椭圆的几何性质教案
- 格式:doc
- 大小:211.00 KB
- 文档页数:3
.1椭圆的简单几何性质课标解读1.掌握椭圆的简单几何性质,了解椭圆标准方程中a,b,c的几何意义.2.会利用椭圆的几何性质求标准方程.3.会求椭圆的离心率.4.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.学情分析1.前面的章节已经学习了椭圆的定义,有了一定的基础。
2.在讨论椭圆性质时,易忽略焦点位置的讨论3.离心率的计算比较复杂,有一定难度。
教学重难点1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.(重点)2.根据几何条件求出曲线方程,利用曲线的方程研究它的性质,并能画出相应的曲线.(重点、难点)温故导新与利用直线的方程、圆的方程研究它们的几何性质一样,我们利用椭圆的标准方程椭圆的几何性质,包括椭圆的范围、形状、大小、对称性和特殊点等用笔思考问题1观察椭圆x2a2+y2b2=1(a>b>0)的形状,你能从图上看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?提示范围:-a≤x≤a,-b≤y≤b;对称性:对称轴为x轴,y轴,对称中心为原点;顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b).问题2观察图,我们发现,不同椭圆的扁平程度不同,扁平程度是椭圆的重要形状特征,你能用适当的量定量刻画椭圆的扁平程度吗?这个定量对椭圆的形状有何影响?提示利用离心率e=ca来刻画椭圆的扁平程度.问题3如图所示,椭圆方程为x2a2+y2b2=1,你能根据方程确定椭圆的边界吗?提示由方程x2a2+y2b2=1得y2b2=1-x2a2≥0,得-a≤x≤a,同理可得-b≤y≤b,故椭圆位于x=±a和y=±b围成的矩形内.问题4如上图所示,椭圆具有怎样的对称性?如何用方程加以说明?提示既关于坐标轴为轴对称,又关于原点为中心对称.方程中若(x,y)满足,则易知(x,-y),(-x,y),(-x,-y)也满足.主动讲解三人一组,讨论以下问题1.椭圆的离心率对椭圆形状的影响2.椭圆上哪些点比较特殊?双师导学1.椭圆的简单几何性质(1)椭圆的焦点一定在它的长轴上.(2)椭圆上到中心的距离最小的点是短轴的两个端点,到中心的距离最大的点是长轴的两个端点.(3)椭圆上到焦点的距离最大和最小的点分别是长轴的两个端点,最大值为a+c,最小值为a-c.2.离心率(1)定义:椭圆的焦距与长轴长的比ca称为椭圆的.(2)性质:离心率e的范围是(0,1).当e越接近于1时,椭圆;当e越接近于0时,椭圆就越接近于圆.注意点:(1)e =1-b 2a2. (2)离心率的范围为(0,1).(3)e 越大,椭圆越扁平;e 越小,椭圆越接近于圆. 聚焦核心1.椭圆的简单几何性质2.椭圆的离心率强化反馈1.(多选)已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12B .焦距为34C .焦点坐标为⎝⎛⎭⎫0,±34 D .离心率为32答案 CD解析 由椭圆方程16x 2+4y 2=1化为标准方程可得x 2116+y 214=1,所以a =12,b =14,c =34 ,所以长轴长2a =1,焦距2c =32,焦点坐标为⎝⎛⎭⎫0,±34,离心率e =c a =32. 2.已知椭圆的离心率为12,焦点是(-3,0)和(3,0),则该椭圆的方程为( )A.x 236+y 227=1 B.x 26+y 23=1 C.x 227+y 236=1 D.x 29+y 26=1 答案 A解析 由题意知c =3,c a =12,则a =6,∴b 2=a 2-c 2=27, ∴椭圆的方程为x 236+y 227=1.3.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34 D.64 答案 A解析 如图,不妨设椭圆的左、右焦点分别为F 1,F 2,B 为椭圆的上顶点. 依题意可知,△BF 1F 2是正三角形. ∵在Rt △OBF 2中,|OF 2|=c , |BF 2|=a ,∠OF 2B =60°, ∴cos 60°=c a =12,即椭圆的离心率e =12.4.若椭圆C :x 2m +y 2m 2-1=1的一个焦点坐标为(0,1),则C 的长轴长为________.答案 23解析 ∵椭圆的一个焦点坐标为(0,1), ∴m 2-1-m =1,即m 2-m -2=0, 解得m =2或m =-1,由于x 2m +y 2m 2-1=1表示的是椭圆,则m >1,∴m =2, 则椭圆方程为y 23+x 22=1,∴a =3,2a =2 3.。
椭圆的简单几何性质第三课时(一)教学目标1.能利用椭圆中的基本量、、、熟练地求椭圆的标准方程.a b c e 2.掌握椭圆的参数方程,会用参数方程解一些简单的问题.(二)教学过程【复习引入】由一位学生回答,教师板书列表或用投影仪给出.问题1.椭圆有哪些几何性质?问题2.确定椭圆的标准方程需要几个条件?通过对椭圆标准方程的讨论,研究了椭圆的几何性质,必须掌握标准方程中、和a b 、的几何意义以及、、、之间的相互关系,这样就可以由椭圆的几何性质确定c e a b c e 它的标准方程.【例题分析】例1 求中心在原点,过点,一条准线方程为的椭圆方程.⎪⎪⎭⎫ ⎝⎛231,P 043=-x 分析:根据准线方程可知椭圆的焦点在轴上,由于思路不同有两种不同的解法,可x 让学生练习后,教师再归纳小结,解法如下:解法一:设椭圆方程为.()0222222>>=+b a b a y a x b ∵点在椭圆上⎪⎪⎭⎫ ⎝⎛231,P ∴ 即 ①222243b a a b =+()143222-=a a b 又∵一条准线方程是043=-x ∴ ②342=c a 243a c =将①、②代入,得222c b a += 整理得()4222163143a a a a +-=02819324=+-a a 解得或.42=a 372=a 分别代入①得或.12=b 16212=b故所求椭圆方程为或.1422=+y x 121167322=+y x 解法二:设椭圆的右焦点为,点到椭圆右准线的距离为,由椭圆的第二定()0,c F Pd 义得,即a c d PF=. ①()a c c =-⎪⎪⎭⎫ ⎝⎛+-13423122又由准线方程为342==c a x . ②c a c 4322=将②代入①,整理得021319122=+-c c 解得或.3=c 347=c 代入②及得222c b a += 或 ⎪⎩⎪⎨⎧==1422b a ⎪⎪⎩⎪⎪⎨⎧==16213722b a 故所求椭圆的方程为 或 .1422=+y x 121167322=+y x 例2 如图,以原点心圆心,分别以、a b为半径作两个圆,点是大圆半径与()0>>b a B OA 小圆的交点,过点作,垂足为,过点A Ox AN ⊥N 作,垂足为,求当半径绕点B AN BM ⊥M OA O旋转时点的轨迹的参数方程.M 解:设点的坐标为,是以为始M ()y x ,ϕOx 边,为终边的正角.OA取为参数,那么ϕ⎪⎩⎪⎨⎧====ϕϕsin cos OB NM y OA ON x 即⎩⎨⎧==ϕϕsin cos b y a x 这就是所求点的轨迹的参数方程.M 消去参数后得到,由此可知,点的轨迹是椭圆.ϕ12222=+by a x M 点评:这道题还给出了椭圆的一种画法,按照这种方法,在已知椭圆的长、短轴长的情况下,给出离心角的一个值,就可以画出椭圆上的一个对应点,利用几何画板画椭圆ϕ都用此法.例3 已知椭圆,(,,为参数)上的点,求:⎩⎨⎧==ϕϕsin cos b y a x 0>a 0>b ϕ()y x P ,(1)、的取值范围;x y (2)的取值范围.y x 43+解:(1)∵,,1cos 1≤≤-ϕ1sin 1≤≤-ϕ∴,.a a a ≤≤-ϕcosb b b ≤≤-ϕsin ∴,为所求范围.a x a ≤≤-b x b ≤≤-(2)∴ϕϕsin 4cos 343b a y x +=+ .()θϕ++sin 16922b x (其中为第一象限角,且).θb a 43tan =θ而.()1sin 1≤+≤-θϕ∴,()[]222222169169sin 169b a b a b a ++-∈++,θϕ即这所求.222216943169b a y x b a +≤+≤+-例4 把参数方程(为参数).写成普通方程,并求出离心率.⎩⎨⎧==ϕϕsin 4cos 3y x ϕ解:由参数方程得⎪⎪⎩⎪⎪⎨⎧==.sin 4cos 3ϕϕy x 平方相加得为所求普通方程.116922=+y x ∵,,4=a 3=b ∴.791622=-=+=b a c ∴椭圆的离心率.47=e (三)随堂练习1.焦点在轴上的椭圆上一点到两准线间的距离之和为36,到两焦点的距离分别x P 为9和15的椭圆的标准方程为______________.2.参数方程(为参数)表示的曲线的焦点坐标是______________.⎩⎨⎧==θθsin 3cos 4y x θ3.椭圆(为参数)的离心率为_________________.⎩⎨⎧==θθcos 3cos 2y x θ答案:1. 2., 3.18014422=+y x ()07,-()07,35(四)总结提炼若已知条件涉及到焦点,准线方程式时,往往利用定义求解较简便.2.椭圆的参数方程(为参数)中,表明、分别是椭⎩⎨⎧==ϕϕsin cos b y a x ϕ0>>b a a 2b 2圆的长轴、短轴长,且焦点在轴上,参数的几何意义是椭圆的离心角,利用椭圆的参x ϕ数方程求的最值较方便.()y x f ,(五)布置作业1.已知椭圆中心在原点,一个焦点是,点在椭圆上,则点到与()031,F ⎪⎭⎫ ⎝⎛5124,P P 相应准线的距离为( )1FA .B .C .D .5133373253232.椭圆的左焦点为,,是两个顶点,如12222=+by a x ()0>>b a F ()0,a A -()b B ,0果到直线的距离等于,那么椭圆的离心率等于( )F AB 77b A . B . C . D .777-777+32364.椭圆(为参数)的两准线间距离为_______________.⎩⎨⎧==θθsin 4sin 5y x θ5.已知椭圆的一条准线方程是,且过点,求椭圆的标准方程.325-=x ⎪⎭⎫ ⎝⎛5124,6.求椭圆的内接矩形面积的最大值.12222=+by a x ()0>>b a 答案:1.A 2.C 3.D 4. 5.3501162522=+y x 7.设是椭圆上的任一点,则(为参数)()y x P ,⎩⎨⎧==θθsin cos b y a x θ内接矩形面积θθθθcos sin 4sin 2cos 2ab b a S =⋅=∴ .θθ>=2sin 2ab ab S 2≤ab S 2max =(六)板书设计椭圆的简单几何性质(三)一、复习引入二、例题分析例1例2例3例4练习总结。
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。
2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。
3. 能够运用椭圆的性质解决相关几何问题。
教学重点:1. 椭圆的定义及其基本性质。
2. 椭圆几何参数的计算方法。
教学难点:1. 椭圆性质的应用。
教学准备:1. 教学课件或黑板。
2. 尺子、圆规等绘图工具。
教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。
二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。
b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。
c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。
3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。
三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。
2. 学生分组讨论并解答,教师巡回指导。
四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。
2. 学生独立完成练习题,教师批改并给予反馈。
五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。
2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。
教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。
在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。
通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。
但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。
六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本几何性质。
2. 学会运用椭圆的性质解决相关问题。
3. 培养学生的观察能力、推理能力和解决问题的能力。
教学内容:1. 椭圆的定义2. 椭圆的焦点3. 椭圆的长轴和短轴4. 椭圆的离心率5. 椭圆的面积教学准备:1. 教学课件或黑板2. 椭圆模型或图片3. 直尺、圆规等绘图工具教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆模型或图片,让学生观察并描述椭圆的特点。
2. 引导学生思考:椭圆与其他几何图形(如圆、矩形等)有什么不同?二、椭圆的定义(10分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和等于常数的点的集合。
2. 解释椭圆的焦点概念,说明焦点的作用。
3. 引导学生通过实际操作,绘制一个椭圆,并标记出焦点。
三、椭圆的焦点(10分钟)1. 介绍椭圆的焦点与椭圆的离心率的关系。
2. 引导学生通过实际操作,观察焦点的位置与椭圆的形状之间的关系。
3. 解释椭圆的离心率的定义及其几何意义。
四、椭圆的长轴和短轴(10分钟)1. 介绍椭圆的长轴和短轴的概念。
2. 引导学生通过实际操作,测量和记录椭圆的长轴和短轴的长度。
3. 解释长轴和短轴与椭圆的形状之间的关系。
五、椭圆的面积(10分钟)1. 介绍椭圆的面积的计算公式。
2. 引导学生通过实际操作,计算一个给定椭圆的面积。
3. 解释椭圆面积与长轴和短轴之间的关系。
教学评价:1. 通过课堂讲解和实际操作,学生能够理解椭圆的定义及其基本几何性质。
2. 通过解决问题和完成作业,学生能够运用椭圆的性质解决相关问题。
3. 通过课堂讨论和提问,学生能够展示对椭圆的理解和应用能力。
六、椭圆的离心率(10分钟)1. 回顾椭圆的离心率的定义和计算方法。
2. 引导学生通过实际操作,观察离心率与椭圆的形状之间的关系。
3. 解释离心率在几何中的应用,如椭圆的焦点和直线的交点等。
七、椭圆的参数方程(10分钟)1. 介绍椭圆的参数方程及其意义。
椭圆的简单几何性质教案椭圆是一个非常重要的几何图形,具有许多有趣的几何性质。
在这个简单的几何性质教案中,我将介绍一些关于椭圆的基本性质和定理。
一、椭圆的定义:椭圆是平面上到两个固定点F1、F2距离之和为常数2a的点P的集合。
F1、F2称为椭圆的焦点,而2a称为椭圆的长轴长度。
二、椭圆的性质:1. 椭圆的长轴与短轴:长轴是焦点F1、F2的中点连线的长度,短轴是焦点F1、F2与椭圆上点A的连线的长度。
2. 椭圆的对称轴:椭圆的长轴是对称轴,即沿长轴折叠椭圆的两边重合。
3. 椭圆的离心率:离心率e是一个确定椭圆形状的参数,表示焦点与椭圆上点A的距离与椭圆长轴长度之比。
离心率的计算公式:e = F1F2 / (2a)当离心率e=0时,椭圆退化为一个点;当0 < e < 1时,椭圆存在,且是一个闭合曲线;当e = 1时,椭圆退化为一条线段;当e > 1时,曲线退化为两个分离的直线。
4. 椭圆的焦半径:椭圆上任意一点P到两个焦点F1、F2的距离之和等于椭圆的长轴长度,即PF1 + PF2 = 2a。
三、椭圆的定理:1. 椭圆的反射性质:椭圆上的任意一条直线与椭圆的两个焦点的连线的夹角等于该直线与该椭圆上与焦点处的切线的夹角。
2. 椭圆的切线性质:椭圆上任意一点处的切线与该点到两个焦点的连线的交点与该点、两个焦点连线的垂线,共线。
3. 椭圆的切点性质:椭圆上任意一点处的切线与该点到两个焦点的连线的交点与该点、两个焦点连线的垂线以及该点三条线共线。
四、椭圆的应用:椭圆是地球等天体轨道的几何形状,也是经典力学、天体力学等领域的重要研究对象。
此外,椭圆还广泛应用于工程类问题中,例如天然气管道的优化布局、平面轮廓设计等。
五、课堂练习:1. 画出椭圆的长轴、短轴和焦点。
2. 若已知椭圆的长轴长度a=6cm,离心率e=2/3,求焦距;3. 若已知椭圆的离心率e=1/2,焦半径PF1=3cm,求椭圆的长轴长度。
中等专业学校2023-2024-1教案教学内容2.对称性在椭圆的标准方程中,将y换成-y,方程不变. 这说明,当点P(x,y)在椭圆上时,其关于x轴的对称点 P1(x,-y)也在椭圆上. 因此,椭圆关于x轴对称.同理,将x换成-x,方程不变.这说明,当点P(x,y)在椭圆上时,其关于y轴的对称点P2(-x,y)也在椭圆上. 因此,椭圆关于y 轴对称.进一步,将x换成-x,同时y换成-y,方程不变. 这说明,当点P(x,y)在椭圆上时,其关于原点的对称点P3(-x,-y)也在椭圆上. 因此,椭圆关于原点对称.综上所述,椭圆既关于x轴对称,又关于y轴对称,也关于坐标原点对称. x轴与y轴都称为椭圆的对称轴,坐标原点称为椭圆的对称中心(简称中心).3.顶点在椭圆的标准方程22221x ya b+=中,令y =0,得x =±a,这说明椭圆与x轴有两个交点A1(-a,0)和A2(a,0). 同理,令x =0,得y =±b. 这说明椭圆与y轴有两个交点B1(0,-b)和B2(0,b),如图所示.椭圆与它的对称轴的四个交点A1、A2、B1、B2 ,称为椭圆的顶点. 线段A1A2和B1B2分别称为椭圆的长轴和短轴,它们的长分别为2a和2b. a和b分别是椭圆的长半轴长和短半轴长. 显然,椭圆的焦点在它的长轴上.值得注意的是,由于a、b、c满足关系式b²+c²=a²,故长度分别为a、b、c的三条线段构成一个直角三角形. 观察上图,可知故有|OB2|²+|OF2|²=|B2F2|².因此,RtΔF2OB2(或F1OB2)直观地反映了椭圆的标准方程中a、b、c三者之间的关系.。
椭圆的简单几何性质教学教案一、教学目标1. 知识与技能:使学生掌握椭圆的定义,理解椭圆的基本几何性质,如焦点、半长轴、半短轴等概念;2. 过程与方法:通过观察、分析、归纳等方法,让学生发现并证明椭圆的几何性质;3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 椭圆的基本几何性质:a. 焦点:椭圆的焦点距离为2c,其中c为半焦距,c^2=a^2-b^2;b. 半长轴:椭圆的半长轴为a,表示椭圆的长轴的一半;c. 半短轴:椭圆的半短轴为b,表示椭圆的短轴的一半;d. 椭圆的面积:S=πab。
三、教学重点与难点1. 教学重点:椭圆的定义及其基本几何性质;2. 教学难点:椭圆的焦点、半长轴、半短轴等概念的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳等方法发现椭圆的几何性质;2. 利用数形结合法,让学生直观地理解椭圆的定义及其几何性质;3. 运用实例讲解法,让学生掌握椭圆在实际问题中的应用。
五、教学过程1. 导入新课:通过介绍椭圆的起源和发展,激发学生的学习兴趣;2. 讲解椭圆的定义:结合图形,解释椭圆的定义,让学生理解椭圆的概念;3. 探索椭圆的基本几何性质:引导学生观察椭圆的图形,发现焦点、半长轴、半短轴等性质;4. 证明椭圆的几何性质:引导学生运用数学方法证明椭圆的基本几何性质;5. 应用实例:让学生运用椭圆的性质解决实际问题,巩固所学知识。
本教案为椭圆的简单几何性质教学教案的第一部分,后续章节将陆续呈现。
希望能对您的教学有所帮助!六、教学练习1. 基本概念练习:a. 定义椭圆的焦点;b. 解释椭圆的半长轴和半短轴;c. 计算椭圆的面积。
2. 应用题练习:a. 已知椭圆的半长轴为5cm,半短轴为3cm,求椭圆的焦点距离;b. 已知椭圆的面积为36πcm²,半长轴为6cm,求椭圆的半短轴;c. 一个椭圆的焦点在x轴上,半长轴为4cm,半短轴为3cm,求椭圆的标准方程。
椭圆的简单几何性质(一)教学目标:知识与技能:掌握椭圆的范围、对称性、顶点,掌握c b a ,,几何意义以及c b a ,,的相互关系,初步学习利用方程研究曲线性质的方法。
过程与方法:利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力。
情感、态度与价值观:通过自主探究、交流合作使学生亲身体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质。
重点难点:重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法。
难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质。
教学过程(一)复习与引入过程:引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④探究椭圆的扁平程度量----椭圆的离心率.〖板书〗椭圆的简单几何性质.(二)新课探析(1)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(2)椭圆的简单几何性质:①范围:由椭圆的标准方程可得,222210y x b a=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率:椭圆的焦距与长轴长的比ac e =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a ,b ,c e 00 .(3)例题讲解与引申、扩展例1、 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.扩展:已知椭圆()22550mx y m m +=>的离心率为e =m 的值. 解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ====得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=. 例2、如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程.分析:若设点(),M x y ,则MF =l :254x =的距离254d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数c e a =()0a c >>,则点M 的轨迹方程是椭圆.其中定点(),0F c 是焦点,定直线l :2a x c=相应于F 的准线;由椭圆的对称性,另一焦点(),0F c '-,相应于F '的准线l ':2a x c=-. (三)课堂练习:(四)反思小结:(1)利用方程研究椭圆的几何性质时,若椭圆的方程不是标准方程,首先应将方程化为标准方程,然后找出相应的c b a ,,。
椭圆的简单几何性质教案教学目标:1. 理解椭圆的定义及基本性质;2. 掌握椭圆的长轴、短轴、焦距等基本概念;3. 学会运用椭圆的性质解决实际问题。
教学重点:1. 椭圆的定义及基本性质;2. 椭圆的长轴、短轴、焦距等基本概念。
教学难点:1. 椭圆性质的应用。
教学准备:1. 教师准备PPT、黑板、粉笔等教学工具;2. 学生准备笔记本、文具等学习用品。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的性质,复习相关概念;2. 提问:圆的性质在椭圆上是否适用?引出椭圆的定义及性质。
二、新课讲解(15分钟)1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹;2. 介绍椭圆的基本性质:椭圆的长轴、短轴、焦距等;3. 举例说明椭圆性质的应用,如:椭圆的离心率、焦距与半长轴、半短轴的关系等。
三、课堂练习(10分钟)1. 布置练习题,让学生运用椭圆性质解决问题;2. 引导学生互相讨论,共同解答;3. 教师巡回指导,解答学生疑问。
四、课堂小结(5分钟)1. 回顾本节课所学内容,总结椭圆的定义及基本性质;2. 强调椭圆性质在实际问题中的应用。
五、作业布置(5分钟)1. 布置课后作业,巩固所学知识;2. 提醒学生做好作业,为下一节课做好准备。
教学反思:本节课通过讲解椭圆的定义及基本性质,让学生掌握椭圆的长轴、短轴、焦距等概念,并学会运用椭圆性质解决实际问题。
在教学过程中,注意引导学生回顾旧知识,为新知识的学习打下基础;通过课堂练习,让学生巩固所学知识,提高解题能力。
六、案例分析:椭圆在现实世界中的应用(15分钟)1. 教师通过展示实际案例,如行星运动、卫星轨道等,让学生了解椭圆在现实世界中的应用;2. 引导学生分析案例中椭圆的性质,如离心率、长轴、短轴等;3. 让学生探讨椭圆在这些案例中的作用和意义。
七、拓展知识:椭圆的衍生形状(15分钟)1. 介绍椭圆的衍生形状,如双曲线、抛物线等;2. 分析这些形状与椭圆的关系,让学生了解它们之间的联系和区别;3. 举例说明这些形状在实际问题中的应用。
椭圆的几何性质
教学目标:
1、掌握椭圆的几何性质:范围、对称性、顶点、长轴、短轴、离心率; 2、掌握椭圆标准方程中a 、b 、c 关系;
3、体会解析几何由数到形由形到数的数形结合思想。
教学重点:椭圆的几何性质
教学难点:椭圆离心率与椭圆关系 教学过程: 一、问题情景
1、椭圆的定义与标准方程
2、思想方法总结:利用平面直角坐标系, 把几何问题转化为代数问题处理。
建立曲线方程的目的就是要用代数的 方法研究几何问题,本课就是要根据椭圆 的标准方程去研究椭圆的几何性质。
在以前的学习中,我们已经接触到如 何通过方程研究几何问题,例如直线的平 行与垂直,函数奇偶性中函数解析式的特 征与图象的对称性的关系等等,请思考: 如何根据椭圆标准方程研究几何性质? 二、建构数学
1、范围:由标准方程可知,椭圆上的点的坐标(x,y )都适合不等式221x a ≤,2
21y b
≤
椭圆位于直线x a =±和y b =±所围成的矩形里.即22
x a ≤,
22y b ≤,∴||,||x a y b ≤≤
2、对称性:
从图形上看:椭圆关于x 轴、y 轴、原点对称。
从方程上看: (1)把x 换成-x 方程不变,图象关于y 轴对称; (2)把y 换成-y 方程不变,图象关于x 轴对称;
(3)把x 换成-x ,同时把y 换成-y 方程不变,图象关于原点成中心对称。
3、顶点:令 x=0,得 y=?,说明椭圆与 y 轴的交点? 1A (-a,0), 2A (a,0)
令 y=0,得 x=?说明椭圆与 x 轴的交点? 1B (0,-b), 2B (0,b) (1)顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。
(2)长轴、短轴:线段12A A 、线段12B B 分别叫椭圆的长轴和短轴,它们的长分别等于2a 和2b ;
(3)a 、b 的几何意义:a 是长半轴的长,b 是短半轴的长; (4)特征三角形
及时反馈:求椭圆22416x y +=的长轴长、短轴长和顶点坐标。
4、离心率:椭圆的焦距与长轴长的比c
e a
=,叫做椭圆的离心率. 说明①因为0a c >>所以01e <<.
②e 越接近1,则c 越接近a ,从而b =e 越接近于0,c 越接近于0,从而b 越接近于a ,这时椭圆就接近于圆;(画板演示)
③当且仅当a=b 时,c=0,这时两焦点重合,图形变为圆.
[对于上述性质要求学生熟练掌握,并能由此推出焦点在y 轴的椭圆标准方程的几何性质(要求学生自己归纳),并能根据椭圆方程得到相应性质.]
及时反馈:下列每组椭圆中,哪一个更接近于圆?
(1)222
2
9111612x y x y +=+=与
(2)2222
9361610
x y x y +=+=与
及时反馈:求椭圆2
2
66x y +=的长轴长、短轴长、焦距、离心率、焦点坐标、顶点坐标。
三、数学运用
例1 求椭圆
22
1259
x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出图形.
解:把已知方程化成标准方程22
22153
x y +=这里a=5,b=3,所以4c =.
因此,椭圆的长轴和短轴的长分别是2a=10和2b=6,离心率4
5
c e a =
=,两个焦点分别是F 1(-4,0)和F 2(4,0),椭圆的四个顶点是A 1(-5,0),A 2(5,0),B 1(0,-3)和
B 2(0,3).
将已知方程变形为y =,根据y =05x ≤≤范围算出几个点坐标:
先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆.
说明:①本题在画图时,利用了椭圆的对称性,利用图形的几何性质,可以简化画图过程,保证图形的准确性.
②根据椭圆的几何性质,用下面方法可以快捷地画出反映椭圆基本形状和大小的草图:以椭圆的长轴、短轴为邻边画矩形;由矩形四边的中点确定椭圆的四个顶点;用曲线将四个顶点连成一个椭圆,画图时要注意它们的对称性及顶点附近的平滑性.
例2 求适合下列条件的椭圆的标准方程 ⑴经过点P(-3,0)、Q(0,-2); ⑵长轴长等于20,离心率3/5。
⑶一焦点将长轴分成2:1的两部分,且经过点(P - 说明:待定系数法求椭圆标准方程的步骤: ⑴定位; ⑵定量
例3 已知椭圆2255mx y m +=的离心率e =
,求实数m 的值。
说明:注意分类讨论 四、回顾总结
知识点:椭圆的几何性质:范围、顶点、对称性、离心率 数学方法:图象法、待定系数法
数学思想:数形结合、类比的思想、分类讨论的思想 五、布置作业。