热态的非经典性量度
- 格式:pdf
- 大小:129.32 KB
- 文档页数:2
《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。
知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。
热力系可以按热力系与外界的物质和能量交换情况进行分类。
2.工质:用来实现能量相互转换的媒介物质称为工质。
3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。
对于热力学而言,有意义的是平衡状态。
其实现条件是:0,0,0p T μ∆=∆=∆=。
4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。
状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。
5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。
实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。
6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。
热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。
动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。
第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。
知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。
热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。
2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。
热分析技术热分析:在程序控制温度条件下,测量材料物理性质与温度之间关系的一种技术。
从宏观性能的测试来判断材料结构的方法。
(程序控制温度:指用固定的速率加热或冷却。
) 热分析技术被广泛用于固态科学中,凡是与热现象有关的任何物理和化学变化都可以采取热分析方法进行研究。
如材料的固相转变、熔融、分解甚至材料的制备等。
同时,这些变化还能被定量的描绘,可以直接测量出这些变化过程中所吸收或放出的能量,如熔融热、结晶热、反应热、分解热、吸附或解吸热、比热容、活化能、转变熵、固态转变能等。
热分析技术中,热重法(TG)、差热分析(DTA)和差示扫描量热法(DSC)应用的最为广泛。
1、热重法(TG)在程序控制温度条件下,测量物质的质量与温度关系的一种热分析方法。
热重法通常有下列两种类型:等温热重法—在恒温下测量物质质量变化与时间的关系非等温热重法—在程序升温下测量物质质量变化与温度的关系进行热重分析的基本仪器为热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。
由热重法记录的质量变化对温度的关系曲线称为热重曲线(TG曲线)。
TG曲线以质量为纵坐标,从上到下表示减少,以温度或时间作横坐标,从左自右增加。
热重曲线显示了试样的绝对质量(W)随温度的恒定升高而发生的一系列变化,如图中从质量W0到W1,从W1到W2,从W2到0是三个明显的失重阶段,它们表征了试样在不同的温度范围内发生的挥发性组分的挥发以及发生的分解产物的挥发,从而可以得到试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等有关数据。
同时还可获得试样的质量变化率与温度关系曲线,即微分热重曲线(DTG曲线),它是TG 曲线对温度的一阶导数。
以物质的质量变化速率dm/dt对温度T作图,所得的曲线。
DTG曲线的峰顶即失重速率的最大值,它与TG曲线的拐点相对应,即样品失重在TG 曲线形成的每一个拐点,在DTG曲线上都有对应的峰。
并且DTG曲线上的峰数目和TG曲线的台阶数目相等。
常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG)物质的物理状态和化学状态发生变化(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应)时,往往伴随着热力学性质(如热焓、比热、导热系数等)的变化,故可通过测定其热力学性能的变化,来了解物质物理或化学变化的过程。
主要方法有:▪差热分析-DTA;▪差示扫描量热法-DSC;▪热重分析-TGA。
▪1. TG的基本原理TG:可调速的加热或冷却环境中,以被测物重量作为时间或温度的函数进行记录的方法。
DTG:微商热重曲线,热重曲线对时间或温度的一阶微商的方法获得的曲线。
2. 分析方法:升温法和恒温法升温法:样品在真空或其他任何气体中进行等速加温,样品将温度的升高发生物理变化和化学变化使原样品失重—动态法。
原理:在某特定的温度下,会发生重量的突变,以确定样品的特性。
恒温法:在恒温下,记录样品的重量变化作为时间的函数的方法。
3. 影响TGA数据的因素(1)气体的浮力和对流浮力的影响:样品周围的气体因温度的升高而膨胀,比重减小,则样品的TGA值增加。
对流的影响:对流的产生使得测量出现起伏。
(2)挥发物的再凝聚凝聚物的影响:物质分解产生的挥发物质可能凝聚在与称重皿相连而又较冷的部位上,影响失重的测定结果。
(3)样品与称量皿的反应反应的影响:某些物质在高温下会与称量皿发生化学反应而影响测定结果。
(4)升温速率的影响升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。
(5)样品用量和粒度用量和粒度影响:样品用量大,挥发物不易逸出,影响曲线比那话的清晰度;样品细,反应会提前影响曲线低温移动。
(6)环境气氛环境气氛对热失重曲线的影响4. 热重分析的应用热重分析主要研究在空气或惰性气氛材料的热稳定性、热分解作用和氧化分解等物理化学变化;也广泛用于涉及质量变化的所有物理过程。
根据热失重曲线可获得材料热分解过程的活化能和反应级数:k = dm/dt= A·mn·e-E/RT;ln(dm/dt) = lnA + nlnm- E/RT;获得n和E的方法:a. 示差法;b. 不同升温速率法;ln(d m/d t) = lnA + n ln m- E/RT;ln k= 0时,有:E/RT0= lnA + n ln m;T0—反应速度的对数为零时的温度;1. DSC的工作原理差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。
物理意义:物质微观热运动时,混乱程度的标志。
热力学中表征物质状态的参量之一,通常用符号S表示。
在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。
下标“可逆”表示加热过程所引起的变化过程是可逆的。
若过程是不可逆的,则dS>(dQ/T)不可逆。
单位质量物质的熵称为比熵,记为s。
熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。
热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。
摩擦使一部分机械能不可逆地转变为热,使熵增加。
热量dQ 由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS =dS2-dS1>0,即熵是增加的。
◎物理学上指热能除以温度所得的商,标志热量转化为功的程度。
◎科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。
亦被社会科学用以借喻人类社会某些状态的程度。
◎在信息论中,熵表示的是不确定性的量度。
只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。
正是依靠能量的这种流动,你才能从能量得到功。
江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。
由于这个原因,水就沿着江河向下流入海洋。
要不是下雨的话,大陆上所有的水就会全部流入海洋,而海平面将稍稍升高。
总势能这时保持不变。
但分布得比较均匀。
正是在水往下流的时候,可以使水轮转动起来,因而水就能够做功。