长为d 杆(1)是等截面,杆(2荷系数d k 和杆内最大动荷应力d σ论:(A )()(,)()(1max 21d d d k k σ<<(B )()(,)()(1max 21d d d k k σ><(C )()(,)()(1max 21d d d k k σ<>(D )1max 21()(,)()(d d d k k σ>>正确答案是 A 。
三、计算题(共75分) 1、(25应力相等,求:(1)直径比21/d d ; (2)扭转角比AB φ解:AC 轴的内力图:(105);(10355M Nm M BC AB ⨯=⨯= 由最大剪应力相等:8434.05/3/16/1050016/10300321323313max==⨯=⨯==d d d d W M n n ππτ 由;594.0)(23232;41221242411=••=•=⇒∴⋅=d M M M d G d G a M GI l M n n n n BC AB P n ππφφφ(2)2、(3、(15分)有一厚度为6mm 的钢板在板面的两个垂直方向受拉,拉应力分别为150Mpa 和55Mpa ,材料的E=2.1×105Mpa ,υ =0.25。
求钢板厚度的减小值。
解:钢板厚度的减小值应为横向应变所产生,该板受力后的应力状态为二向应力状态,由广义胡克定律知,其Z 向应变为:0244.010)55150(101.225.0)(69-=⨯+⨯-=+-=y x z E σσνε则 mm t Z Z 146.0-=⨯=∆ε(本资料素材和资料部分来自网络,仅供参考。
F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4) 应力是内力分布集度。
(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6) 若物体产生位移,则必定同时产生变形。
(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。
(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。
(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。
3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。
(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。
变形。
(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。
(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材料力学作业解答1.弹簧的力学行为弹簧是一种具有弹性的材料,它可以在受力时发生弹性形变,并且能够恢复到原始形状。
弹簧的力学行为可以通过胡克定律来描述。
根据胡克定律,弹簧的形变与施加在它上面的力成正比,即F=k*x,其中F是施加在弹簧上的力,k是弹簧的弹性系数,x是弹簧的形变量。
2.弹簧的应变能和弹性势能当弹簧被拉伸或压缩时,它会储存一定量的应变能。
弹簧的应变能可以通过下式计算:U=(1/2)*k*x^2,其中U是弹簧储存的应变能,k是弹簧的弹性系数,x是弹簧的形变量。
3.伸长弹簧的应变能假设一个弹簧的弹性系数为k,它被拉伸或压缩x长度。
根据胡克定律,施加在弹簧上的力可以通过F = k * x计算得到。
通过积分力在形变路径上的关系,可以得到弹簧的应变能。
假设初始长度为L,拉伸后的长度为L+x,则弹簧的伸长应变能可以计算如下:U = ∫[0, L+x] F(x)dx = ∫[0, x] k * x dx = (1/2) k * x^24.剪切应力和剪切应变剪切应力是作用于物体上的横截面内的剪切力与该横截面上的面积之比。
剪切应变是物体在受到剪切应力时产生的形变。
剪切应力和剪切应变之间的关系可以通过剪切弹性模量来描述。
剪切弹性模量G可以通过下式计算:G=τ/γ,其中τ是剪切应力,γ是剪切应变。
5.弯曲应力和弯曲应变弯曲应力是作用于物体上的弯曲力与该物体的横截面想对距离之比。
弯曲应变是物体在受到弯曲应力时产生的形变。
弯曲应力和弯曲应变之间的关系可以通过弯曲弹性模量来描述。
弯曲弹性模量E可以通过下式计算:E=σ/ε,其中σ是弯曲应力,ε是弯曲应变。
6.斯特拉因准则斯特拉因准则描述了材料在达到破坏点之前的应力和应变行为。
根据斯特拉因准则,当材料达到其屈服点时,应力和应变之间的关系可以通过单一的线性方程来描述。
这个线性方程表明了在屈服点之前,应力与应变之间的比例关系。
7.杨氏模量和泊松比杨氏模量是一种描述材料刚度的量度,它可以表示应力与应变之间的比例关系。
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A (2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
材料力学二1、横力弯曲梁,横截面上()。
[C]A、仅有正应力B、仅有切应力C、既有正应力,又有切应力D、切应力很小,忽略不计2、一圆型截面梁,直径d=40mm,其弯曲截面系数W Z为()。
[B]A、1000πmm3B、2000πmm3C、400πmm2D、400πmm33、弯曲梁上的最大正应力发生在危险截面()各点处。
[B]A、中性轴上B、离中性轴最远C、靠近中性轴D、离中性轴一半距离4、考虑梁的强度和刚度,在截面面积相同时,对于抗拉和抗压强度相等的材料(如碳钢),最合理的截面形状是()。
[D]A、圆形B、环形C、矩形D、工字型5、两梁的横截面上最大正应力相等的条件是()。
[B]A、M MAX与横截面积A相等B、M MAX与W Z(抗弯截面系数)相等C、M MAX与W Z相等,且材料相同D、都正确6、提高梁的强度和刚度的措施有()。
[c]A、变分布载荷为集中载荷B、将载荷远离支座C、将梁端支座向内侧移动D、撤除中间支座7、一铸铁梁,截面最大弯矩为负,其合理截面应为(B)。
A、工字形B、“T”字形C、倒“T”字形D、“L”形8、图示三种截面的截面积相等,高度相同,试按其抗弯截面模量由大到小依次排列( B )A、ABCB、CBAC、CABD、BAC9、几何形状完全相同的两根梁,一根为铝材,一根为钢材,若两根梁受力状态也相同,则它们的( A )A、弯曲应力相同,轴线曲率不同B、弯曲应力不同,轴线曲率相同C、弯曲应力和轴线曲率均相同D、弯曲应力和轴线曲率均不同10、设计钢梁时,宜采用中性轴为( A )的截面A、对称轴B、靠近受拉边的非对称轴C、靠近受压边的非对称轴D、任意轴11、关于图示梁上a点的应力状态有下列四种答案:正确答案是( D )12、已知等截面直梁在某一段上的挠曲线方程为w(x)=Ax2(4lx-6l2-x2),则该段梁上( B )A、无分布载荷作用B、有均布载荷作用C、分布载荷是x的一次函数D、分布载荷是x 的二次函数13 设计铸铁梁时,宜采用中性轴为( B )的截面。
A、对称轴B、偏于受拉边的非对称轴C、偏于受压边的非对称轴D、对称或非对称轴14 图示两根矩形截面的木梁按两种方式拼成一组合梁(拼接的面上无粘胶),梁的两端受力偶矩M0作用,以下结论中( D )是正确的。
A、两种情况 max 相同B、两种情况正应力分布形式相同C、两种情况中性轴的位置相同D、两种情况都属于纯弯曲15图示两梁的抗弯刚度EI相同,载荷q相同,则下列结论中正确的是( C )。
A、两梁对应点的内力和位移相同B、两梁对应点的内力和位移相同C、内力相同,位移不同D、内力不同,位移相同16 图示三梁中fa 、fb 、fc 分别表示图(a )、(b )、(c )的中点位移,则下列结论中正确的是( A )。
A 、fa = fb = 2 fcB 、fa > fb = fcC 、fa > fb > fcD 、fa fb = 2 fc17 图示a ,b 两截面其惯性矩的关系有四种答案,正确答案是(B ) 。
a b ()()y y I I >,A 、a b ()()z z I I =;B 、a b ()()y y I I =,a b ()()z z I I >;C 、a b ()()y y I I =,a b ()()z z I I <;D 、a b ()()y y I I <,a b ()()z z I I =。
18 图所示B 截面的弯矩值为( b )。
A 、PLB 、–PaC 、PaD 、–PL19 图所示简支梁剪力图正确的为( D )。
20 应用截面法计算横截面上的弯矩,其弯矩等于( C )。
A 、梁上所有外力对截面力矩的代数和B 、该截面左段梁(或右段梁)上所有外力对任何矩心的代数和C 、该截面左段梁(或右段梁)所有外力(包括力偶)对该截面形心力矩的代数和D 、截面一边所有外力对支座的力矩代数和21 梁的截面为T型,z 轴通过横截面形心,弯矩图如图示,则有( B )。
A、最大拉应力与最大压应力位于同一截面c 或dB、最大抗应力位于截面c ,最大压应力位于截面dC、最大拉应力位于截面d ,最大压应力位于截面c D、以上说法都不正确22 最大弯矩截面最大拉应力等于最大压应力的条件是( B )。
A、梁材料的拉压强度相等 B、截面形状对称于中性轴C、同时满足以上两条 D、截面形状不对称于中性轴23 直梁弯曲强度条件[]σσ≤=zW M max max 中,max σ应是( D )上的最大正应力。
A 、最大弯矩所在截面 B 、梁的最大横截面C 、梁的最小横截面 D 、梁的危险截面 24 由叠加法作图示简支梁的弯矩图,则下述正确的是图( )。
题图 z y a a d (a) z y a a d (b)25跨中受集中荷载P 作用的圆截面简支梁, 它的θA= ,yc = 。
若将L 变为2L ,d 变为2d 时,它的,yc 之比为 ( A )。
A 、B 、C 、D 、26 一正方形截面梁的边长为2a ,其对z 轴的惯性矩I Z 为()。
[D]A 、4a 2B 、2aC 、2/3a 3D 、4/3a 427圆截面悬臂梁,若其它条件不变,而直径增加一倍,则其最大正应力是原来的()倍[A]A 、1/8B 、 8C 、2D 、1/228当只需确定某些特定截面的转角和挠度,而并不需要求出转角和挠度的普遍方程时,梁的弯曲变形,可用()法求解。
[a]A 、叠加法B 、微分法C 、几何法D 、矢量法29 等截面直梁在弯曲变形时,挠曲线曲率在最大( D )处一定最大A 、挠度B 、转角C 、剪力D 、弯矩1 圆形截面梁,不如相同截面面积的正方形截面梁承载能力强。
(A )2 选择具有较小惯性距的截面形状,能有效地提高梁的强度和刚度。
(B )3 梁在纯弯曲时,变形后横截面保持为平面,且其形状、大小均保持不变。
( b )4 图示梁的横截面,其抗弯截面系数Z W 和惯性矩Z I( b )5对角线。
(b ) 6 梁内弯矩为零的横截面其挠度也为零。
7 梁的最大挠度处横截面转角一定等于零。
8 两根不同材料制成的梁,若截面尺寸和形状完全相同,两根梁弯曲变形有关量值,有如下判断:最大正应力相同。
( a ) 9 两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大挠度值相同。
( b )10 两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大转角值不同。
( a )11两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:最大剪应力值不同。
( b )12 两根不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形有关量值,有如下判断:强度相同。
( a )13 两根材料、截面形状及尺寸均不同的等跨简支梁,受相同的载荷作用,则两梁的反力与内力相同。
( a )14 图(a )、(b )中,m-m 截面上的中性轴分别为通过截面形心的水平轴与铅垂轴。
( a )15 在均质材料的等截面梁中,最大拉应力+max σ和最大压应力-max σ必出现在弯矩值M 最大的截面上。
( a )16 弯曲应力公式zI My =σ 适用于任何截面的梁。
( a ) 17 一悬臂梁及其T 形截面如图示,其中c 为截面形心,该截面的中性轴O Z ,最大拉应力在上边缘处。
( b )18 T 形截面梁受矩为负值,图示应力分布图完全正确。
( b )图 1519 匀质材料的等截面梁上,最大正应力∣σ∣max 必出现在弯矩M 最大的截面上。
( a ) 20 对于等截面梁,最大拉应力与最大压应力在数值上必定相等。
( b )21 图所示T 形截面外伸梁的最大拉应力发生在A 截面处。
( b )22 T 截面铸铁梁,当梁为纯弯曲时,其放置形式最合理的方式是A 。
( a )23 图所示脆性材料⊥形截面外伸梁,若进行正应力强度校核,应校核点下边缘。
( b )24 图示悬臂梁,其最大挠度处,必定是最大转角发生处。
(b )25 不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么对此两根梁弯曲变形时,它们的最大挠度值相同。
( b )26 EI 是梁的抗弯刚度,提高它的最有效,最合理的方法是改用更好的材料。
( b ) 27 梁弯曲正应力计算公式适用于横力弯曲细长梁(l/h>5)(a)。
28 对平面弯曲梁来说,梁横截面上下边缘处各点的切应力为零(b )。
29 对平面弯曲梁来说,梁横截面上下边缘处处于单向拉伸或单向压缩状态(a )。
30 严格而言,梁弯曲正应力强度计算公式不适用于木梁(a )。
31 梁的纯弯曲强度校核,一般应当校核梁横截面最大弯矩处和截面积最小截面处(a )。
32 梁纯弯曲时,强度不足截面一定是横截面积最小截面(b )。
33 梁纯弯曲时,强度不足截面一定是弯矩最大横截面(b )。
34 短梁横力弯曲强度计算时,先按照切应力强度条件设计截面尺寸,而后按照弯曲正应力强度校核(B )。
35 梁弯曲后,梁某点的曲率半径和该点所在横截面位置无关(b )。
36 梁上有两个载荷,梁的变形和两个载荷加载次序无关(a )。
37 梁上均布载荷使梁产生的变形是载荷的二次函数(b )。
38梁的刚度不足一定不会发生在支座处(b )。
39 从梁横截面切应力分布情况看,梁材料应当尽量远离中性轴(b )。
40简支梁中部受有向下的集中载荷,对于脆性材料而言,正T 型截面比倒T 型截面合理(b ) 41梁的挠曲线方程是连续或者分段连续方程(a )。
42分析研究弯曲变形,要利用平面假设、纵向纤维间无正应力假设。
(A )43梁内最大弯矩的作用面上剪力必为零。
( b )44对于等截面梁,最大拉应力与最大压应力在数值上必定相等。
( b )45矩形截面梁,若其截面高度和宽度都增加一倍,则其强度提高到原来的16倍。
( b )1 将桥式起重机的主钢梁设计成两端外伸的外伸梁较简支梁有利,其理由是( AC )。
A、减小了梁的最大弯矩值B、减小了梁的最大剪力值C、减小了梁的最大挠度值D、增加了梁的抗弯刚度值2 为提高梁的抗弯刚度,可通过( BD )来实现。
A、选择优质材料B、合理安排梁的支座,减小梁的跨长C、减少梁上作用的载荷D、选择合理截面形状。