2、定理与证明练习题
- 格式:doc
- 大小:162.50 KB
- 文档页数:1
- .2019年4月16日初中数学作业学校:___________:___________班级:___________考号:___________一、单选题1.下列选项中,可以用来说明命题“若,则”是假命题的反例是()A.B.C.D.【答案】A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】用来证明命题“若,则”是假命题的反例可以是:,∵,但是=−2<1,∴A正确;故选:A.【点睛】考查反证法,证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题叫做反证法.2.下列命题:①内错角相等;②同旁内角互补;③直角都相等;④若n<1,则n2﹣1<0.其中真命题的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据内错角、同旁内角和直角以及平方进行判断即可.【详解】①内错角相等,是假命题;②同旁内角互补,是假命题;③直角都相等,是真命题;④若n<1,则n2-1<0,是假命题.故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.下列命题中,是真命题的是()A.若|a|=|b|,那么a=bB.如果ab>0,那么a,b都是正数C.两条平行线被第三条直线所截,同旁内角互补D.两条直线与第三条直线相交,同位角相等【答案】C【解析】【分析】分别根据绝对值、有理数乘法符号规律以及平行线性质分析得出即可.【详解】解:A、若|a|=|b|,那么a=b,或a=-b,故此选项A错误;B、如果ab>0,那么a,b都是同号,此选项B错误;C.两条平行线被第三条直线所截,同旁内角互补,故此选项C正确;D、两平行直线被第三条直线所截,同位角相等.选项中未指明两直线是否平行,故此选项D错误;故选:C.【点睛】此题主要考查了命题与定理,正确灵活的掌握相关性质和定理是解题关键.4.下列命题:有一个角为的等腰三角形是等边三角形;等腰直角三角形一定是轴对称图形;有一条直角边对应相等的两个直角三角形全等;到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有A.4个B.3个C.2个D.1个【答案】B【解析】【分析】(1)分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案;- .(2)根据等边三角形的判定、线段垂直平分线的性质、等腰三角形的性质以及直角三角形的性质求解即可求得答案【详解】解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有和;③在同一平面内,如果,,则;④直线外一点与直线上各点连接而成的所有线段中,最短线段的长是,则点到直线的距离是;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是()A.个B.个C.个D.个【答案】A【解析】【分析】利用平行公理、平方根与立方根的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】①过直线外一点有且只有一条直线与已知直线平行,故①是假命题;②平方根与立方根相等的数只有0,故②是假命题;③在同一平面内,如果,,,则a∥c,故③是假命题;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A 到直线c的距离是5cm,故④是真命题;⑤无理数包括正无理数和负无理数,故⑤是假命题;故选A.【点睛】本题考查命题与定理,解题的关键是熟练掌握平行公理、平方根与立方根的定义、两直线的位置关系等知识.6.下列命题是假命题的是A.同位角相等B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.平行于同一条直线的两直线平行D.两直线平行,内错角相等【答案】A【解析】【分析】根据平行线的性质对A、C、D进行判断;利用在同一平面内,过一点有且只有一条直线与已知直线垂直对B进行判断.【详解】解:A、两直线平行,同位角相等,所以A选项为假命题;B、在同一平面内,过一点有且只有一条直线与已知垂直,所以B选项为真命题;C、平行于同一条直线的两直线平行,所以C选项为真命题;D、两直线平行,内错角相等,所以D选项为真命题.故选:A.【点睛】本题考查了命题与定理:命题写成“如果,那么”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为【答案】A- .【解析】【分析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.下列说法中,正确的是A.所有的命题都有逆命题B.所有的定理都有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【答案】A【解析】【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D 进行判断.【详解】选项A,每个命题都有逆命题,所以A选项正确;选项B,每个定理不一定有逆定理,所以B选项错误;选项C,真命题的逆命题不一定是真命题,所以C选项错误;选项D,假命题的逆命题不一定是假命题,所以D选项错误.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列语句不是命题的是()A.明天有可能下雨B.同位角相等C.∠A是锐角D.中国是世界上人口最多的国家【答案】A【解析】【分析】根据命题的概念逐一进行分析即可得到答案.【详解】A、明天有可能下雨,不是判断语句,故不是命题,符合题意;B、同位角相等是命题,故不符合题意;C、∠A是锐角是命题,故不符合题意;D、中国是世界上人口最多的国家是命题,故不符合题意,故选A.【点睛】本题主要考查了命题的概念.判断一件事情的语句叫做命题.10.在期中考试中,同学甲、乙、丙、丁分别获得第一、第二、第三、第四名.在期末考试中,他们又是班上的前四名.如果他们当中只有一位的排名与期中考试中的排名相同,那么排名情况有()种可能.A.5 B.6 C.7 D.8【答案】D【解析】【分析】根据他们当中只有一位的排名与期中考试中的排名相同有4种可能,分别列举,【详解】解:他们当中只有一位的排名与期中考试中的排名相同有4种可能,第二位同学的排名有2种可能,第三位与第四位的排名是确定的.(如:甲的排名没有变,仍为第一,则乙到了第三或第四.假设乙到了第四,则丙就是第二,丁第三.)所以有2×4=8种.故选:D.【点睛】此题主要考查了枚举法的应用,根据已知得出所有的结果,以及分类讨论得出是解题关键.11.一座大楼有4部电梯,每部电梯可停靠六层(不一定是连续六层,也不一定停最底层).对大楼中任意的两层,至少有一部电梯可同时停靠,则这座大楼最多有()层.- .A.11B.12C.13D.14【答案】A【解析】【分析】首先把楼层看作点,大楼中任意的两层,有一部电梯都可停靠,则两层所代表的点之间可以连一条线段,进而得出四部电梯最多可以连15×4=60条线段,再求出楼层与线段条数关系,进而得出答案.【详解】解:首先把楼层看作点,大楼中任意的两层,有一部电梯都可停靠,则两层所代表的点之间可以连一条线段,每部电梯可停靠六层,则这六层所代表的点之间可以连:5+4+3+2+1=15条线段,则四部电梯最多可以连15×4=60条线段,∵7层楼需要:6+5+4+3+2+1=21条线段,8层楼需要:7+6+5+4+3+2+1=28条线段,9层楼需要:8+7+6+5+4+3+2+1=36条线段,10层楼需要:9+8+7+6+5+4+3+2+1=45条线段,11层楼需要:10+9+8+7+6+5+4+3+2+1=55条线段,12层楼需要:11+10+9+8+7+6+5+4+3+2+1=66条线段,∴这个大楼的层数不超过11层.故选:A.【点睛】此题主要考查了推理与论证,将楼层看作点数进而求出线段条数进而求出是解题关键.12.“两点确定一条直线”这句话是()A.定理B.基本事实C.结论D.定义【答案】B【解析】【分析】两点确定一条直线是个陈述句,是事实存在的,属于基本事实.【详解】解:“两点确定一条直线”这句话是基本事实;故选:B.【点睛】此题考查了命题与定理、公理,要熟悉课本中的性质定理是解题的关键,是一道基础题.13.下列命题中,真命题是()A.当路程一定时,时间与速度成正比例B.“全等三角形的面积相等”的逆命题是真命题C.是最简二次根式D.到直线AB的距离等于1厘米的点的轨迹是平行于直线AB且和AB距离为1cm的一条直线【答案】C【解析】【分析】利用路程、速度、时间的关系、全等三角形的性质、最简二次根式的定义及轨迹的定义分别判断后即可确定正确的选项.【详解】A、当路程一定时,时间与速度成反比例,故本选项错误;B、“全等三角形的面积相等”的逆命题是面积相等的三角形全等,是假命题,故本选项错误;C、是最简二次根式,故本选项正确;D、空间内与直线AB距离等于1厘米的点的轨迹是平行于直线AB且和AB距离为1cm 的无数条直线,故本选项错误;故选:C.【点睛】本题考查命题与定理,解题的关键是根据相关知识点判断每个命题的真假.14.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°【答案】D【解析】【分析】熟记反证法的步骤,直接选择即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即假设三角形中没有一个内角小于或等于60°.故选:D.【点睛】此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.15.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形- .C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形【答案】D【解析】【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【详解】解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;故选:D.【点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.二、解答题16.将下列命题改写成“如果...那么...”形式,并判断命题的真假,若是假命题请举反例。
人教版七年级上册第7课时如何进行推理判断——5.3.2命题、定理、证明(1122)1.判断一件事情的语句叫,每一个命题都是由和两部分组成的.2.试判断下列语句是不是命题,如果是,请将它改写成“如果……那么……”的形式.(1)对顶角相等;(2)难道1+2≠3吗?3.正确的命题叫;错误的命题叫.4.试判断下列几个命题是真命题还是假命题,如果是假命题,举出一个反例.(1)邻补角是互补的角;(2)两个锐角的和是锐角.5.如图,BD平分∠ABC,若∠BCD=70∘,∠ABD=55∘.求证:CD//AB.6.下列语句是命题的是()A.美丽的天空B.3是偶数C.作线段AB=aD.判断a与b的大小7.把命题“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是.8.判断下列命题的真假,是假命题的举出反例.①同一平面内,不重合的两条直线不相交就平行;②一个角的补角大于这个角.9.如图,已知AB//CD,BE,CF分别平分∠ABC和∠BCD.求证:BE//CF.参考答案1.【答案】:命题;题设;结论2(1)【答案】解:是命题.如果两个角是对顶角,那么这两个角相等;(2)【答案】不是命题.3.【答案】:真命题;假命题4(1)【答案】解:真命题(2)【答案】假命题,比如45∘+60∘=105∘是钝角5.【答案】:证明:因为BD平分∠ABC,∠ABD=55∘,所以∠ABC=2∠ABD=110∘.又因为∠BCD=70∘,所以∠ABC+∠BCD=180∘.所以CD//AB.6.【答案】:B7.【答案】:如果两条直线垂直于同一条直线,那么这两条直线平行8.【答案】:解:①真命题;②假命题,例如一个角是120°,则它的补角是60°,而60°<120°.9.【答案】:证明:因为AB//CD,所以∠ABC=∠BCD.因为BE,CF分别是∠ABC,∠BCD的角平分线,所以∠EBC=12∠ABC,∠BCF=12∠BCD.所以∠EBC=∠BCF.所以BE//CF.。
定理与证明练习题在数学中,定理与证明是构建数学知识体系的重要组成部分。
通过阐述定理并给出合理的证明过程,我们能够深入理解数学的基本原理与推理方法。
以下是一些定理与证明的练习题,通过解答这些问题,我们可以进一步提高我们的数学思维能力和证明技巧。
题目1:欧几里得定理请证明欧几里得定理,即对于任意给定的正整数a和b,存在正整数x和y,使得ax + by = gcd(a, b)。
其中gcd(a, b)表示a和b的最大公约数。
解答1:我们使用数学归纳法来证明欧几里得定理。
基础步骤:当a和b中至少有一个为0时,不妨设a = 0。
此时gcd(a, b) = b,令x = 0,y = 1,显然有0x + 1y = b。
归纳假设:假设对于任意的正整数a'和b',都存在正整数x'和y',使得a'x' + b'y' = gcd(a', b')成立。
归纳步骤:对于任意的正整数a和b,且a > 0,b > 0,考虑a除以b的余数r,即a = bq + r,其中q为商,0 ≤ r < b。
根据辗转相除法,我们有gcd(a, b) = gcd(b, r)。
根据归纳假设,存在正整数s和t,使得bs + rt = gcd(b, r)。
将a表示为a = bq + r,并将上式带入,得到:gcd(a, b) = gcd(b, r) = bs + rt = b(s - qt) + ra令x = s - qt,y = t,则有ax + by = bq(s - qt) + ra = bs + rt = gcd(a, b)。
根据归纳法原理,欧几里得定理得证。
题目2:费马小定理费马小定理表述为:如果p是一个素数,且a是不被p整除的整数,则a^(p-1) ≡ 1 (mod p)。
请证明费马小定理。
解答2:我们使用归纳法证明费马小定理。
基础步骤:当a是不被p整除的整数时,若a ≡ 1 (mod p),显然有a^(p-1) ≡ 1 (mod p)。
人教版数学七下5.3.2《命题、定理、证明》同步练习一、选择题1.下列命题中是假命题的是( )A.同旁内角互补,两直线平行B.直线a⊥b,则a与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c2.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线3.下列命题中,真命题的个数为().①在同一平面内,两条直线被第三条直线所截,同位角相等;②两条平行线被第三条直线所截,同位角的平分线平行;③两条平行线被第三条直线所截,内错角的平分线平行;④两条平行线被第三条直线所截,同旁内角的平分线平行;⑤两条直线被第三条直线所截,形成4对同位角、2对内错角和2对同旁内角.A.4B.3C.2D.14.下列命题中,属于真命题的是()A.两个锐角之和为钝角B.同位角相等C.钝角大于它的补角D.相等的两个角是对顶角5.下列说法中,正确的是()A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角。
6.有下列四个命题:①相等的角是对顶角;②同位角相等;③两点之间,直线最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个7.下列命题中,真命题是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线8.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有( )A.1个B.2个C.3个D.4个9.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有( )A.1个B.2个C.3个D.4个10.下列语句不是命题的是()A.过直线外一点作直线的垂线B.三角形的外角大于内角C.邻补角互补D.两直线平行,内错角相等11.下列命题是假命题的是()A.同角的余角相等B.同旁内角互补C.对顶角相等D.在同一平面内,垂直于同一条直线的两条直线平行12.下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为()A.1个B.2 个C.3个D.4个二、填空题13.下列命题中:①若∣a∣=∣b∣,则a=b;②两直线平行,同位角相等;③对顶角相等;④内错角相等,两直线平行.是真命题的是.(填写所有真命题的序号)14.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.15.把命题“同角的补角相等”改成“如果...那么....”的形式16.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.17.命题“同位角相等,两直线平行”中,条件是,结论是18.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式________.三、解答题19.已知命题:“如图,点B,F,C,E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并说明理由.20.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)________(2)________(3)________(4)________②选择结论(1),说明理由.参考答案1.答案为:C2.答案为:D.3.答案为:B4.答案为:C5.答案为:C6.答案为:A.7.答案为:D.8.答案为:C9.答案为:B10.答案为:A11.答案为:B12.答案为:A.13.答案为:②③④14.答案为:如果作两个邻补角的角平分线,那么这两条角平分线互相垂直15.答案为:如果两个角是同一个角的补角,那么这两个角相等.16.答案为:如果两条直线垂直于同一条直线,那么这两条直线平行.17.答案为:同位角相等;两直线平行.18.答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行19.解:这个命题是假命题.添加条件∠B=∠E使其成为真命题.理由:内错角相等,两直线平行.(添加条件不唯一)20.∠APC+∠PAB+∠PCD=360°;∠APC=∠PAB+∠PCD;∠PCD=∠APC+∠PAB;∠PAB=∠APC+∠PCD。
人教版七年级数学下册5.3.2《命题、定理、证明》训练一、选择题(共10小题,3*10=30)1.下列语句中,是命题的是()A.连接A,B两点B.画一个角的平分线C.过点C作直线AB的平行线D.过直线外一点,有且只有一条直线与已知直线垂直2.下列语句:①两点之间,线段最短;②画线段AB=3 cm;③直角都相等;④如果a=b,那么a2=b2;⑤同旁内角互补,两直线平行吗?其中是命题的有( )A.1个B.2个C.3个D.4个3.命题“对顶角相等”的“题设”是()A.两个角是对顶角B.角是对顶角C.对顶角D.以上都不正确4.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个5.下列命题可以作为定理的有()①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个6.下列命题中,是真命题的是()A.同位角相等B.相等的角是直角C.若|y|=2,则y=±2 D.若ab=0,则a=07.给出以下命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两条直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个8.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行.其中( )A .①、②是正确的命题B .②、③是正确命题C .①、③是正确命题D .以上结论皆错9.下列说法正确的是( )A .互补的两个角是邻补角B .两直线平行,内错角互补C .“平行于同一条直线的两直线平行”不是命题D .“相等的两个角是对顶角”是假命题10. 判断命题“如果n <1,那么n 2-1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .-2B .-12C .0D .12二.填空题(共8小题,3*8=24)11.命题“平行于同一条直线的两条直线平行”的题设是_________________________12.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵_________________________,∴a ∥b.13.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是________.14.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD ⊥BC ;⑤同旁内角不互补,两直线不平行.其中是命题的是__________(填序号)15.下列命题:①若|a|>|b|,那么a 2>b 2;②两点之间,线段最短;③对顶角相等;④内错角相等.其中真命题的是__________(填序号)16.“两直线平行,内错角相等”的题设是______________,结论是______________.17.对于下列假命题,各举一个反例写在横线上.(1)“如果ac =bc ,那么a =b”是一个假命题.反例:___________________.(2)“如果a 2=b 2,则a =b”是一个假命题.反例:___________________.18.如图,从①∠1=∠2;②∠C =∠D ;③∠A =∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为_______.三.解答题(共6小题,46分)19.(6分) 把下列命题写成“如果……那么……”的形式.(1)对顶角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.20.(6分) 举反例说明下列命题是假命题:(1)互补的两个角一个是钝角,一个是锐角;(2)若|a|=|b|,则a=b;(3)内错角相等.21.(6分) 分别指出下列命题的题设和结论,并判断是真命题还是假命题,如果是假命题,请举一个反例说明.(1)同旁内角互补,两直线平行;(2)如果a2=b2,那么a=b;(3)如果ac=bc,那么a=b;(4)互补的两个角一定是一个为锐角,另一个为钝角.22.(6分) 如图,已知∠ABC=∠ACB,BD平分∠ABC,交AC于点D,CE平分∠ACB,交AB于点E,∠DBF=∠F,求证:EC∥DF.23.(6分) 在下面的括号内,填上推理的根据:(1)如图①,已知AB∥CD,BE∥CF,求证:∠B+∠C=180°.证明:∵AB∥CD(已知),∴∠B=∠BGC(____________________________).∵BE∥CF(已知),∴∠BGC+∠C=180°(____________________________),∴∠B+∠C=180°(__________).(2)如图②,已知AD⊥BC于点D,DE∥AB,∠1=∠3,求证:FG⊥BC.证明:∵DE∥AB(已知),∴∠1=∠2(________________________).又∵∠1=∠3(已知),∴∠2=∠3(_______________),∴AD∥FG(______________________________),∴∠BGF=∠BDA(_______________________).∵AD⊥BC(已知),∴∠BDA=90°(_________________),∴∠BGF=90°(____________),∴FG⊥BC(______________).24.(8分) 命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.25.(8分) 已知命题“如果两条平行线被第三条直线所截,那么一对内错角的平分线互相平行”.(1)写出命题的题设和结论;(2)画出符合命题的几何图形;(3)用几何符号表述这个命题;(4)说明这个命题是真命题的理由.参考答案1-5DCAAC 6-10 CBBDA11.两条直线平行于同一条直线12. ∠1+∠3=180°13.014.①②⑤15. ①②③16. 两直线平行,内错角相等17. 3×0=(-2)×0 ,32=(-3)218.319. 解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两个角不相等,那么这两个角不是对顶角.(3)如果两个角相等,那么这两个角是内错角.20. 解:(1)∠A =90°,∠B =90°,∠A 与∠B 互补,但∠A 与∠B 为两个直角.(2)|-3|=|3|,但-3≠3.(答案不唯一)(3)如图,∠1与∠2是内错角,但∠1≠∠2.21. 解:(1)题设:同旁内角互补,结论:两直线平行,是真命题(2)题设:a2=b2,结论:a =b ,是假命题.例如:(-2)2=22,但-2≠2(3)题设:ac =bc ,结论:a =b ,是假命题.例如:3×0=2×0,但3≠2(4)题设:两个角互补,结论:一个为锐角,一个为钝角,是假命题.例如:两个直角互补22. 解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12 ∠ABC ,∠ECB =12∠ACB. ∵∠ABC =∠ACB ,∴∠DBF =∠ECB.∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF23. 解:(1)两直线平行,内错角相等两直线平行,同旁内角互补等量代换(2)两直线平行,内错角相等等量代换同位角相等,两直线平行两直线平行,同位角相等垂直的定义等量代换垂直的定义24. 解:是真命题,证明如下:已知:AB ∥CD ,BE ,CF 分别平分∠ABC ,∠BCD.求证:BE ∥CF.证明:∵AB ∥CD ,∴∠ABC =∠BCD.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线,∴∠2=12∠ABC ,∠3=12∠BCD. ∴∠2=∠3.∴BE ∥CF.25. 解:(1)题设:两条平行线被第三条直线所截,结论:一对内错角的平分线互相平行(2)如图:(3)如图,已知AB ∥CD ,GH ,MN 分别平分∠BGF 和∠EMC ,则GH ∥MN(4)∵GH ,MN 分别平分∠BGF 和∠EMC ,∴∠HGF =12 ∠BGF ,∠NME =12∠EMC , 又∵AB ∥CD ,∴∠BGF =∠CME ,∴∠HGF =∠NME ,∴GH ∥MN。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)用反证法证明“四边形中至少有一个内角大于或等于90︒”时,应先假设( )A .有一个内角小于90︒B .每一个内角都大于90︒C .有一个内角小于或等于90︒D .每一个内角都小于90︒【答案】D【解析】【分析】至少有一个内角大于或等于90°的反面是每一个内角都小于90°,据此即可假设.【详解】解:用反证法证明“四边形中至少有一个内角大于或等于90︒”时,应先假设:每一个内角都小于90°.故选:D .【点睛】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.32.下列选项中a 的值,可以作为命题“a 2>4,则a >2”是假命题的反例是( )A .a 3=B .a 2=C .a 3=-D .a 2=-【答案】C【解析】【分析】根据要证明一个命题结论不成立,可以通过举反例的方法来证明一个命题是假命题,然后对选项一一判断,即可得出答案.【详解】解:用来证明命题“若a2>4,则a>2”是假命题的反例可以是:a=-3,∵(-3)2>4,但是a=-3<2,∴当a=-3是证明这个命题是假命题的反例.故选C.【点睛】此题主要考查了利用举反例法证明一个命题是假命题.掌握举反例法是解题的关键.33.下列说法正确的是()A.两锐角分别相等的两个直角三角形全等B.两条直角边分别相等的两直角三角形全等C.一个命题是真命题,它的逆命题一定也是真命题D.经过旋转,对应线段平行且相等【答案】B【解析】【分析】A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;D、经过旋转,对应线段相等,故D选项错误;故选:B.【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.34.为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,某学校初二(8)班举办了“乐知杯古诗词”大赛.现有小璟、小桦、小花三位同学进入了最后冠军的角逐.决赛共分为六轮,规定:每轮分别决出第1,2,3名(不并列),对应名次的得分都分别为a,b,c(a>b>c且a,b,c均为正整数);选手最后得分为各轮得分之和,得分最高者为冠军.下表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,下列说法正确的是()A.小璟可能有一轮比赛获得第二名B.小桦有三轮比赛获得第三名C.小花可能有一轮比赛获得第一名D.每轮比赛第一名得分a为5【答案】D【解析】【分析】先根据三人总得分共26+11+11=48,可得每一轮的得分a+b+c=8,再根据小桦的等分能够得出c=1,进而可得到第一二两轮的具体排名,然后在对a、b的值分情况讨论,然后再逐个排除即可求得a,b的值,从而求解即可【详解】解:∵三人总得分共26+11+11=48,∴每一轮的得分a+b+c=48÷6=8,则对于小桦来说,小桦剩余的第一、三、四轮的总分是11-8=3分,又∵a>b>c且a,b,c均为正整数,∴c≥1,∴小桦第一、三、四轮的得分均为1分,且c=1,∴小花第一、二、四轮的得分均为b,∵a+b+c=8,c=1,∴a+b =7,又∵a>b>c且a,b,c均为正整数,∴b=2时,a=5,或b=3时a=4,当b=2,a=5时,则小花剩余第三、五、六轮的总分是:11-2×3=5(分)结合小桦这几轮的得分情况可知,小花这三轮的得分分别是2,1,2,此时小璟这三轮的得分分别是5,5,5,则小璟六轮的具体得分分别是:5,1,5,5,5,5,共26分,符合题意当b=3,a=4时,则小花剩余第三、五、六轮的总分是:11-3×3=2(分)<3分,不符合综上所述,a=5,b=2,c=1,(D正确)小璟有五轮得第一名,一轮得第三名;(A错误)小桦有一轮得第一名,一轮得第二名,四轮得第三名;(B错误)小花有五轮得第二名,一轮得第三名(C错误)故选:D【点睛】本题考查了合情推理的问题,考查了推理论证能力,考查了化归与转化思想,审清题意是正确解题的关键,属于中档题.35.下列命题中,真命题的是()A.两条直线被第三条直线,同位角相等B.若a⊥b,b⊥c,则a⊥cC.点p(x,y),若y=0,则点P在x轴上D a,则a=﹣l【答案】C【解析】【分析】根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.【详解】A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题;B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题;D=a,则a=0或a=1,所以D选项为假命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.36.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B.【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.37.下列是假命题的是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.直角三角形的两个锐角互余D.两条直线被第三条直线所截,同位角相等【答案】D【解析】【分析】【详解】解:A、两点之间,线段最短,所以A选项为真命题;B、过一点有且只有一条直线与已知直线垂直,所以B选项为真命题;C、直角三角形的两个锐角互余,所以C选项为真命题;D、两条平行直线被第三条直线所截,同位角相等,所以D选项为假命题.故选D.【点睛】本题考查命题与定理38.下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.两个相邻的内角相等的梯形是等腰梯形C.一组对边平行,另一组对边相等的四边形是等腰梯形D.平行于等腰三角形底边的直线截两腰所得的四边形是等腰梯形【答案】D【解析】【分析】根据等腰梯形的判定定理即可判断出A、B、C、D选项是否正确,【详解】解析:对于A选项, 应为两条对角线相等的梯形是等腰梯形;对于B选项, 为同一底上的两个内角相等的梯形是等腰梯形;对于C选项,应为一组对边平行,另一组对边不平行且相等的四边形是等腰梯形;故选D.【点睛】本题主要考查等腰梯形的判定.等腰梯形的判定:(1)一组对边平行,另一组对边不平行且相等的四边形是等腰梯形;(2)对角线相等的梯形是等腰梯形;(3)两腰相等的梯形是等腰梯形;(4)同一底边上的两个底角相等的梯形是等腰梯形39.容器中有A,B,C 3种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗B粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子.例如,一颗A粒子和一颗B粒子发生碰撞则变成一颗C粒子.现有A粒子10颗,B 粒子8颗,C粒子9颗,如果经过各种两两碰撞后,只剩1颗粒子.给出下列结论:①最后一颗粒子可能是A粒子②最后一颗粒子一定是C粒子③最后一颗粒子一定不是B粒子④以上都不正确其中正确结论的序号是( ).(写出所有正确结论的序号)A .①B .②③C .③D .①③ 【答案】D【解析】【分析】将问题抽象为有理数的符号法则即可解决.【详解】解:③∵相同种类的两颗粒子发生碰撞,则变成一颗B 粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子,∵设B 粒子为1,A 、C 粒子为-1,碰撞为乘法运算,∵()19811-⨯=-1,故最后一颗粒子一定不是B 粒子,∵③是正确的;①10颗A 粒子,8颗C 粒子,8颗B 粒子,同种粒子两两碰撞,得到13颗B 粒子,再所有B 粒子一一碰撞,得到一颗B 粒子,和剩下的1颗C 粒子碰撞,得到A 粒子,∵最后一颗粒子可能是A 粒子;∵①是正确的,②是错的.故选:D .【点睛】本题考查了有理数的符号法则,读懂题意是解题的关键.40.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°【答案】D【解析】【分析】熟记反证法的步骤,直接选择即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即假设三角形中没有一个内角小于或等于60°.故选:D.【点睛】此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.。
5.3.2命题、定理、证明 课时练习一、单选题(共15小题)1.下列说法错误..的是( ) A .所有的命题都是定理.B .定理是真命题.C .公理是真命题.D .“画线段AB =CD ”不是命题. 答案:A知识点:命题与定理 解析:解答:A :定理是真命题,但假命题不是定理,所以错误,B 、C 、D 均正确,所以本题选择A .分析:辨析命题、定理、公理的关系,明确逻辑意义,是做这类选择题的有效途径. 2.下列语句中,不是命题的是( )A .内错角相等B .如果0=+b a ,那么a 、b 互为相反数C .已知42=a ,求a 的值D .玫瑰花是红的 答案:C知识点:命题与定理解析:解答:A 、B 、D 都是判断一件事情的语句,并且由题设和结论构成,C 不是构成一件事情的语句,故选C .分析:明确判断一件事情的语句,且由题设和结论两部分构成的是命题.3.下列命题中,不正确的是( )A .在同一平面内,过一点有而且只有一条直线与已知直线垂直B .经过直线外一点,有而且只有一条直线与这条直线平行C .垂直于同一直线的两条直线垂直D .平行于同一直线的两条直线平行答案:C知识点:平行公理及推论解析:解答:在同一平面内垂直于同一直线的两条直线平行,故C 错误;A 、B 、D 正确;故选C .分析:利用垂线的性质、平行的性质分别判断后即可得到正确的选项.4.下列命题是假命题的是( )A. 互补的两个角不能都是锐角B. 两直线平行,同位角相等C. 若a ∥b ,a ∥c ,则b ∥cD. 同一平面内,若a ⊥b ,a ⊥c ,则b ⊥c 答案:D 知识点:平行公理及推论;平行线的性质解析:解答:A .互补的两个角不能是锐角,正确,是真命题;B .两直线平行,同位角相等,正确,是真命题;C .根据平行线的传递性可以判断该命题为真命题;D .同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ,故原命题为假命题,故选D .分析:利用互补的定义、平行线的性质及垂线的性质分别进行判断后即可得到正确的选项.5.下列命题:①同旁内角互补;②若n <1,则n2-1<0;③直角都相等;④相等的角是对顶角. 其中,真命题的个数有( )A .1个B .2个C .3个D .4个 答案:A知识点:命题与定理解析:解答:①同旁内角互补,错误,是假命题;②若n <1,则n 2-1<0,错误,是假命题;③直角都相等,正确,是真命题;④相等的角是对顶角,错误,是假命题,故选A .分析:能够运用已学的知识判断命题的真假,是要求学生综合应用数学知识的一个有效方法.6.如图,直线c 与a 、b 相交,且a ∥b ,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠2=∠3。
《5.3.2命题、定理、证明》课时练1.下列语句中,不是命题的是()A.两点确定一条直线B.垂线段最短C.同位角相等D.作∠A的平分线2.下列语句中,是命题的是()①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④一个数能被2整除,则它也能被4整除;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤3.命题“两直线平行,内错角相等”的题设是.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.5.下列命题中,是真命题的是()A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是()A.若|x|=3,则x=3B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.判断命题“如果n<1,那么n2-1<0”是假命题,只需举出一个反例,反例中的n可以为()A.-2 B.-12C.0 D.128.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.9.如图所示,如果∠1=∠2,那么AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.10.下列说法正确的是()A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项11.下列命题是假命题的是()A.同角的余角相等B.内错角相等C.两点之间,线段最短D.同旁内角互补,两直线平行12.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.反例:;(2)“如果a2=b2,那么a=b”是一个假命题.反例:.13.下列命题中,①若|a|=b,则a=b;②若直线l1∥l2,l1∥l3,则l2∥l3;③同角的补角相等;④同位角相等,是真命题的有(填序号).14.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.15.如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM ∥FN.求证:AB∥CD.16.如图,下列三个条件:①AB∥CD;②∠B=∠C;③∠E=∠F.从中任选两个作为条件,另一个作为结论组成一个真命题,并进行证明.17.(1)如图,DE∥BC,∠1=∠3,CD⊥AB,求证:FG⊥AB;(2)若把(1)中的“DE∥BC”与结论“FG⊥AB”对调,所得的命题是否为真命题?试说明理由;(3)若把(1)中的“∠1=∠3”与结论“FG⊥AB”对调呢?参考答案1.D2.A3.两条平行线被第三条直线所截,结论是内错角相等.4.(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.5.B6.A7.A8.证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB(同旁内角互补,两直线平行).9.解:假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN(两直线平行,同位角相等).∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2.∴∠ABD=∠CDN.∴AB∥CD(同位角相等,两直线平行).10.C11.B12.(1)3×0=(-2)×0;(2)32=(-3)2.13.②③.14.解:(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.15.证明:∵EM∥FN,∴∠FEM=∠EFN.又∵EM平分∠BEF,FN平分∠CFE,∴∠BEF=2∠FEM,∠EFC=2∠EFN.∴∠FEB=∠EFC.∴AB∥CD.16.解:答案不唯一,如:已知:AB∥CD,∠B=∠C,求证:∠E=∠F.证明:∵AB∥CD,∴∠B=∠CDF.又∵∠B=∠C,∴∠CDF=∠C.∴EC∥BF.∴∠E=∠F.17.解:(1)证明:∵DE∥BC,∴∠1=∠2.又∵∠1=∠3,∴∠2=∠3.∴CD∥FG.∴∠BFG=∠CDB.∵CD⊥AB,∴∠CDB=90°.∴∠BFG=90°.∴FG⊥AB.(2)真命题.理由如下:∵CD⊥AB,FG⊥AB,∴CD∥FG.∴∠2=∠3.∵∠1=∠3,∴∠1=∠2.∴DE∥BC.(3)真命题.理由如下:同(2)可得∠2=∠3.∵DE∥BC,∴∠1=∠2.∴∠1=∠3.。
人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)甲、乙、丙三名同学中有一名做了一件好事,李老师问他们:“谁做了好事?”他们调皮地说了下面的几句话:甲说:“我没有做这件事,乙也没有做这件事.”乙说:“我没有做这件事,丙也没有做这件事.”丙说:“我没有做这件事,也不知谁做的这件事.”当李老师追问时,他们承认上面每人讲的话中都有一句真话,一句假话.根据这些条件,你能分析出到底是谁做了好事吗?【答案】乙【解析】【分析】利用已知分别分析每句话正确或错误从而推导出正确答案.【详解】解:当甲说的没有做这件事错误,则乙也没有做这件事就正确,即甲做了好事;则乙说的没有做这件事就正确,故丙也没有做这件事就错误,即丙做了好事,与甲做了好事冲突;当甲说的没有做这件事正确,则乙也没有做这件事就错误;则乙说的没有做这件事就错误,故丙也没有做这件事就正确;则丙说没有做这件事正确,也不知道谁做了这件事错误.综上所述:做好事的是乙.故答案为:乙【点睛】本题主要考查了推理与论证,正确理解题意是解题关键.92.当3a =,4b =时,有2234234+>⨯⨯;当3a =-,4b =-时,有()()()()2234234-+->⨯-⨯-; 当3a =,4b =-时,有()()2234234+->⨯⨯-; 当3a =-,4b =时,有()()2234234-+>⨯-⨯. 得出结论:a 、b 为任何数时,222a b ab +>.这个结论正确吗?【答案】不正确.【解析】【分析】根据题意设特殊值即可证明结论错误.【详解】不正确.当a b =时,222a b ab +=.【点睛】本题考查了演绎证明,通过取特殊值证明结论是否正确是常用的解题方法,需要掌握.93.如图所示,通过画图可知:三角形三条边的垂直平分线的交点都在三角形的内部,于是可得出结论:任何一个三角形三条边的垂直平分线的交点都在三角形的内部,这个结论正确吗?【答案】不正确【解析】【分析】通过题意举出反例证明结论错误即可.【详解】解:对于如图所示的等腰直角△ABC,该三角形三条边的垂直平分线的交点在该三角形斜边AC的中点O处,并不在三角形的内部,故“任何一个三角形三条边的垂直平分线的交点都在三角形的内部”的结论是错误的.故答案为:不正确【点睛】对于本题,首先要判断该结论是否正确,若该结论正确,则给出证明;若该结论错误,只需举出反例即可;判断本题所给结论的关键是考虑问题要全面,即:该三角形是锐角三角形,钝角三角形,直角三角形的情况都要考虑到.通过对等腰直角三角形三条边的垂直平分线的交点在斜边AC的中点O处,即可举出反例,从而使本题解答.∥;94.对于同一平面内的三条直线a、b、c,给出下列五个论断:(1)a b(2)b c ∥;(3)a b ⊥;(4)a c ;(5)a c ⊥.以其中两个论断为条件,一个论断为结论,组成一个正确的命题(至少写出5个).【答案】详见解析【解析】【分析】根据平行线的判定及性质和垂直的定义,进行多种情况的讨论.【详解】本题答案不唯一,条件:a b ∥,b c ∥,结论:a c .条件:b c ∥,a b ⊥,结论:a c ⊥.条件:a b ∥,a c ,结论:b c ∥. 条件:b c ∥,a c ,结论:a b ∥.条件:b c ∥,a c ⊥,结论:a b ⊥.条件:a b ⊥ ,a c ⊥,结论:b c ∥.【点睛】本题考查了命题的叙述的形式及直线平行与垂直的相关知识,属于开放性题目,熟练掌握平行与垂直的知识是解题的关键.95.判断下列命题的真假,并说明理由:(1)若0ab >,则0a >,0b >;(2)若a b =,则a b =;(3)互补的两个角一定是一个锐角,一个是钝角;(4)不论x 取何值,代数式2610x x -+的值一定是正数.【答案】(1)假命题.(2)假命题.(3)假命题.(4)真命题.【解析】【分析】(1)由实数的性质判断,0ab >,0a >,0b >或0a <,0b <;(2)由实数的性质判断,a b =,a b =或a 、b 互为相反数;(3)根据两个角角度和为180°,则这两个角互补即可判断;(4)把代数式进行配方得到()231x -+,根据平方数的非负性即可判断. 【详解】(1)假命题.如:()()230-⨯->,但20-<,30-<.(2)假命题.如:22=-,但22≠-.(3)假命题.如:两个直角互补,但它们既不是锐角也不是钝角.(4)真命题.因为()2261031x x x -+=-+,又因为不论x 取何值,()230x -≥,所以()2310x -+>,所以不论x 取何值,2610x x -+的值一定是正数. 【点睛】本题考查了命题真假判断的知识点,熟练掌握相关知识点是解题的关键.96.下列命题的条件是什么?结论是什么?并指出真假.(1)两条直线相交,只有一个交点;(2)相等的角是对顶角;(3)直角三角形的两个锐角互余.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】根据命题的组成,把命题写成“如果……那么……”形式,“如果”后面的是条件,“那么”后面的是结论,就可以得到命题的条件和结论,再根据语句相关知识判断命题的真假.【详解】(1)如果两条直线相交,那么它们只有一个交点,条件:两条直线相交,结论:它们只有一个交点这是真命题.(2)如果两个角相等,那么这两个角是对顶角,条件:两个角相等,结论:这两个角是对顶角,这是假命题.(3)如果一个三角形是直角三角形,那么它的两个锐角互余,条件:一个三角形是直角三角形,结论:它的两个锐角互余,这是真命题.【点睛】本题考查了命题与定理的知识点,把命题写成“如果……那么……”形式,“如果”后面的是条件,“那么”后面的是结论,熟练掌握命题的相关知识是解题的关键.97.把下列命题改写成“如果……那么……”的形式,并指出命题的条件是什么?结论是什么?(1)对角线互相垂直平分且相等的四边形是正方形;(2)对顶角相等.【答案】(1)详见解析;(2)详见解析【解析】【分析】根据语句先找出命题的组成部分题设和结论,再把题设和结论放进“如果……那么……”形式即可得出答案.【详解】(1)如果一个四边形的对角线互相垂直平分且相等,那么这个四边形是正方形.条件:一个四边形的对角线互相垂直平分且相等,结论:这个四边形是正方形.(2)如果两个角是对顶角,那么这两个角相等.条件:两个角是对顶角,结论:这两个角相等.【点睛】本题考查了命题与定理的知识点,把命题写成“如果……那么……”形式,“如果”后面的是条件,“那么”后面的是结论,熟练掌握这些知识点是解题的关键.98.把下列命题改写成“如果…那么…”的形式:(1)同旁内角互补,两直线平行;(2)末位数字是0的数,一定能被5整除;(3)直角都相等;(4)同角的余角相等.【答案】(1)如果两条直线被第三条直线所截得的同旁内角互补,那么这两条直线平行.(2)如果一个数的末位数字为0,那么这个数一定能被5整除.(3)如果一些角是直角,那么这些角都相等.(4)如果两个角是同一个角的余角,那么这两个角相等.【解析】【分析】根据语句先找出命题的组成部分题设和结论,再把题设和结论放进“如果……那么……”形式即可得出答案.【详解】解:(1)把命题写成“如果……那么……”形式为:“如果两条直线被第三条直线所截得的同旁内角互补,那么这两条直线平行”;(2)把命题写成“如果……那么……”形式为:“如果一个数的末位数字为0,那么这个数一定能被5整除”;(3)把命题写成“如果……那么……”形式为:“如果一些角是直角,那么这些角都相等”;(4)把命题写成“如果……那么……”形式为:“如果两个角是同一个角的余角,那么这两个角相等”.【点睛】本题考查了命题与定理的知识点,把命题写成“如果……那么……”形式,“如果”后面的是条件,“那么”后面的是结论,熟练掌握这些知识点是解题的关键.99.指出下列命题中的条件和结论:(l)任意两个奇数之和是偶数;(2)互余的两个角不一定相等;ab>;(3)如果a b>,那么0(4)如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条直线垂直.【答案】(1)条件:任意两个奇数相加,结论:和是偶数.(2)条件:任意两个角互余,结论:这两个角不一定相等.ab>.(3)条件:a b>,结论:0(4)条件:一条直线和两条平行线中的一条垂直,结论:这条直线也和另一条直线垂直.【解析】【分析】根据命题的组成,把命题写成“如果……那么……”形式,“如果”后面的是条件,“那么”后面的是结论,就可以得到命题的条件和结论.【详解】解:(1)把命题写成“如果……那么……”形式为:“如果任意两个奇数相加,那么和是偶数”.条件:任意两个奇数相加;结论:和是偶数;(2)把命题写成“如果……那么……”形式为:“如果任意两个角互余,那么这两个角不一定相等”.条件:任意两个角互余;结论:这两个角不一定相等;(3)命题是“如果……那么……”形式,条件:a b>;结论:0ab>;(4)命题是“如果……那么……”形式,条件:一条直线和两条平行线中的一条垂直;结论:这条直线也和另一条直线垂直.【点睛】本题考查了命题与定理的知识点,把命题写成“如果……那么……”形式,了解“如果”后面的是条件,“那么”后面的是结论是解题的关键.100.何老师将五顶帽子分别给五位同学戴上,每位同学都知道有三顶白色、两顶黑色,但不知道自己所戴帽子的颜色.现将五位同学分别安排在两个小房子中(如图),不许他们摘下帽子看或回头看,也不许互相交流,经过一段时间,其中一位同学可以最快报出白己所戴帽子的颜色,则该同学的编号是()A.①B.②C.③D.④【答案】B【解析】【分析】先由①同学没说出自己帽子的颜色,判断出②③④号同学中有一位同学戴黑色的,有两位同学戴白色的帽子,再由③④号同学帽子的颜色,②号同学可判断出自己戴的帽子的颜色.【详解】解:由于共有三顶白色、两顶黑色帽子,①号同学没马上报出来,说明②③④号同学中,既不是有三位同学戴白色帽子的,也不是有两位同学戴黑色帽子的,即:②③④号同学中有一位同学戴黑色的,有两位同学戴白色的帽子,而③④号同学中,③号同学戴黑色帽子,④号同学戴白色帽子,所以,②号同学判断出自己戴的是白的帽子,即:经过一段时间,②号同学可以最快报出白己所戴帽子的颜色是白色的,故选:B.【点睛】此题是推理与论证的题目,由①号同学没报出自己帽子颜色,判断出②③④号同学中有一位同学戴黑色的,有两位同学白色的帽子是解本题的关键.。
5.3.2《命题、定理、证明》重难点题型专项练习考查题型一命题的判断典例1.(2022春·湖南永州·七年级校考期中)下列语句中,属于命题的是().A.直线和垂直吗?B.过线段的中点画的垂线C.同旁内角互补,两直线平行D.连接,两点【答案】C【分析】分别根据命题的定义进行判断.【详解】解:A、直线和垂直吗?这是疑问句,不是命题,所以A选项错误;B、过线段的中点C画的垂线,这是描叙性语言,不是命题,所以B选项错误;C、同旁内角互补,两直线平行是命题,所以C选项正确;D、连接A、B两点,这是描叙性语言,不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.变式1-1.下列语句属于命题的是()A.你今天打卡了吗?B.请戴好口罩!C.画出两条相等的线段D.同位角相等【答案】D【分析】根据命题的定义(判断一件事情的语句,叫做命题),逐项判断即可求解.【详解】解:A.你今天打卡了吗?没有作出判断,故该选项不是命题,不符合题意;B.请戴好口罩!没有作出判断,故该选项不是命题,不符合题意;C.画出两条相等的线段,没有作出判断,故该选项不是命题,不符合题意;D.同位角相等,作出判断,故该选项是命题,符合题意.故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.变式1-2.(2022秋·重庆璧山·七年级校联考期中)下列语句中.不是命题的是()A.内错角相等,两直线平行B.对顶角相等C.如果一个数能被2整除.那么它也能被4整除D.画一条线段【答案】D【分析】根据命题的定义,句子可以改写成“如果……那么……”形式,则为命题,如果不能就不是.【详解】解:A.内错角相等,两直线平行,改写成:如果两条直线被第三条直线所截所成的角中,内错角相等,那么这两条直线平行,是命题,故此选项不符合题意;B.对顶角相等,改写成:如果两个角是对顶角,那么这两角相等,是命题,故此选项不符合题意;C.如果一个数能被2整除,那么它也能被4整除,是命题,故此选项不符合题意;D.画—条线段,无法改写,不是命题,故此选项符合题意.故选:D.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.正确理解命题的定义是解题的关键.变式1-3.(2022秋·安徽宣城·七年级校考期中)下列语句属于命题的个数是()①宣城市奋飞学校是市文明单位②直角等于③对顶角相等④奇数一定是质数吗?A.1B.2C.3D.4【答案】C【分析】根据命题的概念注意判断即可.【详解】解:由命题的概念可知,④不是命题,而①②③均是命题,故选C.【点睛】本题考查了命题的概念,解决本题的关键是掌握命题时表示判断的语句.考查题型二真假命题的判断典例2.(2021春·黑龙江哈尔滨·七年级哈尔滨市虹桥初级中学校校考期中)有下列命题是真命题的是( )A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.有一边互为反向延长线,且和为180°的两个角是邻补角D.过直线外一点有且只有一条直线与这条直线平行【答案】D【分析】根据对顶角的性质和定义,邻补角的定义,平行线的性质,平行线公理逐一判断即可.【详解】A、共顶点,且一个角的两边是另一个角的两边的反向延长线,这样的两个角是对顶角,但是,相等的两个角,若不满足对顶角的定义,也不是对顶角,故此命题是假命题;B、两条平行线被第三条直线所截,同位角相等,故此命题是假命题;C、有一边互为反向延长线,且共顶点与共一条边的两个角是邻补角,故此命题是假命题;D、过直线外一点有且只有一条直线与这条直线平行,是真命题;故选:D.【点睛】本题考查了命题真假的判断,掌握命题所涉的相关知识是关键.变式2-1.(2022春·湖南永州·七年级校考期中)下列不是真命题的是()A.三角形内角和为B.两条直线不相交,就是平行C.任意的等腰三角形都存在着“三线合一”的现象D.三角形至多有一个钝角【答案】B【分析】利用三角形的内角和,等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A.三角形内角和为,正确,是真命题;B.同一平面内,两条直线不相交,就是平行,故原命题错误,是假命题;C.任意的等腰三角形都存在着“三线合一”的现象正确,是真命题;D.三角形至多有一个钝角,正确,是真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,等腰三角形的性质、平行线的性质,难度不大.变式2-2.(2022秋·福建福州·七年级校考期中)下列命题是真命题的是()A.同位角相等B.两个锐角的和是锐角C.若两个角的和为,则这两个角互补D.相等的角是对顶角【答案】C【分析】根据平行线的性质,补角的定义,锐角的定义,对顶角的定义逐项进行判断即可.【详解】解:、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、两个锐角的和可能是锐角、钝角,也可能是直角,故原命题错误,是假命题,不符合题意;C、若两个角的和为,则这两个角互补,正确,是真命题,符合题意;D、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:C.【点睛】本题主要考查了命题真假的判定,解题的关键是熟练掌握平行线的性质,补角的定义,锐角的定义,对顶角的定义.变式2-3.(2022秋·北京海淀·七年级校考期中)下列命题中,真命题的个数是( )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果,那么.A.1B.2C.3D.4【答案】A【分析】根据对顶角、平行线的性质、余角的概念、平方根的概念逐一判断,即可得到答案.【详解】解:①相等的角不一定是对顶角,原说法错误,是假命题;②两直线平行,同位角相等,原说法错误,是假命题;③等角的余角相等,原说法正确,是真命题;④如果,那么,原说法错误,是假命题,即真命题的个数为1,故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.考查题型三命题的题设与结论典例3.(2022秋·福建福州·七年级福建省福州外国语学校校考阶段练习)命题“在同一平面内,垂直于同一条直线的两条直线相互平行”的题设是____________,结论是_____________.该命题是__________命题(填“真”或“假”).【答案】如果在同一平面内,两条直线垂直于同一条直线这两条直线相互平行真【分析】将命题转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”即可找出题设和结论,根据平行线的判定方法判断该命题的真假.【详解】解:原命题可以转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”,故题设是“如果在同一平面内,两条直线垂直于同一条直线”,结论是“这两条直线相互平行”,根据平行线的判定定理,可知该命题是真命题.故答案为:如果在同一平面内,两条直线垂直于同一条直线;这两条直线相互平行;真.【点睛】本题考查命题的概念和平行线的判定,当命题的题设和结论不明显时,可以将命题转化为“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.变式3-1.(2022秋·湖北宜昌·七年级校考期中)命题“内错角相等”的题设是_____,结论是____,它是________(“真”或“假”)命题.【答案】两个角是内错角这两个角相等假【分析】将这个命题改写成“如果,那么”的形式,由此即可得出它的题设和结论,再根据同位角的定义即可判断真假.【详解】解:命题“内错角相等”可改写为“如果两个角是内错角,那么这两个角相等”,则命题“内错角相等”的题设是两个角是内错角,结论是这两个角相等,因为两个内错角不一定相等,所以它是假命题,故答案为:两个角是内错角;这两个角相等;假.【点睛】本题考查了命题的题设与结论、判断命题的真假,熟练掌握将命题改写成“如果,那么”的形式是解题关键.变式3-2.命题“等边对等角”的题设是______结论是______【答案】同一个三角形中的两条边相等;这两条边所对的两个角也相等【分析】判断一件事情的语句叫做命题.任何一个命题都有题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题都可以写成“如果…,那么…”的形式,“如果”后接题设部分,“那么”后接结论部分.【详解】解:由于命题“在同一个三角形中,等边对等角”可改写成:在同一个三角形中,如果有两条边相等,那么这两条边所对的两个角相等.所以题设是同一个三角形中的两条边相等,结论是这两条边所对的两个角相等.故答案为:同一个三角形中的两条边相等;这两条边所对的两个角相等.【点睛】对于像本题这样简写的命题,题设和结论不明显,要经过分析,找出命题中的已知事项和由已知事项推出的事项,将命题改写成“如果…,那么…”的形式,从而区分命题的题设和结论.变式3-3.命题“两点之间线段最短"的题设是______________,结论是______________.【答案】连接两点,得到线段;线段最短【分析】命题常常可以写为“如果……那么……”的形式,如果后面接题设,而那么后面接结论;根据上步的知识,从命题的定义出发,寻找题设和结论就可以了.【详解】命题“两点之间线段最短"的题设是:连接两点,得到线段,结论是:线段最短,故答案为:连接两点;线段最短【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.考查题型四写出命题的逆命题典例4.写出命题“两个全等三角形的面积相等”的逆命题______.【答案】若两个三角形面积相等,则这两个三角形全等【分析】根据逆命题的定义,若两个三角形面积相等,则这两个三角形全等即可.【详解】解:命题“两个全等三角形的面积相等”的逆命题是:若两个三角形面积相等,则这两个三角形全等,故答案为:若两个三角形面积相等,则这两个三角形全等.【点睛】本题考查命题概念,弄清楚命题的条件和结论是写出逆命题的关键.变式4-1.“如果,那么”的逆命题为_____.【答案】如果,那么【分析】根据互逆命题的定义,把原命题的题设和结论交换即可.【详解】解:“如果,那么”的逆命题为“如果,那么”.故答案为:如果,那么.【点睛】本题考查了互逆命题的知识,解决本题的关键是掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.变式4-2.写出命题“如果,那么或.”的逆命题:______.【答案】如果或,那么【分析】根据逆命题的写法,把原命题的条件作为结论,结论作为条件即可.【详解】解:命题“如果,那么或.”的逆命题是:如果或,那么,故答案为:如果或,那么.【点睛】题目主要考查命题与逆命题的写法,熟练掌握命题与逆命题的关系是解题关键变式4-3.命题“等腰三角形两底角的平分线相等”的逆命题是________________.【答案】有两条角平分线相等的三角形是等腰三角形【分析】根据逆命题的定义写出即可.【详解】解:命题“等腰三角形两底角的平分线相等”的逆命题是“有两条角平分线相等的三角形是等腰三角形”.故答案是:有两条角平分线相等的三角形是等腰三角形.【点睛】本题考查了互逆命题的知识,掌握逆命题的定义是解题的关键.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考查题型五 互逆定理的判断典例5.下列说法正确的是( )A .真命题的逆命题是真命题B .原命题是假命题,则它的逆命题也是假命题C .命题一定有逆命题D .定理一定有逆命题【答案】C【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A .真命题的逆命题不一定是真命题,故本选项错误,不符合题意;B .原命题是假命题,则它的逆命题不一定是假命题,故本选项错误,不符合题意;C .命题一定有逆命题,故本选项正确,符合题意;D .定理不一定有逆命题,故本选项错误,不符合题意;故选:C .【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,也考查了逆命题,逆定理.变式5-1.下列说法错误的是( )A .任何命题都有逆命题B .真命题的逆命题不一定是正确的C .任何定理都有逆定理D .一个定理若存在逆定理,则这个逆定理一定是正确的【答案】C【分析】根据命题,定理的定义对各选项分析判断后利用排除法求解即可.【详解】A.任何命题都有逆命题,故A正确,不符合题意;B.真命题的逆命题不一定为真,故B正确,不符合题意;C.任何定理不一定都有逆定理,故C错误,符合题意;D.定理一定是正确的,一个定理若存在逆定理,则这个逆定理一定是正确的,故D正确,不符合题意.故选:C.【点睛】本题考查了命题,定理的定义.如果一个命题的条件与结论分别是另一个命题的结论与条件,那么这两个命题称为互逆命题.定理是指用逻辑的方法判断为正确并作为推理的根据的真命题.一个命题是真命题,它的逆命题却不一定是真命题,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.变式5-2.下列说法正确的是()A.真命题的逆命题也是真命题B.每个命题都有逆命题C.每个定理都有逆定理D.假命题没有逆命题【答案】B【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A、真命题的逆命题可能是真命题,也可能是假命题,故本选项错误;B、一个命题一定有逆命题,正确,故本选项正确;C、一个定理不一定有逆定理,故本选项错误;D、假命题一定有逆命题,错误,故本选项错误.故选B.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.变式5-3.下列说法中,正确的是()A.真命题的逆命题一定是真命题B.假命题的逆命题一定是假命题C.所有的定理都有逆定理D.所有的命题都有逆命题【答案】D【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.【详解】解:A、真命题的逆命题不一定是真命题,所以A选项错误;B、假命题的逆命题不一定是假命题,所以B选项错误.C、每个定理不一定有逆定理,所以C选项错误;D、每个命题都有逆命题,所以D选项正确;故选:D.【点睛】本题考查了命题与定理:断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.。
定理与证明练习题
一、细心填一填(每小题4分,共32分)
1.把命题“三角形内角和等于180°”改写成如果 ,那么
.
2.如图,∠1,∠2,∠3的大小关系是 .
3.如图,已知BC ⊥AC ,BD ⊥AD ,垂足分别是C 和D ,
若要使△ABC ≌△ABD ,应补上一条件是 .
.
4.在△ABC 和△DEF 中,∠A =∠D ,CM ,FN 分别是AB 、DE 边上的中线,再从以下三个
条件①AB =DE ,②AC =DF ,③CM =FN
能构成一个真命题,那么题设可以是 ,结论是
三、耐心做一做(本题有6小题,共36分)
1.(本题5分)如图,在△ABC 中,∠A =70°,BO ,CO 分别是∠ABC 和∠ACB 的角平分线,
求∠BOC 的度数.
2.(本题5分)已知,如图,AD ⊥BC 于D ,EF ⊥BC 于F ,EF 交AB 于G ,交CA 延长线于E ,
且∠1=∠2.
求证:AD 平分∠BAC ,填写“分析”和“证明”中的空白.
分析:要证明AD 平分∠BAC ,只要证明∠ =∠ ,而已知∠1=∠2,所以
应联想这两个角分别和∠1、∠2的关系,由已知BC 的两条垂线可推出 ∥ ,这时再观察这两对角的关系已不难得到结论.
证明:∵AD ⊥BC ,EF ⊥BC (已知)
∴ ∥ ( )
∴ = (两直线平行,内错角相等.)
= (两直线平行,内错角相等.)
∵ (已知)
∴ ,即AD 平分∠BAC ( ) (第12题)。