2014山东青岛市中考数学试题
- 格式:doc
- 大小:282.00 KB
- 文档页数:9
(2)探究密度概念的建构:表
格图象实验次数物体m/g V/cm3
/(g/cm3)1铝块12710 2.7
2铝块25420 2.7
3铁块179107.9
4铁块2158207.9
结论方法①同种物质的质量与体积的比值是相同的,不同物质的质量与体积的比值一般是不同的.
②上述实验图象如图所示,图线b反映了铝块的实验情况.
③由数据表格形式变换成图象格式,运用了等价变换法.
④由上述试验引入了密度的概念,密度在数值上等于物体单位体积的质量.
讨论小雨用天平和量筒测量石块的密度,运用了组合法.实验得到如下数据:
石块的质量
m/g
量筒中水的体积
V1/cm3
石块和水的总体积
V2/cm3
石块的体积
V/cm3
石块的密度ρ/(kg•m
﹣3)
507020 2.2×103。
2014-2019年历年青岛中考数学23、24题23.(2019年10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a ×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t <5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.23.(2018年--10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1)条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为条,纵放的木棒为条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为条,竖放木棒条数为条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒条.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.23.(2017年--10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式|x﹣1|<2的解集(1)探究|x﹣1|的几何意义如图①,在以O为原点的数轴上,设点A′对应的数是x﹣1,由绝对值的定义可知,点A′与点O的距离为|x﹣1|,可记为A′O=|x﹣1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x﹣1|.因此,|x﹣1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.(2)求方程|x﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.(3)求不等式|x﹣1|<2的解集因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.探究二:探究√(x−a)2+(y−b)2的几何意义(1)探究√x2+y2的几何意义如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO=√OP2+PM2=√|x|2+|y|2=√x2+y2,因此,√x2+y2的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO.(2)探究√(x−1)2+(y−5)2的几何意义如图④,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究二(1)可知,A′O=√(x−1)2+(y−5)2,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=√(x−1)2+(y−5)2,因此√(x−1)2+(y−5)2的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离AB.(3)探究√(x+3)2+(y−4)2的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.(4)√(x−a)2+(y−b)2的几何意义可以理解为:.拓展应用:(1)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的几何意义可以理解为:点A (x,y)与点E(2,﹣1)的距离和点A(x,y)与点F(填写坐标)的距离之和.(2)√(x−2)2+(y+1)2+√(x+1)2+(y+5)2的最小值为(直接写出结果)24.(12分)已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°.如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP 与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM:S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.23.(2016年--10分)问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.23.(2015年--10分)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n3456m1011【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②n78910m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③n4k﹣14k4k+14k+2m【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)24.(12分)已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C 出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.23.(2014年-10分)数学问题:计算1m +1m 2+1m 3+…+1m n (其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算12+122+123+…+12n . 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+122; 第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为12+122+123+…+12n ,最后空白部分的面积是12n . 根据第n 次分割图可得等式:12+122+123+…+12n =1﹣12n .探究二:计算13+132+133+…+13n . 第1次分割,把正方形的面积三等分,其中阴影部分的面积为23;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为23+232; 第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为23+232+233+…+23n ,最后空白部分的面积是13n . 根据第n 次分割图可得等式:23+232+233+…+23n =1﹣13n , 两边同除以2,得13+132+133+…+13n =12﹣12×3n.探究三:计算14+142+143+…+14n . (仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算1m +1m 2+1m 3+…+1m n .(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:,所以,1m +1m2+1m3+…+1m n=.拓广应用:计算5−15+52−152+53−153+…+5n−15n.24.(12分)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.。
二○一四年山东省青岛市初级中学学业水平模拟考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题共有24道题.其中1—8题为选择题,9—14题为填空题, 15为作图题,16—24题为解答题.所有题目均在答题卡上作答,在试题上作答无效.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.6-的相反数是( ).A .6-B .6C .16-D .162.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是().A .B .C .D .4.一车间有甲、乙两个小组,甲组的工作效率是乙组的1.5倍,因此加工2000个零件所用的时间甲组比乙组少0.5小时.若设乙每小时加工x 个零件,则可列方程为( ).A .2000200011.52x x -=B .2000200011.52x x -=C .2000200011.52x x =-D .2000200011.52x x =-第3题图5.某企业生产厚度为10mm 的板材,为严把质量关,分别从甲、乙两车间分别随机抽出了40张板材,测量厚度,并将数据处理后制成如下表格.根据表中信息判断,下列说法错误的是( ).A.本次采用的调查方式是抽样调查;B.被抽取的80张板材的厚度是本次调查的样本;C.甲乙两车间被抽出板材的平均厚度相同;D.甲车间板材的厚度比乙车间板材的厚度波动小.6.在一个不透明的袋子中装有红、黄、蓝3个除颜色外均相同的小球.任意摸出一球,记下颜色后,放回袋中,摇匀后再任意摸出一球,两次摸到同一颜色小球的概率是( ).A .19B . 16C .13D .127.点P 是图(1)中三角形上一点,坐标为(a ,b ),图(1)经过变化形成图(2),则点P 在图(2)中的对应点P ′ 的坐标为( ).A .(a-1,b )B .(12a ,b )C .(a -2,b )D .(12a ,12b )8.如图,已知 0的半径为5cm,弦AB =8cm ,以0为圆心,以4cm 的长为半径作同心圆,则所做圆与弦AB 的位置关系是()A .相离B .相切C .相交二、填空题(本题满分18分,共有6道小题,每小题3分)第8题图(1)图(2)CADE FG BACDE…D 1E 1 E 2D 29.计算:自从扫描隧道显微器发明后,世界上便诞生了一门新科学,就是“纳米技术”,已知25个纳米长度为0.000 000 025米.将0.000 000 025米用科学计数法表示为 米. 10.生物工作者为了估计一片山林中鹤的数量,设计了如下方案:先捕捉50只鹤,给它们做上标记后放回森林。
2012中考
(1)如图①所示,当PQ ⊥AB 时,△PQE 是直角三角形.解决问题的要点是将△PQE 的三边长PE 、QE 、PQ 用时间t 表示,这需要利用相似三角形(△PQE ∽△ACB )比例线段关系(或三角函数);
(2)本问关键是利用等式“五边形PQBCD 的面积=四边形DCBE 的面积-△PQE 的面积”,如图②所示.为求△PQE 的面积,需要求出QE 边上的高,因此过P 点作QE 边上的高,利用相似关系(△PME ∽△ABC )求出高的表达式,从而问题解决;
(3)本问要点是根据题意,列出一元二次方程并求解.假设存在时刻t ,使
S △
PQE :
S 五边形PQBCD =1:29,则此时S △PQE = S 梯形DCBE ,由此可列出一元二次方程,解方程即求得时刻t ;点E 到PQ 的距离h 利用△PQE 的面积公式
得到.
1。
山东省青岛市2014年中考数学真题试题一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014•青岛)﹣7的绝对值是()A.﹣7 B.7C.﹣D.考点:绝对值..分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(2014•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形..分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2014•青岛)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体..分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看中央电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(2014•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系..分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)(2014•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程..分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(2014•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题)..分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(2014•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A .B.C.D.考点:二次函数的图象;反比例函数的图象..分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2014•青岛)计算:= 2+1 .考点:二次根式的混合运算..专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(2014•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差..分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(2014•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转..专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(2014•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35 °.考点:切线的性质..分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(2014•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质..分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(2014•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54 个小立方块.考点:由三视图判断几何体..分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2014•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图..分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(2014•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法..分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2014•青岛)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是14 天,众数是13 天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数..分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(2014•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式..分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(2014•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用..分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(2014•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题..分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD 的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴C D=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(2014•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△E OC;(2)连接AC,DE,当∠B=∠AEB=45 °时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定..分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS 证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用..分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)(2014•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+= ﹣.拓广应用:计算+++…+.考点:作图—应用与设计作图;规律型:图形的变化类..专题:规律型.分析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.解答:解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n﹣(+++…+),=n﹣(﹣),=n﹣+.点评:本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.24.(12分)(2014•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.考点:四边形综合题..分析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG=AC•BD,求出CG.据S梯形APFD=(AP+DF)•CG.S△EFD=EF•QD.得出y与t之间的函数关系式;(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG,求出CG,由S四边形APFE:S菱形ABCD=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,PM再由勾股定理求出PE.解答:解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2=﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD﹣BN﹣DQ==.在Rt△PME中,PE===(cm).点评:本题主要考查了四边形的综合知识,解题的关键是根据三角形相似比求出相关线段.。
2010—2014数学19习题1.2010年19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,) 解:2.2011年19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长?(结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)3.2012年 B37° 48° D CA 第19题图 40º 35º A DB C4.2013年19.(8分)(2013•青岛)如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路的两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°.(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B.求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米.(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)5.2014年20.(本小题满分8分)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈35,sin31°≈12,tan39°≈911,sin39°≈711)A(第20题)B C39°31°E。
2014年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014?青岛)﹣7的绝对值是()A.﹣7 B.7C.﹣D.2.(3分)(2014?青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2014?青岛)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×1054.(3分)(2014?青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人5.(3分)(2014?青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切6.(3分)(2014?青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(2014?青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.58.(3分)(2014?青岛)函数y=与y=﹣kx 2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2014?青岛)计算:=_________.10.(3分)(2014?青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是_________(填“甲”或“乙”).11.(3分)(2014?青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是_________.12.(3分)(2014?青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_________°.13.(3分)(2014?青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为_________.14.(3分)(2014?青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要_________个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2014?青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(2014?青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(2014?青岛)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(2014?青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(2014?青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(2014?青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)21.(8分)(2014?青岛)已知:如图,?ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(2014?青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(2014?青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(2014?青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.2014年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014?青岛)﹣7的绝对值是()A.﹣7 B.7C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(2014?青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2014?青岛)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为: 6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014?青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看中央电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(2014?青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)(2014?青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(2014?青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF 2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(2014?青岛)函数y=与y=﹣kx 2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k 取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2014?青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(2014?青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(2014?青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(2014?青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(2014?青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB?tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(2014?青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2014?青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(2014?青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2014?青岛)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(2014?青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(2014?青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(2014?青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(2014?青岛)已知:如图,?ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴?ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(2014?青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x 2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.。
2014年青岛中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2014年青岛中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
8.( 3分)(2014?青岛)函数y 与y= - kx +k ( k 工0在同一直角坐标系中的图象可能是 ()2014年山东省青岛市中考数学试卷、选择题(本题满分 24分,共有8道小题,每小题 3分)下列每小题都给出标号为 A 、 B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标 号超过一个的不得分. 1. ( 3分)(2014?青岛)-7的绝对值是( A . - 7 B . 7 C .- _ 7 2. A .D . (3 分)(2014?青 岛)3. ( 3分)(2014?青岛)据统计,我国 2013年全年完成造林面积约 用科学记数法可表示为( ) 6 4 4 5A . 6.09 >10B . 6.09 10C . 609 XI0D . 60.9 K 0 6090000 公顷.6090000 4. ( 3分)(2014?青岛)在一个有15万人的小镇,随机调查了 3000人,其中有300人看中 央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( ) A . 2.5万人 B . 2万人 C . 1.5万人 D . 1万人 位置关系是( A .内含) B .内切 C .相交 D .外切 5. (3分)(2014?青岛)已知O 01与。
2的半径分别是2和4,。
1。
2=5,则O 01与。
2的 6. ( 3分)(2014?青岛)某工程队准备修建一条长 实际每天修建道路的速度比原计划快 : 道路xm ,则根据题意可列方程为( A 1200 0 =2 .'1 -'/ :. C 1200 ^00=2 .:. '1 - '-= 7. ( 3分)(2014?青岛)如图,将矩形 C'上.若 AB=6 , BC=9,贝U BF 的长为 1200m 的道路,由于采用新的施工方式, 20%,结果提前2天完成任务.若设原计划每天修建 ) B 1200 ^0 0 =2 D 1200 1200 =2 ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点( ) C . 4.518分,共有6道小题,每小题3 分)9. (3分)(2014?青岛)计算:匹逅= .V510. (3分)(2014?青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机20016.23乙分装机200 5.84(填甲”或乙”.11. (3分)(2014?青岛)如图,△ ABC的顶点都在方格线的交点(格点)上,如果将△ ABC/绕C点按逆时针方向旋转90°那么点B的对应点B坐标是________________12. (3分)(2014?青岛)如图,AB是O O的直径,BD , CD分别是过O O上点B , C的切线,且/ BDC=110 .连接AC,则/ A的度数是13. (3分)(2014?青岛)如图,在等腰梯形ABCD中,AD=2,/ BCD=60°,对角线AC平分/ BCD , E, F分别是底边AD , BC的中点,连接EF.点P是EF上的任意一点,连接B.14. (3分)(2014?青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何 体的基础上(不改变原几何体中小立方块的位置) ,继续添加相同的小立方块,以搭成一个4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15. (4 分)(2014?青岛)已知:线段 a , / a 求作:△ ABC ,使 AB=AC=a , / B= / a16. ( 8 分)(2014?青岛)(1)计算:(2)解不等式组:17. (6分)(2014?青岛)空气质量状况已引起全社会的广泛关注,某市统计了 2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2叽3年毎月空气麽更良妤以上天鼓统计图 某市2013^每月空气履愛良好以上天敢分布统计图根据以上信息解答下列问题:(1) 该市2013年每月空气质量达到良好以上天数的中位数是 ________________ 天,众数是— _________ 天;(2) 求扇形统计图中扇形 A 的圆心角的度数;(3 )根据以上统计图提供的信息, 请你简要分析该市的空气质量状况(字数不超过30字).18. (6分)(2014?青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘 被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会•如 果转盘停止后,指针正好对准红色、 黄色、绿色区域,那么顾客就可以分别获得 200元、100 元、50元的购物券,凭购物券可以在该商场继续购物•如果顾客不愿意转转盘,那么可以 直接获得购物券30元.三、作图题(本题满分 大正方体,至少还需要a74分,共有9道小题)a —I —I —I —I —I —L _J —I —J —1 -------------- 1—I ----- u 1 2 3 4 5 6 7 S 5 10份(1 )求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19. (6分)(2014?青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑•图中丨1和12分别表示甲、乙两人跑步的路程y (m)与甲跑步的时间x (s)之间的函数关系,其中11的关系式为y仁8x,问甲追上乙用了多长时间?20. (8分)(2014?青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角/ B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角/ ACE=39 .(1 )求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31 °A sin31 ° 丄,tan39。
青岛市二○一四年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.(2014山东省青岛市,1,3分)7-的绝对值是( ).A .7-B .7C .17-D .17【答案】B 2.(2014山东省青岛市,2,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】D3.(2014山东省青岛市,3,3分)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为( ).A .66.0910⨯B .46.0910⨯C .460910⨯D .560.910⨯【答案】A4.(2014山东省青岛市,4,3分)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( ).A .2.5万人B .2万人C .1.5万人D .1万人【答案】C5.(2014山东省青岛市,5,3分)已知⊙O 1与⊙O 2的半径分别是2和4,O 1O 2=5,则⊙O 1与⊙O 2的位置关系是( ). A .内含 B .内切 C .相交 D .外切【答案】C6.(2014山东省青岛市,6,3分)某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m ,则根据题意可列方程为( ).A .120012002(120%)x x -=-B .120012002(120%)x x -=+C .120012002(120%)x x-=- D .120012002(120%)x x-=+ 【答案】D7.(2014山东省青岛市,7,3分)如图,将矩形ABCD 沿EF折叠,使顶点C 恰好落在AB边的 中点C ′上,若AB =6,BC =9,则BF 的长为( ).A .4B .C .4.5D .5【答案】A8.(2014山东省青岛市,8,3分)函数ky x=与2=-+y kx k (0k ≠)在同一直角坐标系中 ).A .B .C .D .【答案】B第Ⅱ卷A BFE CD D ′ (第7题)C ′二、填空题(本题满分18分,共有6道小题,每小题3分)9.(2014山东省青岛市,9,3分)=.【答案】10.(2014山东省青岛市,10,3分)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).【答案】乙11.(2014山东省青岛市,11,3分)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是.【答案】(1,0)12.(2014山东省青岛市,12,3分)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.【答案】3513.(2014山东省青岛市,13,3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.【答案】14.(2014山东省青岛市,14,3分)如图,是由一些小立方块所搭几何体的三种视图,若在(第13题)(第12题)(第11题)所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要 个小立方块.主视图 左视图 俯视图【答案】54三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.(2014山东省青岛市,15,4分)已知:线段a ,∠α.求作:△ABC ,使AB =AC =a ,∠B =∠α.【答案】解:正确作图;······································ 3分 正确写出结论.······································ 4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(2014山东省青岛市,16,4分)(1)计算:2211x x y y-+÷; 【答案】(1)解:原式=2211x yy x -⋅+=2(1)(1)1x x y y x +-⋅+=1x y- .(2014山东省青岛市,16,4分)(2)解不等式组:35021x x ->⎧⎨->-⎩【答案】解:解不等式①,得x >53.a α, ①. ②解不等式②,得x <3. 所以,原不等式组的解集是53<x <3. ········································ 4分17.(本小题满分6分)(2014山东省青岛市,17,6分)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数统计图 某市2013年每月空气质量良好以上天数分布统计图根据以上信息解答下列问题: (1)该市2013年每月空气质量达到良好以上天数的中位数是_____天,众数是_____天;(2)求扇形统计图中扇形A 的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).【答案】解:(1)14,13.···············································(2)360°×212=60°, 答:扇形A 的圆心角的度数是60°. ········································ 4分 (3)合理即可.········································ 6分18.(本小题满分6分)(2014山东省青岛市,18,6分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客 更合算?【答案】解:(1)P (转动一次转盘获得购物券)=1020=12. ··············································· 2分(2)1362001005040202020⨯+⨯+⨯=(元) ∵40元>30元,∴选择转转盘对顾客更合算.········································ 6分19.(本小题满分6分)(2014山东省青岛市,19,6分)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y (m)与甲跑步的时间x (s)之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?【答案】解:设y 2=kx +b (k ≠0),根据题意,可得方程组解这个方程组,得 所以y 2=6x +10. 当y 1=y 2时,8x =6x +10, 解这个方程,得x =5. 答:甲追上乙用了5s .········································ 6分20.(本小题满分8分)(2014山东省青岛市,20,8分)如图,小明想测山高和索道的长度.他在B 处仰望山顶A ,测得仰角∠B =31°,再往山的方向(水平方向)前进80m 至索道口C 处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(第18题) y (第19题)10=22=2+bk b ⎧⎨⎩610k b =⎧⎨=⎩(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC 的长(结果精确到0.1m ).(参考数据:tan31° ≈35,sin31° ≈12,tan39° ≈911,sin39° ≈711)【答案】解:(1)过点A 作A D ⊥BE 于D , 设山AD 的高度为x m ,在Rt △ABD 中,∠ADB =90°, tan31°=ADBD, ∴5=3tan3135AD x BD x =≈º.在Rt △ACD 中,∠ADC =90°, tan39°=ADCD, ∴11=9tan39911AD x CD x =≈º.∵BC BD CD =- ∴ 5118039x x -=,解这个方程,得180x =.即山的高度为180米. ······································ 6分(2)在Rt △ACD 中,∠ADC =90°,A(第20题)sin39°=ADAC, ∴180282.97sin3911AD AC =≈≈º(米). 答:索道AC 长约为282.9米. .······································ 8分21.(本小题满分8分)(2014山东省青岛市,21,8分)已知:如图,□ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB = °时,四边形ACED 是正方形?请说明理由.【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠D =∠OCE ,∠DAO =∠E . 又∵OC =OD , ∴△AOD ≌△EOC .······································ 4分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形.∵△AOD ≌△EOC , ∴OA =OE . 又∵OC =OD ,∴四边形ACED 是平行四边形. ∵∠B =∠AEB =45°, ∴AB =AE ,∠BAE =90°. ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∴∠COE =∠BAE =90°. ∴□ACED 是菱形. ∵AB =AE ,AB =CD , ∴AE =CD .∴菱形ACED 是正方形.······································ 8分22.(本小题满分10分)(2014山东省青岛市,22,10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据(第21题)(第21题)市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【答案】解:(1)y=(x-50)[50+5(100-x)]=(x-50)(-5x+550)=-5x2+800x-27500∴y=-5x2+800x-27500. ······································ 4分(2)y=-5x2+800x-27500=-5(x-80)2+4500∵a=-5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500.········································ 6分(3)当y=4000时,-5(x-80)2+4500=4000,解这个方程,得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(-5x+550)≤7000,解这个不等式,得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间. ··········································。