专题四 第2讲导数及其应用
- 格式:pdf
- 大小:85.11 KB
- 文档页数:3
导数及其应用复习讲义(解析版)考点一、导数的概念及运算 1.导数的概念函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.2.导数的运算①.求导的基本公式 基本初等函数 导函数 ()f x c =(c 为常数) ()0f x '= ()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠, ()ln x f x a a '=()log (01)a f x x a a =>≠, 1()ln f x x a'=()x f x e =()x f x e '=()ln f x x = 1()f x x'=()sin f x x = ()cos f x x '= ()cos f x x =()sin f x x '=-(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. ③.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:【1】若()3ln f x x x =+,则0(12)(1)limx f x f x∆→+∆-=∆( )A .1B .2C .4D .8【答案】D【解析】由题意21()3f x x x'=+,所以(1)134f '=+=,所以()00(12)(1)(12)(1)lim2lim 2182x x f x f f x f f x x∆→∆→+∆-+∆-'===∆∆.故选D .【2】已知函数()()ln 1f x ax =-的导函数是f x ,且()22f '=,则实数a 的值为( )A .12B .23 C .34D .1【答案】B【解析】求导得()1a f x ax '=-,则()2221a f a ='=-,解得23a =.故选B . 【3】.已知函数()f x 的导函数是()'f x ,且满足1()2(1)ln f x xf x'=+,则(1)f =( )A .-eB .2C .-2D .e【答案】B【解析】因为()()121ln f x xf x'=+,所以()()()11121211f x f f x x x'⎛⎫'''=+⋅=- ⎪⎝⎭, 所以()()1211f f ''=-,()11f '=,所以()12lnf x x x=+,()12ln12f =+=.故选B .【4】已知()1sin cos f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,*n ∈N ,则()2023f x =( )A .sin cos x x +B .sin cos x x -C .sin cos x x -+D .sin cos x x --【答案】D【解析】因为()1sin cos f x x x =+,所以21()'()cos sin f x f x x x ==-,324354()'()sin cos ,()'()cos sin ,()'()sin cos f x f x x x f x f x x x f x f x x x==--==-+==+……可知()n f x 的解析式周期为4,因为202350543=⨯+,所以()20193()sin cos f x f x x x ==--,故选D .考点二 导数的几何意义及应用几何意义:函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.【5】函数()3ln f x x x =+的图象在点()()1,1f 处的切线方程为( )A .430x y --=B .430x y +-=C .430x y --=D .430x y +-=【答案】A【解析】因为函数()3ln f x x x =+,所以()213f x x x'=+,所以()()11,14f f '==, 所以图象在点()()1,1f 处的切线方程为()141y x -=-,即430x y --=,故选A 【6】曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x =【解析】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =.【7】已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( )A .8B .9C .10D .13【答案】B【解析】设切点为00(,)x y ,ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,令0011,1x b x b ==-+,则0ln(1)0y b b =-+= ,故切点为(1,0)b -,代入y x a =-,得1a b +=, a 、b 为正实数,则141444()()5529b a b a a b a b a b a b a b+=++=++≥+⋅,当且仅当13a =,23b =时,14a b +取得最小值9,故选:B【8】己知函数22f xx ,()3ln g x x ax =-,若曲线()y f x =与曲线()y g x =在公共点处的切线相同,则实数=a ________. 【答案】1【解析】设函数22f xx ,()3ln g x x ax =-的公共点为()00,x y ,则()()()()0000,,f x g x f x g x ''⎧=⎪⎨=⎪⎩即200000023,32,0,x lnx ax x a x x ⎧-=-⎪⎪=-⎨⎪⎪>⎩则2003ln 10x x +-=.令()23ln 1h x x x =+-,易得()h x 在()0,∞+上单调递增,所以以由2003ln 10x x +-=,解得01x =,所以切点为()1,1-,所以13ln1a =-,则1a =.故答案为:1. 【9】设曲线()()1af x x x=-+在点()()1,1f 处的切线方程为20x y b ++=,则a b -=( ) A .0 B .1 C .-2D .2【答案】D【解析】由题得221()11a f x a x x ⎛⎫'=--=-- ⎪⎝⎭,则切线的斜率为()11f a '=--. 又()12f a =-,曲线()()1af x x x=-+在点()()1,1f 处的切线方程为 ()()()211y a a x --=---,即()1210a x y a ++-+=.又切线方程为20x y b ++=,所以比较系数得1221a a b +=⎧⎨-+=⎩,解得11a b =⎧⎨=-⎩.所以2a b -=.故选D .【10】若点P 是曲线2ln y x x =-上任意一点,则点P 到直线1y x =-的距离的最小值为( ) A .1 B 2 C .22D 3【答案】C【解析】设平行于直线1y x =-且与曲线2ln y x x =-相切的切点为(,)P x y ,由2ln ,0y x x x =->,则12y x x'=-, 令121x x-=,整理得(1)(21)0x x -+=,解得1x =或12x =-(舍去),由1x =,可得21ln11y =-=,即切点坐标为(1,1)P , 又由点到直线10x y --=的距离公式,可得2211121(1)d --==+- 即点P 到直线1y x =-的距离的最小值为22.故选C .考点三 导数与函数的单调性 1.求可导函数单调区间的一般步骤(1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.2.函数单调性与导数的关系()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.3.利用函数的单调性求参数的取值范围的解题思路①由函数在区间[],a b 上单调递增(减)可知()0f x '≥ (()0f x '≤)在区间[],a b 上恒成立列出不等式;②利用分离参数法或函数的性质求解恒成立问题;③对等号单独检验,检验参数的取值能否使()f x '在整个区间恒等于0,若()f x '恒等于0,则参数的这个值应舍去;若只有在个别点处有()0f x '=,则参数可取这个值. 【11】已知函数()()321032a f x x x x a =--≥在区间()0,1上不是单调函数,则实数a 的取值范围是( ) A .()02, B .[)0,1 C .()0,∞+ D .()2,+∞【答案】D 【解析】∵()32132a f x x x x =--,∴()21f x ax x '=-- ∵函数()()321032a f x x x x a =--≥在区间()0,1上不是单调函数 ∴()210f x ax x '=--=在区间()0,1上有根∴当a =0时,x =-1不满足条件当0a >时,∵()010f '=-<,∴()120f a '=->,∴2a >.故选:D .【12】设函数21()9ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ) A .(]1,2 B .(]0,3 C .[)4,+∞D .(],2-∞【答案】A【解析】由()219ln ,(0)2f x x x x =->,则()299,(0)x f x x x x x'-=-=>,当(0,3)x ∈时,()0f x '<,则()f x 单调递减; 当(3,)x ∈+∞时,()0f x '>,则()f x 单调递增,又函数()f x 在区间[1,1]a a -+上单调递减,所以101311a a a a ->⎧⎪+≤⎨⎪+>-⎩,解得12a <≤, 故选A.【13】已知函数()()2xf x x a e =-在区间[]1,2上单调递增,则a 的取值范围是( )A .(]3,-∞B .(],8-∞C .[)3,+∞D .[)8,+∞【答案】A【解析】()()220xf x x x a e '=+-≥在区间[]1,2上恒成立,则220x x a +-≥在区间[]1,2上恒成立,即()22min 2123a x x ≤+=+=,故选A .【14】设()f x 的定义在R 上的函数,其导函数为()'f x ,且满足()()0f x xf x '+>,若(1)a f =,2(2)b f =,3(3)c f =,则( )A .a b c >>B .c b a >>C .b c a >>D .c a b >> 【答案】B【解析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,所以()g x 在R 上是增函数, 所以(1)(2)(3)g g g <<,即(1)2(2)3(3)f f f <<,故选B .【15】已知函数[](),1,2,xae f x x x =∈且[]()()12121212,1,2,1f x f x x x x x x x -∀∈≠<-,恒成立,则实数a 的取值范围是( ) A .24,e ⎛⎤-∞ ⎥⎝⎦B .24,e ⎡⎫+∞⎪⎢⎣⎭C .(],0-∞D .[)0+,∞ 【答案】A【解析】不妨设()()121212,1,f x f x x x x x -<<-可得()()1122.f x x f x x ->-令()(),F x f x x =-则()F x 在区间[]1,2上单调递减,所以()0F x '≤在区间[]1,2上恒成立,()()2110,x ae x F x x--≤'=当1x =时,,a R ∈当(]1,2x ∈时,()()21x x a g x e x ≤=-,而()()()222201x x x x g x e x -'-+=<-, 所以()g x 在区间[]1,2上单调递减,则()()2min 42g x g e ==,所以24,a e ⎛⎤∈-∞⎥⎝⎦.故选A .【16】已知函数221()2ln ()2f x a x x ax a R =-++∈.求函数()f x 的单调区间;【解析】221()2ln 2f x a x x ax =-++ 22(2)()()a x a x a f x x a x x+-'∴=-++=,0x > ∴ ① 当0a =时,()0f x x '=> ,()f x ∴仅有单调递增区间,其为:(0,)+∞② 当0a >时,20x a +>,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '> ()f x ∴ 的单调递增区间为:(,)a +∞ ,单调递减区间为:(0,)a③ 当0a <时,0x a ->,∴当(0,2)x a ∈-时()0f x '<;当(2,)x a ∈-+∞时()0f x '> ()f x ∴的单调递增区间为:(2,)a -+∞,单调递减区间为:(0,2)a -综上所述:当0a =时,()f x 仅有单调递增区间,单调递增区间为:(0,)+∞ 当0a >时,()f x 的单调递增区间为:(,)a +∞ ,单调递减区间为:(0,)a 当0a <时,()f x 的单调递增区间为:(2,)a -+∞,单调递减区间为:(0,2)a -【17】已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在a -a 2-82,a +a 2-82上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.考点四 导数与函数的极值、最值 1.求可导函数()f x 极值的一般步骤(1)先确定函数()f x 的定义域;(2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值. 2.函数的最值一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行: (1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值.【18】函数f (x )=ln x -x 在区间(0,e]上的最大值为( )A .1-eB .-1C .-eD .0 【答案】B【解析】:f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值ln 1-1=-1.【19】已知函数()322161f x x m x mx m =+-+-在x =2处取得极小值,则m =______.【答案】1或3【解析】依题意,()223216f x x m x m '=+-,因()f x 在x =2处取得极小值,则()22416120f m m '=-+=,解得m =1或m =3,经检验,当m =1或m =3时,()f x 在x=2处均取得极小值,所以m 的值为1或3. 【20】当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A .1-B .12-C .12D .1【答案】B【解析】因为函数()f x 定义域为()0,∞+,所以依题可知,12f ,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-. 故选:B.【21】已知函数()321132f x x ax x =-+在区间1,32⎛⎫⎪⎝⎭上既有极大值又有极小值,则实数a 的取值范围是( ) A .()2,+∞ B .[)2,+∞C .52,2⎛⎫⎪⎝⎭D .102,3⎛⎫ ⎪⎝⎭【答案】C【解析】函数()321132f x x ax x =-+,导函数()21f x x ax '=-+.因为()f x 在1,32⎛⎫ ⎪⎝⎭上既有极大值又有极小值,所以()0f x '=在1,32⎛⎫⎪⎝⎭内应有两个不同的异号实数根.()10230132202a f a f f ⎧⎛⎫> ⎪⎪⎝⎭⎪⎪>⎪⎨<<⎪⎪⎪⎛⎫< ⎪⎪⎝⎭⎩''',解得:522a <<,实数a 的取值范围52,2⎛⎫⎪⎝⎭.故选:C .【22】已知函数()232xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值. 【解析】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=;(2)因为()232x f x x a -=+,则()()()()()()222222223223x a x x x x a f x x a x a -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下: x(),1-∞-1-()1,4-4()4,+∞()f x ' +-+()f x增 极大值 减极小值 增所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <.所以,()()max 11f x f =-=,()()min 144f x f ==-.【23】已知函数()(0)bf x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)若3c =,求a ,b ;(2)若()ln ≥f x x 在[)1,+∞上恒成立,求a 的取值范围. 【解析】(1)解:()(0)b f x ax c a x=++>,∴2()bf x a x '=-,所以()11f a b '=-=,即1b a =- 又()1121f a a c a c =+-+=-+. 又点()()1,1f 在切线1y x =-上,210a c ∴-+=,所以12c a =-,又3c =,所以1a =-,2b =-. (2)解:1()12(0)a f x ax a a x-=++->, ()ln ≥f x x 在[1,)∞+上恒成立,设()()ln g x f x x =-,则()()ln 0g x f x x =-在[1,)∞+上恒成立,min ()0g x ∴,又22221(1)()11(1)(1)()aa x x a a x x a g x a x x x x -------'=--==,而当11a a -=时12a =.11 1︒当11aa -≤即12a ≥时,()0g x '在[)1,+∞上恒成立, ∴1()(1)02min g x g a ==⇒;2︒当11aa ->即102a <<时,()0g x '=时1a x a -=,且当11ax a -<时,()0g x '<,当1ax a ->时,()0g x '>;则1()0min a gx g a -⎛⎫= ⎪⎝⎭①,又1()(1)210ag g a a -≤=-<与①矛盾,不符题意,故舍去. ∴综上所述,a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.。
§4导数的四则运算法则最新课程标准学科核心素养能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.1.会利用导数的四则运算法则求简单函数的导数.(数学运算)2.利用基本初等函数的导数公式和导数的四则运算法则解决与曲线的切线有关的问题.(数学运算)[教材要点]要点导数的运算法则若函数f(x),g(x)均为可导函数,则有导数运算法则语言叙述1.[f(x)±g(x)]′=f′(x)±g′(x)两个函数的和(差)的导数,等于这两个函数的导数的和(差).2.[f(x)g(x)]′=f′(x)·g(x)+f(x)g′(x)两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数.(g(x)≠0)两个函数的商的导数,等于分子的导数乘以分母,减去分子乘以分母的导数,再除以分母的平方.状元随笔法则1:函数的和(差)的导数导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形(一般化),即[u(x)±v(x)±…±w(x)]′=u ′(x)±v ′(x)±…±w ′(x).法则2:函数的积的导数(1)(特殊化)当g(x)=c(c为常数)时,法则2可简化为[cf(x)]′=c f ′(x)+c[f(x)]′=0+cf ′(x)=cf ′(x),即[cf(x)]′=cf ′(x).(2)由上述结论及法则1可得[af(x)+bg(x)]′=af ′(x)+bg ′(x),其中a,b为常数.(3)函数的积的导数可以推广到有限个函数的乘积的导数,即[u(x)v(x)×…×w(x)]′=u ′(x)v(x)×…×w(x)+u(x)v ′(x)×…×w(x)+…+u(x)v(x)×…×w ′(x).法则3:函数的商的导数(1)注意[]′≠.(2)(特殊化)当f(x)=1,g(x)≠0时,=,[]′=-.[基础自测]1.判断正误(正确的画“√”,错误的画“×”)(1)已知函数y=2ln x-2x,则y′=-2x ln 2.( )(2)已知函数y=3sin x+cos x,则y′=3cos x+sin x.( )(3)函数f(x)=x e x的导数是f′(x)=e x(x+1).( )(4)若函数f(x)=,则f′(x)=.( )2.已知函数f(x)=cos x+ln x,则f′(1)的值为( )A.1-sin 1 B.1+sin 1C.sin 1-1 D.-sin 13.函数y=sin x·cos x的导数是( )A.y′=cos2x+sin2x B.y′=cos2x-sin2xC.y′=2cos x·sin x D.y′=cos x·sin x4.若f(x)=(2x+a)2,且f′(2)=20,则a=________.题型一利用求导公式和法则求导例1 求下列函数的导数(1)y=x4-3x2-5x+6;(2)y=x2+ln x;(3)y=x2·sin x;(4)y=.方法归纳利用导数的公式及运算法则求导的思路跟踪训练1 (1)(多选题)下列求导运算中正确的是( )A.′=1+B.(lg x)′=C.′=D.(x2cos x)′=-2x sin x(2)求下列函数的导数①y=x2-2x-4ln x;②y=(x+1)(x+2)(x+3);③y=.题型二导数与曲线的切线问题例2 已知曲线y=在(2,2)处的切线与直线ax+2y+1=0平行,求实数a的值.变式探究1 本例条件不变,求该切线到直线ax+2y+1=0的距离.变式探究2 本例条件不变,求与直线y=-x平行且与曲线相切的直线方程.方法归纳应用求在某点处的切线方程,已知切线的方程或斜率求切点,以及涉及切线问题的综合应用.方法先求出函数的导数,若已知切点,则求出切线斜率、切线方程;若切点未知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.跟踪训练2 (1)设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,则b=________,c=________.(2)已知函数f(x)=x++b(x≠0),其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.易错辨析不能正确应用导数的运算法则致误例3 求函数y=的导数.解析:∵y==3x-x+5-,∴y′=(3x-x+5-)′=)′==-1=-1.【易错警示】出错原因纠错心得不对求导的式子进行化简,而是直接利用商的导数公式求解,且误记=致误.利用导数的四则运算法则求导时,应先把原式进行恒等变形进行化简或变形,如把乘法转化为加减法,把商的形式化成和差的形式.本题就是把商化成和差求导,这样容易计算.[课堂十分钟]1.若f(x)=x cos x,则f′=( )A. B.1C.- D.-12.函数y=2x(ln x+1)在x=1处的切线方程为( ) A.y=4x+2 B.y=2x-4C.y=4x-2 D.y=2x+43.(多选题)下列结论中正确的有( )A.若y=sin ,则y′=0B.若f(x)=3x2-f′(1)x,则f′(1)=3C.若y=-+x,则y′=-+1D.若y=sin x+cos x,则y′=cos x+sin x4.已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2),则f′(2)的值等于________.5.已知函数f(x)=x3+x-16(1)求f′(x);(2)求曲线y=f(x)在点(2,-6)处的切线的方程.§4导数的四则运算法则[基础自测]1.答案:(1)√(2)×(3)√(4)×2.解析:因为f′(x)=-sin x+,所以f′(1)=-sin 1+=1-sin 1.故选A.答案:A3.解析:y′=(sin x·cos x)′=cos x·cos x+sin x·(-sin x)=cos2x-sin2x.故选B.答案:B4.解析:f(x)=4x2+4ax+a2,∵f′(x)=8x+4a,∴f′(2)=16+4a=20,∴a=1.答案:1题型探究·课堂解透题型一例 1 解析:(1)y′=(x4-3x2-5x+6)′=(x4)′-(3x2)′-(5x)′+6′=4x3-6x -5.(2)y′=(x2+ln x)′=(x2)′+(ln x)′=2x+.(3)y′=(x2)′sin x+x2·(sin x)′=2x sin x+x2cos x.(4)y′===.跟踪训练1 解析:(1)′=1-,A错误;(lg x)′=,B正确;′=,C正确;(x2cos x)′=(x2)′cos x+x2(cos x)′=2x cos x-x2sin x.故选BC.(2)①y′=2x-2-;②∵y=(x+1)(x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11;③y′==.答案:(1)BC (2)见解析题型二例2 解析:因为y′==-,所以y′|x=2=-1,即-=-1.所以a=2.变式探究1 解析:由例2知切线方程为x+y-4=0,直线方程x+y+=0,所以所求距离d==.变式探究2 解析:由例2知y′=-.令-=-1,得x=0或2(x=0舍去),所以切线方程为x+y-4=0.跟踪训练2 解析:(1)f′(x)=x2-ax+b,由题意得即解得b=0,c=1.(2)f′(x)=1-,由导数的几何意义,得f′(2)=3,于是a=-8.由切点P(2,f(2))在直线y=3x+1上,可得f(2)=2-+b=-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x-+9.答案:(1)b=0,c=1 (2)见解析[课堂十分钟]1.解析:因为f′=cos x-x sin x,所以f′=-.故选C.答案:C2.解析:由已知y′=2(ln x+1)+2x·=2ln x+4,则y′|x=1=4,又x=1时,y=2,则切线方程为y=4x-2.故选C.答案:C3.解析:若y=sin =,则y′=0,故A正确;若f(x)=3x2-f′(1)·x,则f′(x)=6x-f′(1),令x=1,则f′(1)=6-f′(1),解得f′(1)=3,故B正确;若y=-+x,则y′=-+1,故C正确;若y=sin x+cos x,则y′=cos x-sin x,故D错误.故选ABC.答案:ABC4.解析:由f(x)=x2+3xf′(2),得f′(x)=2x+3f′(2),令x=2,则f′(2)=4+3f′(2),解得f′(2)=-2,答案:-25.解析:(1) f′=3x2+1(2)可判定点在曲线y=f上.∵f′(x)=3x2+1∴在点处的切线的斜率为k=f′=13.∴切线的方程为y+6=13,即y=13x-32.。
专题04导数及其应用解答题考纲解读三年高考分析1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),y =x ,y =x 2,y =1x的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.•常见基本初等函数的导数公式:(C )'=0(C 为常数);(x n )'=nx n -1,n ∈N ; (sin x )'=cos x ;(cos x )'=-sin x ; (e x )'=e x ;(a x )'=a x ln a (a >0,且a ≠1);(ln x )'=1x ;(log a x )'=1xlog a e (a >0,且a ≠1)•常用的导数运算法则:法则1:[u (x )±v (x )]'=u '(x )±v '(x ).法则2:[u (x )v (x )]'=u '(x )v (x )+u (x )v '(x ). 法则3:2()'()()()'()[]'(()0)()()u x u x v x u x v x v x v x v x -=≠ 3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.(2)了解微积分基本定理的含义. 导数的运算法则和导数的具体应用 是考查的重点,解题时常用到导函数的求解、分类讨论的数学思想、等价转化的数学思想等,考查学生的数学抽象能力、逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,较大难度.考查函数的单调性、极值、最值,利用函数的性质求参数范围;与方程、不等式等知识相结合命题,强化函数与方程思想、转化与化归思想、分类讨论思想的应用意识;题型以解答题为主,一般难度较大.1.【2019年天津理科20】设函数f(x)=e x cos x,g(x)为f(x)的导函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x∈[,]时,证明f(x)+g(x)(x)≥0;(Ⅲ)设x n为函数u(x)=f(x)﹣1在区间(2nπ,2nπ)内的零点,其中n∈N,证明2nπx n.【解答】(Ⅰ)解:由已知,f′(x)=e x(cos x﹣sin x),因此,当x∈(,)(k∈Z)时,有sin x>cos x,得f′(x)<0,f(x)单调递减;当x∈(,)(k∈Z)时,有sin x<cos x,得f′(x)>0,f(x)单调递增.∴f(x)的单调增区间为[,](k∈Z),单调减区间为[,](k∈Z);(Ⅱ)证明:记h(x)=f(x)+g(x)(),依题意及(Ⅰ),有g(x)=e x(cos x﹣sin x),从而h′(x)=f′(x)+g′(x)•()+g(x)•(﹣1)=g′(x)()<0.因此,h(x)在区间[,]上单调递减,有h(x)≥h()=f()=0.∴当x∈[,]时,f(x)+g(x)(x)≥0;(Ⅲ)证明:依题意,u(x n)=f(x n)﹣1=0,即.记y n=x n﹣2nπ,则y n∈(),且f(y n)e﹣2nπ(x∈N).由f(y n)=e﹣2nπ≤1=f(y0)及(Ⅰ),得y n≥y0,由(Ⅱ)知,当x∈(,)时,g′(x)<0,∴g(x)在[,]上为减函数,因此,g(y n)≤g(y0)<g()=0,又由(Ⅱ)知,,故.∴2nπx n.2.【2019年新课标3理科20】已知函数f(x)=2x3﹣ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b 的所有值;若不存在,说明理由.【解答】解:(1)f′(x)=6x2﹣2ax=6x(x).令f′(x)=6x(x)=0,解得x=0,或.①a=0时,f′(x)=6x2≥0,函数f(x)在R上单调递增.②a>0时,函数f(x)在(﹣∞,0),(,+∞)上单调递增,在(0,)上单调递减.③a<0时,函数f(x)在(﹣∞,),(0,+∞)上单调递增,在(,0)上单调递减.(2)由(1)可得:①a=0时,函数f(x)在[0,1]上单调递增.则f(0)=b=﹣1,f(1)=2﹣a+b=1,解得b=﹣1,a=0,满足条件.②a>0时,函数f(x)在[0,]上单调递减.1,即a时,函数f(x)在[0,1]上单调递减.则f(0)=b=1,f(1)=2﹣a+b=﹣1,解得b=1,a=4,满足条件.01,即0<a时,函数f(x)在[0,)上单调递减,在(,1]上单调递增.则f()a b=﹣1,而f(0)=b,f(1)=2﹣a+b>b,∴f(1)=2﹣a+b=1,联立解得:无解,舍去.③a<0时,函数f(x)在[0,1]上单调递增,则f(0)=b=﹣1,f(1)=2﹣a+b=1,解得b=﹣1,a=0,不满足条件,舍去.综上可得:存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1.a,b的所有值为:,或.3.【2019年全国新课标2理科20】已知函数f(x)=lnx.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.【解答】解析:(1)函数f(x)=lnx.定义域为:(0,1)∪(1,+∞);f′(x)0,(x>0且x≠1),∴f(x)在(0,1)和(1,+∞)上单调递增,①在(0,1)区间取值有,代入函数,由函数零点的定义得,∵f()<0,f()>0,f()•f()<0,∴f(x)在(0,1)有且仅有一个零点,②在(1,+∞)区间,区间取值有e,e2代入函数,由函数零点的定义得,又∵f(e)<0,f(e2)>0,f(e)•f(e2)<0,∴f(x)在(1,+∞)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0,曲线y=lnx,则有y′;曲线y=lnx在点A(x0,lnx0)处的切线方程为:y﹣lnx0(x﹣x0)即:y x﹣1+lnx0即:y x而曲线y=e x的切线在点(ln,)处的切线方程为:y(x﹣ln),即:y x,故曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.故得证.4.【2019年新课标1理科20】已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.【解答】证明:(1)f(x)的定义域为(﹣1,+∞),f′(x)=cos x,f″(x)=﹣sin x,令g(x)=﹣sin x,则g′(x)=﹣cos x0在(﹣1,)恒成立,∴f″(x)在(﹣1,)上为减函数,又∵f″(0)=1,f ″()=﹣11+1=0,由零点存在定理可知,函数f″(x)在(﹣1,)上存在唯一的零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;(2)由(1)知,当x∈(﹣1,0)时,f′(x)单调递增,f′(x)<f′(0)=0,f(x)单调递减;当x∈(0,x0)时,f′(x)单调递增,f′(x)>f′(0)=0,f(x)单调递增;由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f ′()0,由零点存在定理可知,函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f′(x)单调递减,f′(x)>f′(x1)=0,f(x)单调递增;当x∈()时,f′(x)单调递减,f′(x)<f′(x1)=0,f(x)单调递减.当x∈(,π)时,cos x<0,0,于是f′(x)=cos x0,f(x)单调递减,其中f ()=1﹣ln(1)>1﹣ln(1)=1﹣ln2.6>1﹣lne=0,f(π)=﹣ln(1+π)<﹣ln3<0.于是可得下表:x(﹣1,0)0 (0,x1)x1()()πf′(x)﹣0 + 0 ﹣﹣﹣﹣f(x)减函数0 增函数大于0 减函数大于0 减函数小于0结合单调性可知,函数f(x)在(﹣1,]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sin x﹣ln(1+x)<1﹣ln(1+π)<1﹣ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.5.【2019年北京理科19】已知函数f(x)x3﹣x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[﹣2,4]时,求证:x﹣6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)﹣(x+a)|(a∈R),记F(x)在区间[﹣2,4]上的最大值为M(a).当M(a)最小时,求a的值.【解答】解:(Ⅰ)f′(x),由f′(x)=1得x(x)=0,得.又f(0)=0,f(),∴y=x和,即y=x和y=x;(Ⅱ)证明:欲证x﹣6≤f(x)≤x,只需证﹣6≤f(x)﹣x≤0,令g(x)=f(x)﹣x,x∈[﹣2,4],则g′(x),可知g′(x)在[﹣2,0]为正,在(0,)为负,在[]为正,∴g(x)在[﹣2,0]递增,在[0,]递减,在[]递增,又g(﹣2)=﹣6,g(0)=0,g()6,g(4)=0,∴﹣6≤g(x)≤0,∴x﹣6≤f(x)≤x;(Ⅲ)由(Ⅱ)可得,F(x)=|f(x)﹣(x+a)|=|f(x)﹣x﹣a|=|g(x)﹣a|∵在[﹣2,4]上,﹣6≤g(x)≤0,令t=g(x),h(t)=|t﹣a|,则问题转化为当t∈[﹣6,0]时,h(t)的最大值M(a)的问题了,①当a≤﹣3时,M(a)=h(0)=|a|=﹣a,此时﹣a≥3,当a=﹣3时,M(a)取得最小值3;②当a≥﹣3时,M(a)=h(﹣6)=|﹣6﹣a|=|6+a|,∵6+a≥3,∴M(a)=6+a,也是a=﹣3时,M(a)最小为3.综上,当M(a)取最小值时a的值为﹣3.6.【2019年江苏19】设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则∉A,舍去.a=1,b=﹣3,则∉A,舍去.a=﹣3,b=3,则1∉A,舍去..a=3,b=1,则∉A,舍去.a=1,b=3,则∉A,舍去.a=3,b=﹣3,则1∈A,.因此a=3,b=﹣3,1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=43≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1∈,x2.x1<x2,x1+x2,x1x2,可得x=x1时,f(x)取得极大值为M,∵f′(x1)(2b+2)x1+b=0,可得:[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(x1)=(x1﹣b)(x1)[(2b﹣1)2b2x1+b2],∵﹣2b2+2b﹣2=﹣20,∴M在x1∈(0,]上单调递减,∴M.∴M.7.【2019年浙江22】已知实数a≠0,设函数f(x)=alnx,x>0.(Ⅰ)当a时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[,+∞)均有f(x),求a的取值范围.注意:e=2.71828……为自然对数的底数.【解答】解:(1)当a时,f(x),x>0,f′(x),∴函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(x),得0<a,当0<a时,f(x),等价于2lnx≥0,令t,则t,设g(t)=t22t2lnx,t,则g(t)(t)22lnx,(i)当x∈[,+∞)时,,则g(x)≥g(2),记p(x)=42lnx,x,则p′(x),列表讨论:x1 (1,+∞)()p′(x)﹣0 +↓极小值p(1)↑P(x)p ()∴p(x)≥p(1)=0,∴g(t)≥g(22p(x)≥0.(ii)当x∈[)时,g(t)≥g (),令q(x)=2lnx+(x+1),x∈[,],则q′(x )1>0,故q(x)在[,]上单调递增,∴q(x)≤q (),由(i)得q ()p ()p(1)=0,∴q(x)<0,∴g(t)≥g ()0,由(i)(ii)知对任意x∈[,+∞),t∈[2,+∞),g(t)≥0,即对任意x∈[,+∞),均有f(x ),综上所述,所求的a的取值范围是(0,].8.【2018年江苏19】记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x).对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x),x>0,由f′(x)=g′(x)得2ax,得x,f()g()lna2,得a;(3)f′(x)=﹣2x,g′(x),(x≠0),由f′(x0)=g′(x0),假设b>0,得b0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a,得a=x02,令h(x)=x2a,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上不间断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.9.【2018年新课标1理科21】已知函数f(x)x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x )1,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)≥0,即f′(x)≤0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0 + 0 ﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则2,则问题转为证明1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln x1,即lnx1+lnx1>x1,即证2lnx1>x1在(0,1)上恒成立,设h(x)=2lnx﹣x,(0<x<1),其中h(1)=0,求导得h′(x)10,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x0,故2lnx>x,则a﹣2成立.(2)另解:注意到f()=x alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证a﹣2,只要证a﹣2,即证2alnx2﹣ax20,(x2>1),构造函数h(x)=2alnx﹣ax,(x>1),h′(x)0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax0成立,即2alnx2﹣ax20,(x2>1)成立.即a﹣2成立.10.【2018年新课标2理科21】已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2)方法⇔a在(0,+∞)只有一个根,即函数y=a与G(x)的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2).方法二:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点..②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.h′(x)=ax(x﹣2)e﹣x,当x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0,∴h(x)在(0,2)递减,在(2,+∞)递增,∴,(x≥0).当h(2)<0时,即a,由于h(0)=1,当x>0时,e x>x2,可得h(4a)=110.h(x)在(0,+∞)有2个零点当h(2)>0时,即a,h(x)在(0,+∞)没有零点,当h(2)=0时,即a,h(x)在(0,+∞)只有一个零点,综上,f(x)在(0,+∞)只有一个零点时,a.11.【2018年新课标3理科21】已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)2,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1),显然h″(x)单调递减,①令h″(0)=0,解得a.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若a<0,则h″(0)=1+6a>0,h″(1)=(2a﹣1)(1)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,∴当0<x<x0时,h″(x)>0,h′(x)单调递增,∴h′(x)>h′(0)=0,即f′(x)>0,∴f(x)在(0,x0)上单调递增,不符合题意;③若a,则h″(0)=1+6a<0,h″(1)=(1﹣2a)e2>0,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,∴当x1<x<0时,h″(x)<0,h′(x)单调递减,∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x1,0)上单调递减,不符合题意.综上,a.12.【2018年浙江22】已知函数f(x)lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)lnx,∴x>0,f′(x),∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴,∵x1≠x2,∴,由基本不等式得:,∵x1≠x2,∴x1x2>256,由题意得f(x1)+f(x2)ln(x1x2),设g(x),则,∴列表讨论:x(0,16)16 (16,+∞)g′(x)﹣0 +g(x)↓2﹣4ln2 ↑∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(k)≤n(k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k,设h(x),则h′(x),其中g(x)lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.13.【2018年北京理科18】设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,且f(1)=3e≠0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a,则f′(x)(x﹣2)2e x≥0,f(x)递增,无极值;若a,则2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a,则2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).14.【2018年天津理科20】已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2);(Ⅲ)证明当a时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:x(﹣∞,0)0 (0,+∞)h′(x)﹣0 +h(x)↓极小值↑∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x),可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2);(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a时,方程组由①得,代入②得:,③因此,只需证明当a时,关于x1的方程③存在实数解.设函数u(x),既要证明当a时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x).∴存在实数t,使得u(t)<0.因此,当a时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.15.【2017年江苏20】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于,求实数a的取值范围.【解答】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x.由于当x时g′(x)>0,g(x)=f′(x)单调递增;当x时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f()=0,即1=0,所以b(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有实根,所以4a2﹣12b>0,即a20,解得a>3,所以b(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′()=b,设x1,x2是y=f(x)的两个极值点,则x1+x2,x1x2,所以f(x1)+f(x2)a()+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+22,又因为f(x),f′(x)这两个函数的所有极值之和不小于,所以b2,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].16.【2017年新课标1理科21】已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x)(e x),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x)(e x)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)ln0,∴1ln0,即ln1>0,设t,则g(t)=lnt+t﹣1,(t>0),求导g′(t)1,由g(1)=0,∴t1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x)(e x),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x)(e x)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1ln0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1ln0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(1),则f(n0)(a a﹣2)﹣n0n0n0>0,由ln(1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).17.【2017年新课标2理科21】已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x时h′(x)<0、当x时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以1,解得a=1;另解:因为f(1)=0,所以f(x)≥0等价于f(x)在x>0时的最小值为f(1),所以等价于f(x)在x=1处是极小值,所以解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2,令t′(x)=0,解得:x,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)x0﹣x0lnx0x0+2x0﹣2x0,由x0可知f(x0)<(x0)max;由f′()<0可知x0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f();综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.18.【2017年新课标3理科21】已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1)(1)…(1)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),若a≠1,则f(a)<f(1)=0,从而与f(x)≥0矛盾;所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1),k∈N*.ln(1)+ln(1)+…+ln(1)11,即(1)(1)…(1)<e;因为m为整数,且对于任意正整数n,(1)(1)…(1)<m成立,当n=3时,不等式左边大于2,所以m的最小值为3.19.【2017年浙江20】已知函数f(x)=(x)e﹣x(x).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x)e﹣x(x),导数f′(x)=(1••2)e﹣x﹣(x)e﹣x=(1﹣x)e﹣x=(1﹣x)(1)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1)e﹣x,可得f′(x)=0时,x=1或,当x<1时,f′(x)<0,f(x)递减;当1<x时,f′(x)>0,f(x)递增;当x时,f′(x)<0,f(x)递减,且x⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f(),f(1)=0,f(),即有f(x)的最大值为,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,].20.【2017年上海21】设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f (x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.【解答】(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k).又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1•g(x),则对任意x0∈R,h(x0+T g)=c1•g(x0+T g)=c1•g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h.若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2).又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾.综上,f(x)>0恒成立.由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]⊆[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=R.h(x0)=g(x0)•f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)•f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0.因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c.而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.综上,必要性得证.21.【2017年北京理科19】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()cos.22.【2017年天津理科20】设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|x0|.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+ ﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H 2(x )=g (x 0)(x ﹣x 0)﹣f (x ),则H ′2(x )=g (x 0)﹣g (x ).由(Ⅰ)知,g (x )在[1,2]上单调递增,故当x ∈[1,x 0)时,H ′2(x )>0,H 2(x )单调递增;当x ∈(x 0,2]时,H ′2(x )<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )>H 2(x 0)=0,可得得H 2(m )<0即h (x 0)<0,. 所以,h (m )h (x 0)<0.(Ⅲ)对于任意的正整数p ,q ,且,令m,函数h (x )=g (x )(m ﹣x 0)﹣f (m ).由(Ⅱ)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点; 当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g (x 1)(x 0)﹣f ()=0.由(Ⅰ)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2),于是|x 0|.因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而x 0,故f ()≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|≥1.所以|x 0|.所以,只要取A =g (2),就有|x 0|.1.【湖北省黄冈中学2019届高三第三次模拟考试】已知函数()||ln (0)f x x a x a =-->. (Ⅰ)讨论()f x 的单调性;(Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(Ⅰ)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a--≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x-=-=',此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(Ⅱ)由(Ⅰ)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x<-.所以 222222ln 2ln 3ln 23n n L +++22211111123n <-+-+-L 222111123n n ⎛⎫=--+++ ⎪⎝⎭L 11112334(1)n n n ⎛⎫<--+++ ⎪⨯⨯+⎝⎭L 11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.2.【湖南省师范大学附属中学2019届高三下学期模拟(三)】已知函数()ln 1f x x ax =-+,其中a 为实常数.(1)若当0a >时,()f x 在区间[1,]e 上的最大值为1-,求a 的值;(2)对任意不同两点()()11,A x f x ,()()22,B x f x ,设直线AB 的斜率为k ,若120x x k ++>恒成立,求a 的取值范围.【答案】(1) 2a = (2) (,22]-∞【解析】 (1)1()(0)f x a x x '=->,令1()0f x a x '=->,则10x a <<. 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.①当101a<≤,即1a ≥时,()f x 在区间[]1,e 上单调递减,则max ()(1)1f x f a ==-+, 由已知,11a -+=-,即2a =,符合题意. ②当11e a<<时,即11a e <<时,()f x 在区间上单调递增,在上单调递减,则max 1()ln f x f a a ⎛⎫==- ⎪⎝⎭,由已知,ln 1a -=-,即a e =,不符合题意,舍去. ③当1e a ≥,即10a e<≤时,()f x 在区间[]1,e 上单调递增,则, 由已知,21ae -=-,即3a e=,不符合题意,舍去.综上分析,2a =. (2)由题意,()()1212f x f x k x x -=-,则原不等式化为()()1212120f x f x x x x x -++>-, 不妨设120x x >>,则()()()()1212120x x x x f x f x +-+->,即()()2212120x x f x f x -+->,即()()221122f x x f x x +>+.设22()()ln 1g x f x x x x ax =+=+-+,则2121()2x ax g x x a x x'-+=+-=,由已知,当120x x >>时,不等式()()12g x g x >恒成立,则()g x 在(0,)+∞上是增函数.所以当0x >时,()0g x '≥,即2210x ax -+≥,即22112x a x x x+≤=+恒成立,因为1222x x +≥12x x =,即2x =时取等号,所以min 122x x ⎛⎫+= ⎪⎝⎭故a 的取值范围是(,2]-∞.3.【2019年湖北省武汉市高考数学(5月份)】已知函数2()12xx f x e =--(1)若直线y x a =+为()f x 的切线,求a 的值.(2)若[)0,x ∀∈+∞,()f x bx ≥恒成立,求b 的取值范围. 【答案】(1)0;(2)1b ≤ 【解析】(1)设切点为()00,P x y ,()'xf x e x =-,∴()000'1xf x e x =-=,令()xh x e x =-,则()'1xh x e =-,当0x >时,()'0h x >,()h x 在()0,∞+上为增函数; 当0x <时,()'0h x <,()h x 在(),0-∞上为减函数; 所以()()min 01h x h ==,所以00x =, 又0200112xe x x a --=+,所以0a =. (2)[)0,x ∀∈+∞,()f x bx ≥恒成立2102xx e bx ⇔---≥,[)0,x ∈+∞.令2()12xx g x e bx =---,[)0,x ∈+∞.()()'x g x e x b h x =--=,()'1x h x e =-,当0x >时,()'10xh x e =->,所以()h x 在[)0,+∞上为增函数,()min 1h x b =-,①若1b ≤,则当0x >时'()0g x >,故()g x 在[)0,+∞上为增函数,故[)0,x ∈+∞时,有()()00g x g ≥=即2102xx e bx ---≥恒成立,满足题意.②若1b >,因为()'g x 为()0,∞+上的增函数且()'010g b =-<,()'ln 2ln ln 2g b b b =--⎡⎤⎣⎦, 令()ln ln 2s b b b =--,其中1b >,()1'10s b b=->, 所以()s b 在()1,+∞为增函数,所以()()11ln 20s b s >=->,故存在0x ,使得()0'0g x =且()00,x x ∈时,()'0g x <,()g x 在()00,x 为减函数,故当()00,x x ∈时,()()00g x g <=,矛盾,舍去.综上可得:1b ≤.4.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知函数()()21ln ,2f x x xg x mx ==. (1)若函数()f x 与()g x 的图象上存在关于原点对称的点,求实数m 的取值范围;(2)设()()()F x f x g x =-,已知()F x 在()0,∞+上存在两个极值点12,x x ,且12x x <,求证:2122x x e >(其中e 为自然对数的底数).【答案】(1)2m e≥-;(2)证明见解析. 【解析】(1)函数()f x 与()g x 的图像上存在关于原点对称的点, 即21()()2g x m x --=--的图像与函数()ln f x x x =的图像有交点, 即21()ln 2m x x x --=在(0,)+∞上有解. 即1ln 2x m x=-在(0,)+∞上有解. 设ln ()x x x ϕ=-,(0x >),则2ln 1()x x x ϕ'-=当(0,)x e ∈时,()x ϕ为减函数;当(,)x e ∈+∞时,()x ϕ为增函数,所以min 1()()x e e ϕϕ==-,即2m e≥-. (2)21()()()ln 2F x f x g x x x mx =-=-,()ln 1F x x mx '=-+()F x 在(0,)+∞上存在两个极值点1x ,2x ,且12x x <,所以1122ln 10ln 10x mx x mx -+=⎧⎨-+=⎩ 因为1212ln ln 2x x m x x ++=+且1212ln ln x x m x x -=-,所以12121212ln ln 2ln ln x x x x x x x x ++-=+-,即112212112112221lnln ln 2ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪+⎝⎭++==-- 设12(0,1)x t x =∈,则12(1)ln ln ln 21t t x x t +++=- 要证2122x x e >,即证12ln ln 22x x ++>,只需证(1)ln 21t t t +>-,即证2(1)ln 01t t t --<+设2(1)()ln 1t h t t t -=-+,22214(1)()0(1)(1)t h t t t t t '-=-=>++, 则2(1)()ln 1t h t t t -=-+在(0,1)上单调递增,()(1)0h t h <=, 即2(1)()ln 01t h t t t -=-<+ 所以,12ln ln 2x x +>即2122x x e >.5.【广东省深圳市高级中学2019届高三适应性考试(6月)】已知函数()xf x e =,()()210g x ax x a =++>.(1)设()()()g x F x f x =,讨论函数()F x 的单调性;(2)若102a <≤,证明:()()f x g x >在()0,∞+恒成立. 【答案】(1)见解析;(2)见解析 【解析】(1)因为2()1()()xg x ax x F x f x e++==, 所以221(21)'()xxa ax x ax a x a F x e e -⎛⎫-- ⎪-+-⎝⎭==, ①若12a =,2'()0xax F x e-=≤.∴()F x 在R 上单调递减. ②若12a >,则210a a->,当0x <,或21a x a ->时,'()0F x <,当210a x a-<<时,'()0F x >, ∴()F x 在(,0)-∞,21,a a -⎛⎫+∞ ⎪⎝⎭上单调递减,在210,a a -⎛⎫⎪⎝⎭上单调递增. ③若102a <<,则210a a-<, 当21a x a -<,或0x >时,'()0F x <,当210a x a-<<时,'()0F x >. ∴()F x 在21,a a -⎛⎫-∞ ⎪⎝⎭,(0,)+∞上单调递减,在21,0a a -⎛⎫⎪⎝⎭上单调递增. (2)∵102a <≤,∴221112ax x x x ++≤++. 设21()12xh x e x x =---,则'()1x h x e x =--. 设()'()1x p x h x e x ==--,则'()1xp x e =-,在(0,)+∞上,'()0p x ≥恒成立.∴)'(h x 在(0,)+∞上单调递增.又∵'(0)0h =,∴(0,)x ∈+∞时,'()0h x >,所以()h x 在(0,)+∞上单调递增, ∴()(0)0h x h >=,∴21102xx e x --->,2112x x e x >++, 所以221112xe x x ax x >++≥++, 所以()()f x g x >在(0,)+∞上恒成立.6.【湖南省师范大学附属中学2019届高三下学期模拟(三)】已知函数1()ln af x a x x x-=-++. (1)当2a ≥时,求函数()f x 的单调区间;(2)设()23xg x e mx =+-,当21a e =+时,对任意1[1,)x ∈+∞,存在2[1,)x ∈+∞,使212()2()f x e g x +≥,证明:2m e e ≤-.【答案】(1)见解析;(2)见证明 【解析】(1)函数()f x 的定义域为(0,)+∞, 又221(1)[(1)]()1a a x x a f x x x x'----=-++=, 由()0f x '=,得1x =或1x a =-.当2a >即11a ->时,由()0f x '<得11x a <<-,由()0f x '>得01x <<或1x a >-; 当2a =即11a -=时,当0x >时都有()0f x '≥;∴当2a >时,单调减区间是()1,1a -,单调增区间是()0,1,()1,a -+∞;当2a =时,单调增区间是()0,+∞,没有单调减区间;(2)当21a e =+时,由(1)知()f x 在()21,e 单调递减,在()2,e +∞单调递增. 从而()f x 在[)1,+∞上的最小值为22()3f e e =--.对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()()2212g x f x e ≤+,即存在[)21,x ∈+∞,使的值不超过()22f x e +在区间[)1,+∞上的最小值23e -.由222e 32e e 3xmx --+≥+-得22xmx e e +≤,22xe e m x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()()22223222()x x x x e x e e xxe e e h x x x ---+-'==-Q ,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22e 20xxxx xe exee +->-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-, 从而实数2m e e ≤-得证7.【山东省临沂市2019年普通高考模拟考试(三模)】已知函数()ln xf x a x e=+,其中a 为常数. (1)若直线2y x e=是曲线()y f x =的一条切线,求实数a 的值; (2)当1a =-时,若函数()()ln xg x f x b x=-+在[)1+∞,上有两个零点.求实数b 的取值范围. 【答案】(1) 1a = (2) 11,b e e ⎡⎫∈-⎪⎢⎣⎭【解析】(1)函数()f x 的定义域为(0,)+∞,1()a x ae f x e x ex +'=+=, 曲线()y f x =在点()00,x y 处的切线方程为2y x e=.。
导数及其应用【2019年高考考纲解读】高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.(4)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;【重点、难点剖析】1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式∈(2)导数的四则运算①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③⎣⎢⎡⎦⎥⎤u x v x ′=ux v x -u x vx[v x ]2(v (x )≠0).3.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .【感悟提升】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.【变式探究】(2018·全国Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. 答案 2x -y =0解析 ∵y =2ln(x +1),∴y ′=2x +1.令x =0,得y ′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴切线方程为y =2x ,即2x -y =0.【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线的切线,则b = . 【答案】1ln2-【解析】对函数ln 2y x =+求导得1y x'=,对求导得11y x '=+,设直线y kx b =+与曲线ln 2y x =+相切于点111(,)P x y ,与曲线相切于点222(,)P x y ,则,由点111(,)P x y 在切线上得,由点222(,)P x y 在切线上得,这两条直线表示同一条直线,所以,解得.【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值.求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值.【举一反三】(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 ∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1). 答案 (1,1)【变式探究】 (1)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1(2)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【命题意图】 (1)本题主要考查函数求导法则及导数的几何意义. (2)本题主要考查导数的几何意义,意在考查考生的运算求解能力. 【答案】(1)C (2)-3【感悟提升】1.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.2.利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.题型二、利用导数研究函数的单调性 【例2】已知函数f (x )=2e x-kx -2. (1)讨论函数f (x )在(0,+∞)内的单调性;(2)若存在正数m ,对于任意的x ∈(0,m ),不等式|f (x )|>2x 恒成立,求正实数k 的取值范围. 解 (1)由题意得f ′(x )=2e x -k ,x ∈(0,+∞), 因为x >0,所以2e x>2.当k ≤2时,f ′(x )>0,此时f (x )在(0,+∞)内单调递增. 当k >2时,由f ′(x )>0得x >ln k2,此时f (x )单调递增;由f ′(x )<0得0<x <ln k2,此时f (x )单调递减.综上,当k ≤2时,f (x )在(0,+∞)内单调递增; 当k >2时,f (x )在⎝⎛⎭⎪⎫0,ln k 2内单调递减,在⎝ ⎛⎭⎪⎫ln k2,+∞内单调递增. 校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足关系式y =mx -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套. (1)求m 的值; 校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留一位小数) 【解析】解 (1)因为x =4时,y =21, 代入关系式y =mx -2+4(x -6)2,得 m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2, 所以每日销售套题所获得的利润f (x )=(x -2)10x -2+4(x -6)2=4x 3-56x 2+240x -278(2<x <6), 从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝ ⎛⎭⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增;在(103,6)上,f ′(x ) <0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值.故当销售价格为3.3元/套时, 网校每日销售套题所获得的利润最大.【规律方法】在利用导数求实际问题中的最大值和最小值时,不仅要注意函数模型中的定义域,还要注意实际问题的意义,不符合的解要舍去. 题型五 利用导数解决不等式的有关问题【例5】(2016·高考全国Ⅱ卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1+∞)时,f (x )>0,求a 的取值范围. (1)f (x )的定义域为(0,+∞).当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0. ①当a ≤2,x ∈(1+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0. 综上,a 的取值范围是(-∞,2].【举一反三】 (2015·湖南,21)已知a >0,函数f (x )=e axsin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点,证明: (1)数列{f (x n )}是等比数列;(2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.证明 (1)f ′(x )=a e axsin x +e axcos x =e ax(a sin x +cos x ) =a 2+1e axsin(x +φ), 其中tan φ=1a ,0<φ<π2.令f ′(x )=0,由x ≥0得x +φ=m π, 即x =m π-φ,m ∈N *,对k ∈N ,若2k π<x +φ<(2k +1)π, 即2k π-φ<x <(2k +1)π-φ, 则f ′(x )>0;若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0. 因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反.于是当x =m π-φ(m ∈N *)时,f (x )取得极值, 所以x n =n π-φ(n ∈N *). 此时,f (x n )=e a (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数,故数列{f (x n )}是首项为f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *;x n <|f (x n )|恒成立,即n π-φ<1a 2+1ea (n π-φ)恒成立,等价于a 2+1a <ea (n π-φ)a (n π-φ)(*)恒成立,因为(a >0).设g (t )=e t t (t >0),则g ′(t )=e t(t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减;当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a<g (1)=e ,即只需a >1e 2-1. 而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2. 于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g (ax n )>g (1)=e =a 2+1a .故(*)式亦恒成立. 综上所述,若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.【变式探究】(2015·福建,20)已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R ). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0),恒有f (x )>g (x ); (3)确定k 的所有可能取值,使得存在t >0,对任意的x ∈(0,t ),恒有|f (x )-g (x )|<x 2. (1)证明 令F (x )=f (x )-x =ln(1+x )-x ,x ∈(0,+∞), 则有F ′(x )=11+x -1=-xx +1.当x ∈(0,+∞)时,F ′(x )<0, 所以F (x )在(0,+∞)上单调递减,故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x .(2)证明 令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈(0,+∞), 则有G ′(x )=1x +1-k =-kx +(1-k )x +1. 当k ≤0时,G ′(x )>0,故G (x )在(0,+∞)单调递增,G (x )>G (0)=0, 故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k-1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在(0,x 0)单调递增,所以G (x )>G (0)=0, 即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0),恒有f (x )>g (x ). (3)解 当k >1时,由(1)知,对于∀x ∈ (0,+∞),g (x )>x >f (x ),故g (x )>f (x ), |f (x )-g (x )|=g (x )-f (x ) =kx -ln(1+x ).M (x )=kx -ln(1+x )-x 2,x ∈[0,+∞).则有M ′(x )=k -11+x -2x=-2x 2+(k -2)x +k -1x +1.故当x ∈⎝ ⎛⎭⎪⎫0,k -2+(k -2)2+8(k -1)4时,M ′(x )>0,M (x )在⎣⎢⎡⎭⎪⎫0,k -2+(k -2)2+8(k -1)4上单调递增,故M (x )>M (0)=0,即|f (x )-g (x )|>x 2,所以满足题意的t 不存在. 当k <1时,由(2)知,存在x 0>0,使得当x ∈(0,x 0)时,f (x )>g (x ), 此时|f (x )-g (x )|=f (x )-g (x )= ln(1+x )-kx .令N (x )=ln(1+x )-kx -x 2,x ∈[0,+∞). 则有N ′(x )=1x +1-k -2x =-2x 2-(k +2)x +1-k x +1.当x ∈⎝ ⎛⎭⎪⎫0,-(k +2)+(k +2)2+8(1-k )4时,N ′(x )>0,N (x )在⎣⎢⎡⎭⎪⎫0,-(k +2)+(k +2)2+8(1-k )4上单调递增,故N (x )>N (0)=0,即f (x )-g (x )>x 2.记x 0与-(k +2)+(k +2)2+8(1-k )4中的较小者为x 1,则当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2. 故满足题意的t 不存在.当k =1时,由(1)知,当x >0时,|f (x )-g (x )|=g (x )-f (x )=x -ln(1+x ),令H (x )=x -ln(1+x )-x 2,x ∈[0,+∞), 则有H ′(x )=1-11+x -2x =-2x 2-xx +1.当x >0时,H ′(x )<0,所以H (x )在[0,+∞)上单调递减, 故H (x )<H (0)=0.故当x >0时,恒有|f (x )-g (x )|<x 2. 此时,任意正实数t 均满足题意. 综上,k =1.法二 (1)(2)证明 同法一.(3)解 当k >1时,由(1)知,对于∀x ∈(0,+∞),g (x )>x >f (x ), 故|f (x )-g (x )|=g (x )-f (x )=kx -ln(1+x )>kx -x =(k -1)x . 令(k -1)x >x 2,解得0<x <k -1.从而得到,当k >1时,对于x ∈(0,k -1), 恒有|f (x )-g (x )|>x 2, 故满足题意的t 不存在. 当k <1时,取k 1=k +12,从而k <k 1<1,由(2)知,存在x 0>0,使得x ∈(0,x 0),f (x )>k 1x >kx =g (x ),此时|f (x )-g (x )|=f (x )-g (x )>(k 1-k )x =1-k2x ,令1-k 2x >x 2,解得0<x <1-k2, 此时f (x )-g (x )>x 2. 记x 0与1-k 2的较小者为x 1,当x ∈(0,x 1)时,恒有|f (x )-g (x )|>x 2. 故满足题意的t 不存在.当k =1时,由(1)知,x >0,|f (x )-g (x )|=f (x )-g (x )=x -ln(1+x ), 令M (x )=x -ln(1+x )-x 2,x ∈[0,+∞), 则有M ′(x )=1-11+x -2x =-2x 2-xx +1.当x >0时,M ′(x )<0,所以M (x )在[0,+∞)上单调递减,故M (x )<M (0)=0.故当x >0时, 恒有|f (x )-g (x )|<x 2,此时,任意正实数t 均满足题意. 综上,k =1.题型六 函数与导数的综合问题【例6】(2016·高考全国Ⅰ卷)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈ (-∞,1),f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 22x -+a (x 2-1)2, 而f (x 2)=(x 2-2)e 2x +a (x 2-1)2=0,所以f (2-x 2)=-x 2e 22x --(x 2-2)e x 2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x). 所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.【举一反三】 (2015·广东,19)设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤3a -2e -1.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x∀x ∈R ,f ′(x )≥0恒成立.∴f (x )的单调增区间为(-∞,+∞).(2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a ,∵a >1,∴f (0)<0,f (a )>2a e a-a >2a -a =a >0,∴f (0)·f (a )<0,∴f (x )在(0,a )上有一零点,又∵f (x )在(-∞,+∞)上递增,∴f (x )在(0,a )上仅有一个零点,∴f (x )在(-∞,+∞)上仅有一个零点.(3)证明 f ′(x )=(x +1)2e x ,设P (x 0,y 0),则f ′(x 0)=e x 0(x 0+1)2=0,∴x 0=-1,把x 0=-1,代入y =f (x )得y 0=2e-a , ∴k OP =a -2e . f ′(m )=e m (m +1)2=a -2e,令g (m )=e m -(m +1),g ′(m )=e m -1.令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上增.令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上减.∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m≥m +1.∴e m (m +1)2≥(m +1)3,即a -2e≥(m +1)3. ∴m +1≤3a -2e ,即m ≤3a -2e -1. 【变式探究】设函数f (x )=xe 2x +c (e =2.718 28…是自然对数的底数,c ∈R ).(1)求f (x )的单调区间、最大值.(2)讨论关于x 的方程|ln x |=f (x )根的个数.【解析】解 (1)f ′(x )=e 2x -2x e 2x e 2x 2=1-2x e2x , 由f ′(x )>0得x <12,由f ′(x )<0得x >12. 所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,12,递减区间为⎝ ⎛⎭⎪⎫12,+∞.所以f (x )max =f ⎝ ⎛⎭⎪⎫12=12e+c . (2)由已知|ln x |=f (x )得|ln x |-x e2x =c ,x ∈(0,+∞), 令g (x )=|ln x |-x e2x ,y =c . ①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -x e2x . 所以g ′(x )=1x +2x -1e2x >0. 所以g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -x e2x . 所以g ′(x )=-1x -1-2x e 2x =1e 2x ⎣⎢⎡⎦⎥⎤-e 2x x2x -1. 因为e 2x ∈(1,e 2),e 2x >1>x >0,所以-e 2xx<-1,而2x -1<1.所以g ′(x )<0,即g (x )在(0,1)上单调递减.由①②可知,当x∈(0,+∞)时,g(x)≥g(1)=-1e2 .由数形结合知,当c<-1e2时,方程|ln x|=f(x)根的个数为0;当c=-1e2时,方程|ln x|=f(x)根的个数为1;当c>-1e2时,方程|ln x|=f(x)根的个数为2.【规律方法】(1)本题第(1)问,利用了函数单调的充分条件:“若f′(x)>0,则f(x)单调递增,若f′(x)<0,则f(x)单调递减”;求出函数的单调区间,而对于函数的最值需谨记函数在闭区间上一定存在最值,在开区间上函数不一定存在最值,若存在,一定是极值.(2)本题第(2)问,借助转化与数形结合的思想,把方程根的个数转化为两个函数图象交点的个数,利用极值解决问题.。
导数及其应用专题讲解【知识点归纳+概念理解】1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量()()00x f x x f y -∆+=∆,比值xy ∆∆叫做函数()x f y =在0x 到x x ∆+0之间的平均变化率,即x y ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作()0'x f 或0'x x y =。
即f (x 0)=0lim→∆x xy ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明: (1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤:① 求函数的增量y ∆=f (x 0+x ∆)-f (x 0);② 求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00; ③ 取极限,得导数()0'x f =xy x ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是()0'x f 。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.导数的物理意义如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度()t s v '=。
如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度()t v a '=。
数学高考综合复习专题之导数及其应用 四
例4、在曲线C: 上,求斜率最小的切线所对应的切点,并证明曲线C关于该点对称。
解: (1) ∴当 时, 取得最小值-13 又当 时, ∴斜率最小的切线对应的切点为A(2,-12);
(2)证明:设 为曲线C上任意一点,则点P关于点A的对称点Q的坐标为
且有 ① ∴将 代入 的解析式得
, ∴点 坐标为方程 的解 ∴
注意到P,Q的任意性,由此断定曲线C关于点A成中心对称。 例5、已知曲线 ,其中 ,且均为可导函数, 求证:两曲线在公共点处相切。 证明:注意到两曲线在公共点处相切当且仅当它们在公共点处的切线重合, 设上述两曲线的公共点为 ,则有
, , ∴ , ∴ ,
∴ , ∴ 于是,对于 有 ; ① 对于 ,有 ② ∴由①得 , 由②得
∴ ,即两曲线在公共点处的切线斜率相等, ∴两曲线在公共点处的切线重合 ∴两曲线在公共点处相切。
例6、
(1)是否存在这样的k值,使函数 在区间(1,2)上递减,在(2,+∞)上递增,若存在,求出这样的k值;
(2)若 恰有三个单调区间,试确定 的取值范围,并求出这三个单调区间。
解: (1) 由题意,当 时 ,当x∈(2,+∞) 时 , ∴由函数 的连续性可知 , 即 整理得
解得 或 验证:
(Ⅰ)当 时, ∴若 ,则 ;若 , 则 , 符合题意;
(Ⅱ)当 时, , 显然不合题意。
于是综上可知,存在 使 在(1,2)上递减,在(2,+∞)上递增。
(2) 若 ,则 ,此时 只有一个增区间 ,与题设矛盾; 若 ,则 ,此时 只有一个增区间 ,与题设矛盾;
若 ,则 并且当 时, ; 当 时, ∴综合可知,当 时, 恰有三个单调区间:
减区间 ;增区间 点评:对于(1),由已知条件得 ,并由此获得k的可能取值,进而再利用已知条件对所得k值逐一验证,这是开放性问题中寻求待定系数之值的基本策略。
例7、已知函数 ,当且仅当 时, 取得极值,并且极大值比极小值大4. (1)求常数 的值;
第2讲 导数及其应用
A 组 基础达标
1. 在平面直角坐标系xOy 中,若曲线y =a ln x +x 在x =a 处的切线过原点,则实数a 的值为________.
2. (2019·海门中学)若函数f (x )=ax -的图象在点(1,f (1))处的切线过点(2,4),则a =3x
________.
3. (2019·南菁中学)已知f (x )在R 上连续可导,f ′(x )为其导函数,且f (x )=e x +e -x -f ′(1)x ·(e x -e -x ),那么f ′(2)+f ′(-2)-f ′(0)f ′(1)=________.
4. (2019·南通一中)若函数f (x )=ax 2+(1-a )x +是奇函数,则曲线y =f (x )在x =1处的切2x
线的倾斜角为________.
5. 若函数f (x )=e x +x 的零点在区间(k -1,k )(k ∈R )内,则k =________.
6.(2019·南方凤凰台密题)已知幂函数f (x )=x a 经过点(9,3),那么该函数在点(9,3)处的切线与坐标轴围成的三角形的面积为________.
7. (2019·江苏百校大联考)已知函数f (x )=那么不等式f (x )<f 的解集是{2x -x ,x ≥1,x ,x <1,)(2x )
____________.
8. 若点P ,Q 分别在函数y =e x ,y =ln x 的图象上,则P ,Q 两点之间距离的最小值为________.
9. (2019·南方凤凰台密题)已知函数f (x )=ax 2-(a +1)x +ln x .12
(1) 当a =1时,求y =f (x )的图象在x =2处的切线方程;
(2) 当a >0时,若f (x )的极大值为-,求a 的值.54
B 组 能力提升
1. (2019·南师附中)将函数y =e x (e 为自然对数的底数)的图象绕坐标原点O 顺时针旋转角θ后第一次与x 轴相切,则tan θ=________.
2. 在平面直角坐标系xOy 中,已知曲线y =
(m >0)在x =1处的切线为l ,那么点(2,-m x +11)到直线l 的距离的最大值为________.
3. 若函数f (x )=的图象上存在关于原点对称的点,则实数a 的取值范{x 2+a x
-4,x <0,2x ,x >0)
围是________.
4. (2019·启东联考)设函数h (x )的定义域为D ,若满足条件:存在[m ,n ] D ,使得h (x )在[m ,n ]上的值域为[2m ,2n ],则称h (x )为“倍胀函数”.若函数f (x )=a x (a >1)为“倍胀函数”,则实数a 的取值范围是________.
5. (2019·徐州考前模拟)已知函数f (x )=x -+a ln x .1x
(1) 若曲线y =f (x )在x =1处的切线的斜率为3,求实数a 的值;
(2) 若函数f (x )在区间[1,2]上存在极小值,求实数a 的取值范围;
(3) 如果f (x )<0的解集中只有一个整数,求实数a 的取值范围.
6. (2019·南方凤凰台密题)已知g (t )=(t +1)ln t -(t -1)ln b ,t ∈(1,+∞).
(1) 求证:若0<b ≤e 2,对任意的t ∈(1,+∞),g (t )>0;
(2) 当b >e 2时,判断g (t )在(1,+∞)上存在几个零点,并说明理由.。