江苏省苏北四市(连、徐、淮、宿)2011届高三年级第二次模拟考试数学试题及答案(word版)
- 格式:doc
- 大小:634.00 KB
- 文档页数:9
江苏省苏北四市(徐州、宿迁、淮安、连云港)2011届高三第二次联考数学模拟试题二及参考答案
2012年05月23日亲,很高兴访问《江苏省苏北四市(徐州、宿迁、淮安、连云港)2011届高三第二次联考数学模拟试题二及参考答案》一文,也欢迎您访问店铺()的高考频道,为您精心准备了2011高考数学日常练习的相关模拟考试试题内容!同时,我们正在加紧建设高考频道,我们全体编辑的努力全是为了您,希望您能在本次高考中能获得好的名次,以及考上满意的大学,也希望我们准备的《江苏省苏北四市(徐州、宿迁、淮安、连云港)2011届高三第二次联考数学模拟试题二及参考答案》内容能帮助到您。
在即将到来的高考上助您一臂之力!加油,童鞋!
【店铺提供正确答案】。
2011年江苏省苏北四市高三第二次调研数学试卷一、填空题(共14小题,每小题5分,满分70分) 1. 复数z =(1+3i)i (i 是虚数单位),则z 的实部是________.2. 已知集合A ={x|−1≤x ≤2},B ={x|x <1},则A ∩(∁R B)=________.3. 为了抗震救灾,现要在学生人数比例为2:3:5的A 、B 、C 三所高校中,用分层抽样方法抽取n 名志愿者,若在A 高校恰好抽出了6名志愿者,那么n =________.4. 已知直线l 1:ax −y +2a +1=0和l 2:2x −(a −1)y +2=0(a ∈R),则l 1⊥l 2的充要条件是a =________.5. 已知α为锐角,cosα=√55,则tan(π4+α)=________.6. 设a →,b →,c →是单位向量,且a →=b →+c →,则向量a →,b →的夹角等于________.7. 如图是一个算法的流程图,若输出的结果是31,则判断框中的整数M 的值是________.8. 在区间[−5, 5]内随机地取出一个数a ,使得1∈{x|2x 2+ax −a 2>0}的概率为________. 9. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若sinA =√3sinC ,B =30∘,b =2,则△ABC 的面积是________.10. 双曲线x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1, 2)在“上”区域内,则双曲线离心率e 的取值范围是________.11. 如图,三棱柱ABC −A 1B 1C 1的所有棱长均等于1,且∠A 1AB =∠A 1AC =60∘,则该三棱柱的体积是________.12. 已知函数f(x)=mx 3+nx 2的图象在点(−1, 2)处的切线恰好与直线3x +y =0平行,若f(x)在区间[t, t +1]上单调递减,则实数t 的取值范围是________.13. 已知实数a ,b ,c 满足a +b +c =9,ab +bc +ca =24,则b 的取值范围是________. 14. 已知函数f(x)=|x +1|+|x +2|+...+|x +2011|+|x −1|+|x −2|+...+|x −2011|(x ∈R),且f(a 2−3a +2)=f(a −1),则满足条件的所有整数a 的和是________.二、解答题(共9小题,满分130分)15. 已知函数f(x)=sin(2x +π6)−cos(2x +π3)+2cos 2x . (1)求f(π12)的值;(2)求f(x)的最大值及相应x 的值.16. 如图,在四棱锥E −ABCD 中,底面ABCD 为矩形,平面ABCD ⊥平面ABE ,∠AEB =90∘,BE =BC ,F 为CE 的中点,求证: (1)AE // 平面BDF ;(2)平面BDF ⊥平面ACE .17. 据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k >0).现已知相距18km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x(km).(1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值. 18. 如图,椭圆x 2a2+y 2b 2=1(a >b >0)过点P(1,32),其左、右焦点分别为F 1,F 2,离心率e =12,M ,N 是椭圆右准线上的两个动点,且F 1M →⋅F 2N →=0.(1)求椭圆的方程; (2)求MN 的最小值;(3)以MN 为直径的圆C 是否过定点?请证明你的结论.19. 已知数列{a n }的前n 项和为S n ,且满足2S n =pa n −2n ,n ∈N ∗,其中常数p >2. (1)证明:数列{a n +1}为等比数列; (2)若a 2=3,求数列{a n }的通项公式;(3)对于(2)中数列{a n },若数列{b n }满足b n =log 2(a n +1)(n ∈N ∗),在b k 与b k+1之间插入2k−1(k ∈N ∗)个2,得到一个新的数列{c n },试问:是否存在正整数m ,使得数列{c n }的前m 项的和T m =2011?如果存在,求出m 的值;如果不存在,说明理由. 20. 已知函数f(x)=x 2−1,g(x)=a|x −1|.(1)若关于x 的方程|f(x)|=g(x)只有一个实数解,求实数a 的取值范围; (2)若当x ∈R 时,不等式f(x)≥g(x)恒成立,求实数a 的取值范围;(3)求函数ℎ(x)=|f(x)|+g(x)在区间[−2, 2]上的最大值(直接写出结果,不需给出演算步骤).21. A 、选修4−1:几何证明选讲如图,PA 与⊙O 相切于点A ,D 为PA 的中点,过点D 引割线交⊙O 于B ,C 两点,求证:∠DPB =∠DCP . B .选修4−2:矩阵与变换已知矩阵M =[122x ]的一个特征值为3,求另一个特征值及其对应的一个特征向量.C .选修4−4:坐标系与参数方程在极坐标系中,圆C 的方程为ρ=2√2sin(θ+π4),以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为{x =ty =1+2t (t 为参数),判断直线l 和圆C 的位置关系.D .选修4−5:不等式选讲求函数y =√1−x +√4+2x 的最大值.22. 已知动圆P 过点F(0,14)且与直线y =−14相切.(1)求点P 的轨迹C 的方程;(2)过点F 作一条直线交轨迹C 于A ,B 两点,轨迹C 在A ,B 两点处的切线相交于点N ,M 为线段AB 的中点,求证:MN ⊥x 轴.23. 甲、乙、丙三名射击运动员射中目标的概率分别为12,a,a(0<a <1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P(ξ=i)(i =0, 1, 2, 3)中,若P(ξ=1)的值最大,求实数a 的取值范围.2011年江苏省苏北四市高三第二次调研数学试卷答案1. −32. {x|1≤x ≤2}3. 304. 13 5. −36. π3 7.4 8. 0.3 9. √310. (1,√5) 11. √24 12. [−2, −1] 13. [1, 5] 14. 615. 解:(1)f(π12)=sin(2×π12+π6)−cos(2×π12+π3)+2cos 2π12=sin π3−cos π2+1+cos π6=√32−0+1+√32=√3+1(2)∵ f(x)=sin(2x +π6)−cos(2x +π3)+2cos 2x=sin2xcos π6+cos2xsin π6−cos2xcos π3+sin2xsin π3+cos2x +1=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴ 当sin(2x +π6)=1时,f(x)max =2+1=3,此时,2x +π6=2kπ+π2,即x =kπ+π6(k ∈Z),16. 证明:(1)设AC ∩BD =G ,连接FG ,易知G 是AC 的中点,∵ F 是EC 中点,由三角形中位线的性质可得 FG // AE ,∵ AE ⊄平面BFD ,FG ⊂平面BFD ,∴ AE // 平面BFD .(2)∵ 平面ABCD ⊥平面ABE ,BC ⊥AB ,平面ABCD ∩平面ABE =AB∴ BC ⊥平面ABE ,又∵ AE ⊂平面ABE ,∴ BC ⊥AE , 又∵ AE ⊥BE ,BC ∩BE =B ,∴ AE ⊥平面BCE ,∴ AE ⊥BF .在△BCE 中,BE =CB ,F 为CE 的中点,∴ BF ⊥CE ,AE ∩CE =E ,∴ BF ⊥平面ACE , 又BF ⊂平面BDF ,∴ 平面BDF ⊥平面ACE .17. 解:(1)设点C 受A 污染源污染程度为kax 2,点C 受B 污染源污染程度为kb(18−x)2, 其中k 为比例系数,且k >0. 从而点C 处受污染程度y =ka x 2+kb(18−x)2.(2)因为a =1,所以,y =k x 2+kb (18−x)2,y ′=k[−2x 3+2b(18−x)3], 令y′=0,得x =1+√b3,又此时x =6,解得b =8,经验证符合题意. 所以,污染源B 的污染强度b 的值为8. 18. 解:(1)∵ e =c a=12,且过点P(1,32),∴ {1a 2+94b 2=1a =2c a 2=b 2+c 2,解得{a =2b =√3,∴ 椭圆方程为x 24+y 23=1.(2)设点M(4, y 1),N(4, y 2), 则F 1M →=(5,y 1),F 2N →=(3,y 2), ∵ F 1M →⋅F 2N →=15+y 1y 2=0, ∴ y 1y 2=−15,又∵ MN =|y 2−y 1|=|−15y 1−y 1|=15|y 1|+|y 1|≥2√15,∴ MN 的最小值为2√15. (3)圆心C 的坐标为(4,y 1+y 22),半径r =|y 2−y 1|2.∴ 圆C 的方程为(x −4)2+(y −y 1+y 22)2=(y 2−y 1)24,整理得:x 2+y 2−8x −(y 1+y 2)y +16+y 1y 2=0, ∵ y 1y 2=−15,∴ x 2+y 2−8x −(y 1+y 2)y +1=0 令y =0,得x 2−8x +1=0,∴ x =4±√15,∴ 圆C 过定点(4±√15,0). 19. 解:(1)∵ 2S n =pa n −2n ,∴ 2S n+1=pa n+1−2(n +1),∴ 2a n+1=pa n+1−pa n −2, ∴ a n+1=p p−2a n +2p−2,∴ a n+1+1=p p−2(a n +1),∵ 2a 1=pa 1−2,∴ a 1=2p−2>0,∴ a 1+1>0 ∴a n+1+1a n +1=pp−2≠0,∴ 数列{a n +1}为等比数列.(2)由(1)知a n +1=(pp−2)n ,∴ a n =(pp−2)n −1 又∵ a 2=3,∴ pp−2×pp−2−1=3,∴ p =4,∴ a n =2n −1(3)由(2)得b n=log22n,即b n=n,(n∈N∗),数列C n中,b k(含b k项)前的所有项的和是:(1+2+3+⋯+k)+(20+21+22+⋯+ 2k−2)×2=k(k+1)2+2k−2当k=10时,其和是55+210−2=1077<2011当k=11时,其和是66+211−2=2112>2011又因为2011−1077=934=467×2,是2的倍数,所以当m=10+(1+2+22++28)+467=988时,T m=2011,所以存在m=988使得T m=2011.20. 解:(1)方程|f(x)|=g(x),即|x2−1|=a|x−1|,变形得|x−1|(|x+1|−a)=0,显然,x=1已是该方程的根,从而原方程只有一解,即要求方程|x+1|=a,有且仅有一个等于1的解或无解,由此得a<0.(2)不等式f(x)≥g(x)对x∈R恒成立,即(x2−1)≥a|x−1|(∗)对x∈R恒成立,①当x=1时,(∗)显然成立,此时a∈R;②当x≠1时,(∗)可变形为a≤x2−1|x−1|,令φ(x)=x 2−1|x−1|={x+1(x>1),−(x+1)(x<1),因为当x>1时,φ(x)>2,当x<1时,φ(x)>−2,所以φ(x)>−2,故此时a≤−2.综合①②,得所求实数a的取值范围是a≤−2.(3)因为ℎ(x)=|f(x)|+g(x)=|x2−1|+a|x−1|={x2+ax−a−1(x≥1),−x2−ax+a+1(−1≤x<1),x2−ax+a−1(x<−1),当a2>1,即a>2时,结合图形可知ℎ(x)在[−2, 1]上递减,在[1, 2]上递增,且ℎ(−2)=3a+3,ℎ(2)=a+3,经比较,此时ℎ(x)在[−2, 2]上的最大值为3a+3.当0≤a2≤1,即0≤a≤2时,结合图形可知ℎ(x)在[−2, −1],[−a2,1]上递减,在[−1,−a2],[1, 2]上递增,且ℎ(−2)=3a+3,ℎ(2)=a+3,ℎ(−a2)=a24+a+1,经比较,知此时ℎ(x)在[−2, 2]上的最大值为3a+3.当−1≤a2<0,即−2≤a<0时,结合图形可知ℎ(x)在[−2, −1],[−a2,1]上递减,在[−1,−a2],[1, 2]上递增,且ℎ(−2)=3a+3,ℎ(2)=a+3,ℎ(−a2)=a24+a+1,经比较,知此时ℎ(x)在[−2, 2]上的最大值为a+3.当−32≤a2<−1,即−3≤a<−2时,结合图形可知ℎ(x)在[−2,a2],[1,−a2]上递减,在[a 2,1],[−a2,2]上递增,且ℎ(−2)=3a +3<0,ℎ(2)=a +3≥0,ℎ(1)=0,经比较,知此时ℎ(x)在[−2, 2]上的最大值为a +3.当a2<−32,即a <−3时,结合图形可知ℎ(x)在[a2, 1],[−a2,2]上递增,在[−2,a2],[1, −a2]上递减,且ℎ(−2)=3a +3,ℎ(2)=a +3,ℎ(1)=0, 故此时ℎ(x)在[−2, 2]上的最大值为ℎ(1)=0.综上所述,当a ≥0时,ℎ(x)在[−2, 2]上的最大值为3a +3; 当−3≤a <0时,ℎ(x)在[−2, 2]上的最大值为a +3; 当a <−3时,ℎ(x)在[−2, 2]上的最大值为0.21. 解:A .因为PA 与圆相切于A ,所以,DA 2=DB ⋅DC ,因为D 为PA 中点,所以,DP =DA ,所以,DP 2=DB ⋅DC ,即PD DC=DB PD. 因为∠BDP =∠PDC ,所以,△BDP ∽△PDC ,所以,∠DPB =∠DCP .B .矩阵M 的特征多项式为f(λ)=|λ−1,−2−2,λ−x|=(λ−1)(λ−x)−4因为λ1=3方程f(λ)=0的一根,所以x =1, 由(λ−1)(λ−1)−4=0得λ2=−1,设λ2=−1对应的一个特征向量为α=[xy ], 则{−2x −2y =0−2x −2y =0得x =−y ,令x =1,则y =−1, 所以矩阵M 的另一个特征值为−1,对应的一个特征向量为α=[1−1]C .消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=2√2(sinθ+π4)即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ),得⊙C 的直角坐标方程为:(x −1)2+(x −1)2=2,圆心C 到直线l 的距离d =|2−1+1|√22+12=2√55<√2,所以,直线l 和⊙C 相交.D .因为y =√1−x +√4+2x =(√1−x, √2+x)•(1, √2),由|a →⋅b →|≤|a →|⋅|b →| 求得 ∴ y 的最大值为3,当且仅当两个向量共线时,即1√1−x=√2√2+x时取“=”号,即当x =0时,y max =3.22. 解:(1)根据抛物线的定义,可得动圆圆心P 的轨迹C 的方程为x 2=y(2)证明:设A(x 1, x 12),B(x 2, x 22),∵ y =x 2, ∴ y′=2x ,∴ AN ,BN 的斜率分别为2x 1,2x 2,故AN 的方程为y −x 12=2x 1(x −x 1),BN 的方程为y −x 22=2x 2(x −x 2)即{y =2x 1x −x 12y =2x 2x −x 22,两式相减,得x =x 1+x 22, ∴ M ,N 的横坐标相等,于是MN ⊥x 轴23. P(ξ)是“ξ个人命中,3−ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3.P(ξ=0)=C 10(1−12)C 20(1−a)2=12(1−a)2,P(ξ=1)=C 11⋅12C 20(1−a)2+C 10(1−12)C 21a(1−a)=12(1−a 2),P(ξ=2)=C 11⋅12C 21a(1−a)+C 10(1−12)C 22a 2=12(2a −a 2),P(ξ=3)=C 11⋅12C 22a 2=a 22.所以ξ的分布列为ξ的数学期望为Eξ=0×12(1−a)2+1×12(1−a 2)+2×12(2a −a 2)+3×a 22=4a+12.P(ξ=1)−P(ξ=0)=12[(1−a 2)−(1−a)2]=a(1−a),P(ξ=1)−P(ξ=2)=12[(1−a 2)−(2a −a 2)]=1−2a 2,P(ξ=1)−P(ξ=3)=12[(1−a 2)−a 2]=1−2a 22.由{ a(1−a)≥01−2a2≥01−2a 22≥0 和0<a <1,得0<a ≤12,即a 的取值范围是(0,12].。
苏北四市(连云港、徐州、淮安、宿迁)2011届高三年级第二次调研考试数 学 试 题 2011年3月31日试卷 Ⅰ一、填空题:本大题共14小题,每小题5分,共70分. 1.若iia -+1(i 是虚数单位)是是实数,则实数a 的值是 . 2.已知集合{}{},02,12<-=>=x x x B x x A 则=⋃B A .3.为了解某校教师使用多媒体进行教学的情况,从该校200名授课教师中随机抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[]30,15内的人数为 .4.在如图所示的流程图中,输出的结果是 .5.若以连续掷两次骰子得到的点数n m ,分别为点P 的横、纵坐标,则点P 在圆1622=+y x 内的概率为 .6.在约束条件⎪⎩⎪⎨⎧≥-≤≤≤≤122010x y y x 下,则22)1(y x +-的最小值为 .7.一个匀速旋转的摩天轮每12分钟旋转一周,最低点距地面2米,最高点距地面18米,P 是摩天轮轮周上的一个定点,从P 在摩天轮最低点好似开始计时,则16分钟后P 点距地面的高度为 .8.已知集合{}{},0),(,1),(222>≤+=≤+=r r y x y x B y x y x A 若点A y x ∈),(是点B y x ∈),(的必要条件,则r 的最大值是 .9.已知点),2,0(A 抛物线)0(22>=p px y 的焦点为F ,准线为l ,线段FA 交抛物线与点B ,过B 作l 的垂线,垂足为M ,若,MF AM ⊥则=p .10.若函数,0,20,2)(⎪⎩⎪⎨⎧<-<=-x x x f xx 则函数))((x f f y =的值域是 . 11.如图所示,在直三棱柱111C B A ABC -中,2,4,1===⊥CC BC AC BC AC ,若用平行于三棱柱111C B A ABC -的某一侧面的平面去截此三棱柱,使得到的两个几B112.已知椭圆B A y x ,,12422=+是其左、右顶点,动点M 满足AB MB ⊥,连接AM 交椭圆于点P ,在x 轴上有异于点B A ,的定点Q ,以MP 为直径的圆经过直线MQ BP ,的交点,则点Q 的坐标为 .13.在ABC ∆中,过中线AD 中点E 任作一直线分别交AC AB ,于N M ,两点,设)0(,≠==xy y x ,则y x +4的最小值是 .14.如图是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两个数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行第10个数为 .二、解答题:本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤.15.如图,在平面直角坐标系xoy 中,点A 在x 轴正半轴上,直线AB 的倾斜角为43π,2=OB 设θ=∠AOB ,)43,2(ππθ∈.(1)用θ表示;OA (2)求⋅的最小值.16.如图,已知四面ABCD 的四个面均为锐角三角形,E 、F 、G 、H 分别为边DA CD BC AB ,,,上的点,//BD 平面,EFGH 且FG EF =.(1)求证://HG 平面ABC ;(2)请在面ABD 内过点E 作一条线段垂直于AC ,并给出证明.B17.如图,已知位于y 轴左侧的圆C 与y 轴相切与点)1,0(,且被x 轴分成的两段弧之长比为1:2,过点),0(t H 的直线l 与圆C 相交于M 、N 两点,且以MN 为直径的圆恰好经过坐标原点O . (1)求圆C 的方程;(2)当1=t 时,求出直线l 的方程; (3)求直线OM 的斜率k 的取值范围.18.心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x 天后的存留量441+=x y ;若在)4(>t t 天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存储量2y 随时间变化的曲线恰为直线的一部分,其斜率为),0()4(2<+a t a存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时此刻为“二次复习最佳时机点”.(1)若5,1=-=t a ,求“二次最佳时机点”;(2)若出现了“二次复习最佳时机点”,求a 的取值范围.(天)19.已知各项均为正数的等差数列{}n a 的公差d 不等于0,设k a a a ,3,1是公比q 的等比数列{}n b 的前三项. (1)若2,71==a k .(ⅰ)求数列{}n n b a 的前n 项和n T ;(ⅱ)将数列{}n a 中与{}n b 相同的项去掉,剩下的项依次构成新的数列{}n c ,设其前n 项和为n S ,求),2(23211212*----∈≥⋅+-N n n S n n n n 的值;(2)若存在*∈>N m k m ,使得m k a a a a ,,,31成等比数列,求证:k 为奇数.20. 已知波函数R a ax x x f x x x x f x ax x f ∈+=++=+=,221)(,ln 953461)(,ln )(22212. (1) 求证:函数)(x f 在点))(,(e f e 处的切线恒过定点,并求出定点坐标; (2) 若)()(2x f x f <在区间),1(+∞上恒成立,求a 的取值范围; (3) 当32=a 时,求证:在区间),1(+∞上,满足)()()(21x f x g x f <<恒成立的函数)(x g 有无穷多个.苏北四市(连云港、徐州、淮安、宿迁)2011届高三年级第三次调研考试数 学 试 题 试卷 Ⅱ21.【选做题】在下面A,B,C,D 四个小题中只能选做两题,每小题10分,共20分. A.选修4—1:几何证明选讲如图,过圆O 外一点M 作圆的切线,切点为A ,过A 作OM AP ⊥于P . (1) 求证:2OA OP OM =⋅;(2) N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点.过B 点的切线交直线ON 于K ,求证:90=∠OKM .B.选修4—2:矩阵与变换 已知矩阵⎢⎣⎡=c M 1 ⎥⎦⎤2b 有特征值41=λ及对应的一个特征向量⎥⎦⎤⎢⎣⎡=321e . (1)求矩阵M ;(2)求曲线148522=++y xy x 在M 的作用下的新曲线方程.C.选修4—4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为23)4s in(=-πθρ.(1)把直线l 的极坐标方程化为直角坐标系方程;(2)已知P 为椭圆1916:22=+y x C 上一点,求P 到直线l 的距离的最大值.D.选修4—5:不等式选讲z y x ,,)()()()(2222333y x z z x y z y x z y x +++++≥++22.(本小题满分10分)如图,已知三棱柱111C B A ABC -的侧面与底面垂直,,,11AC AB AC AB AA ⊥===P N M ,,分别是111,,B A BC CC 的中点.(1)求证:AM PN ⊥;(2)若直线MB 与平面PMN 所成的角为θ,求θsin 的值. 23.(本小题满分10分) 已知数列{}n a 中,对于任意n n n a a a N n 34,3-=∈*.(1)求证:若,1>n a 则11>+n a ; (2)若存在正整数m ,使得1=m a ,求证: (ⅰ)1≤m a ; (ⅱ)1132cos -=m k a π(其中Z k ∈)(参考公式:αααcos 3cos 43cos 3-=).苏北四市(连云港、徐州、淮安、宿迁)2011届高三年级第三次调研考试数学参考答案及评分标准一、填空题: 1.1-; 2.}{x x >;3.100; 4. 60; 5.92; 67.14; 8.2; 9; 10.11(1,)(,1)22-- ; 11.24; 12.(0,0); 13.94; 14.162(或者65536). 二、解答题:15. (1)在△ABC 中,因为2OB =,θπθπππ-=--=∠=∠434,4ABO BAO ,, 由正弦定理,得sin sin4OB OA ABOp =Ð,……………………………………3分 3sin()4OAp q -,所以 3sin()4OA p q =-. ……………6分 注:仅写出正弦定理,得3分. 若用直线AB 方程求得2(sin cos)OA q q =+或)4OA πθ=+也得分.(2)由(1)得3||||cos sin()cos 4OA OBOA OB p q q q ?鬃-?uu r uu u ruu r uu u r ,…………………8分2(sin 2cos2)2θθ=++)24θπ=++, …………………10分因为3(,),24p p q Î所以572(,)444p p pq +?, 所以当3242p p q +=,即58pq =时,OA OB ×uu r uu u r 的最小值为2-14分16. (1)因为BD //平面EFGH ,BDC EFGH FG =平面平面,所以BD //FG .同理BD //EH ,又因为EH FG =,所以四边形EFGH 为平行四边形, 所以HG //EF ,又HG ABC ⊄平面,所以HGABC 平面. ……………………………………………………6分(2)在ABC 平面内过点E 作EP AC ⊥,且交AC 于P 点,在ACD 平面内过点P 作PQ AC ⊥,且交AD 于Q 点,连结EQ ,则EQ 即为所求线段.………………………………………………10分 证明如下:EP AC AC EPQ PQ AC EQ AC EQ EPQ EP PQ P ⊥⎫⇒⊥⎫⎪⊥⇒⊥⎬⎬⊂⎭⎪=⎭平面平面…………………………………14分17解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0,1),所以圆心C 在直线1y =上, 设圆C 与x 轴的交点分别为A 、B ,由圆C 被x 轴分成的两段弧长之比为21:,得23ACB π∠=, 所以2CA CB ==,圆心C 的坐标为(2,1)-,所以圆C 的方程为:22(2)(1)4x y ++-=. ………………………………4分 (2)当1t =时,由题意知直线l 的斜率存在,设直线l 方程为1y mx =+,由221(2)(1)4y mx x y =+⎧⎨++-=⎩得01x y =⎧⎨=⎩或22241411x m m m y m -⎧=⎪⎪+⎨-+⎪=⎪+⎩, 不妨令222441(,),(0,1)11m m M N m m --+++, 因为以MN 为直径的圆恰好经过(0,0)O ,所以2222244141(,)(0,1)0111m m m m OM ON m m m m --+-+⋅=⋅==+++,解得2m =,所以所求直线l方程为(21y x =+或(21y x =+.………………………………10分(3)设直线MO 的方程为y kx =,2,解之得34k ≤,同理得,134k-≤,解之得43k ≤-或>0k . 由(2)知,=0k 也满足题意. 所以k 的取值范围是43(,][0,]34-∞-. ………………………………………14分18. 设第一次复习后的存留量与不复习的存留量之差为y ,由题意知,228()(4)(4)4a y x t t t t =-+>++ ………………………………2分 所以21284()(4)(4)44a y y y x t t t t x =-=-+->+++ ……………………4分(1) 当1,5a t =-=时,184(5)y x -=-+-(4)41x -+=-+≤1-+5=,当且仅当 14x = 时取等号,所以“二次复习最佳时机点”为第14天. ………………10分 (2) 284()(4)44a y x t t t x =-+-+++22(4)48(4)(4)44(4)a x a t t x t t -++=--+-++++≤84at --+, …………………………………………14分 当且仅当4)4(244)4()4(2-+-=+=++-t ax x t x a 即 时取等号,由题意t t a>-+-4)4(2,所以 40a -<<. ………………16分注:使用求导方法可以得到相应得分.19.⑴ 因为7k =,所以137,,a a a 成等比数列,又{}n a 是公差0d ≠的等差数列,所以()()211126a d a a d +=+,整理得12a d =, 又12a =,所以1d =, 112b a ==,32111122a b a d q b a a +====, 所以()11111,2n n n n a a n d n b b q -=+-=+=⨯=, ……………………………4分 ①用错位相减法或其它方法可求得{}n n a b 的前n 项和为12n n T n +=⨯; ………6分② 因为新的数列{}n c 的前21n n --项和为数列{}n a 的前21n -项的和减去数列{}n b 前n 项的和,所以121(21)(22)2(21)(21)(21)221n n n n n n n S ----+-=-=---.所以211212321n n n n S -----+⋅=-. ………………………10分 ⑵ 由d k a a d a ))1(()2(1121-+=+,整理得)5(412-=k d a d , 因为0≠d ,所以4)5(1-=k a d ,所以3111232a a d k q a a +-===. 因为存在m >k,m ∈N *使得13,,,k m a a a a 成等比数列,所以313123⎪⎭⎫⎝⎛-==k a q a a m , ………………………………………………12分又在正项等差数列{a n }中,4)5)(1()1(111--+=-+=k m a a d m a a m , ……13分所以3111234)5)(1(⎪⎭⎫⎝⎛-=--+k a k m a a ,又因为01>a ,所以有[]324(1)(5)(3)m k k +--=-, …………………………………14分 因为[]24(1)(5)m k +--是偶数,所以3(3)k -也是偶数,即3-k 为偶数,所以k 为奇数. ……………………………………16分20. (1)因为1()2f x ax x '=+ ,所以()f x 在点(e,(e))f 处的切线的斜率为12k ae e=+, 所以()f x 在点(,())e f e 处的切线方程为21(2)()1y ae x e ae e=+-++ ,……2分整理得11(2)()22e y ae x e -=+-,所以切线恒过定点1(,)22e . ………4分(2) 令x ax x a x f x f x p ln 2)21()()()(22+--=-=<0,对(1,)x ∈+∞恒成立,因为21(21)21(1)[(21)1]()(21)2a x ax x a x p x a x a x x x--+---'=--+== (*)………………………………………………………………6分 令()0p x '=,得极值点1x 1=,2121x a =-, ①当112a <<时,有1x x 12=>,即1a 21<<时,在(2x ,+∞)上有()0p x '>,此时)(x p 在区间2(,)x +∞上是增函数,并且在该区间上有)(x p ∈2((),)p x +∞,不合题意;②当1a ≥时,有211x x <=,同理可知,)(x p 在区间(1,)+∞上,有)(x p ∈((1),)p +∞,也不合题意; …………………………………………… 8分③当12a ≤时,有210a -≤,此时在区间(1,)+∞上恒有()0p x '<, 从而)(x p 在区间(1,)+∞上是减函数;要使0)(<x p 在此区间上恒成立,只须满足021)1(≤--=a p 12a ⇒≥-, 所以1122a -≤≤.综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. ……………………………………………12分 (3)当23a =时,221214514()ln ,()63923f x x x x f x x x =++=+记22115()()ln ,(1,)39y f x f x x x x =-=-∈+∞.因为225650x x y -'=-=>,所以21()()y f x f x =-在(1,)+∞上为增函数,所以21211()()(1)(1)3f x f x f f ->-=, ………………………………14分设11()(),(01)3R x f x λλ=+<<, 则12()()()f x R x f x <<, 所以在区间()1,+∞上,满足12()()()f x g x f x <<恒成立的函数()g x 有无穷多个. ………………………………………………………………16分数学附加题答案与评分标准21.A 选修4-l :几何证明选讲证明:(1)因为MA 是圆O 的切线,所以OA AM ⊥,又因为AP OM ⊥.在Rt OAM △中,由射影定理知,2OA OM OP =.…………4分 (2)因为BK 是圆O 的切线,BN OK ⊥,同(1),有2OB ON OK =, 又OB OA =,所以OP OM ON OK =,即ON OMOP OK=,又NOP MOK =∠∠, 所以ONP OMK △∽△,故90OKM OPN ==∠∠. …………………………10分 B .选修4—2 矩阵与变换解:(1)由已知1283122b c ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即238,2612b c +=+=,2,3b c ==, 所以1232M ⎡⎤=⎢⎥⎣⎦; …………………………4分(2)设曲线上任一点P (,)x y ,P 在M 作用下对应点///(,)P x y ,则//1232x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即{//232x x y y x y=+=+,解之得////234y x x x y y ⎛-= - =⎝,代入225841x xy y ++=得222x y ''+=, 即曲线225841x xy y ++=在M 的作用下的新曲线的方程是222x y +=.………10分C .选修4-4:坐标系与参数方程解:(1)直线l的极坐标方程sin 4ρθπ⎛⎫-= ⎪⎝⎭sin cos θθ-=即sin cos 6ρθρθ-=,所以直线l 的直角坐标方程为60x y -+=; ……………4分(2)P 为椭圆221169x y C +=:上一点,设(4cos 3sin )P αα,,其中[02)α∈π,,则P 到直线l的距离d ==4cos 5ϕ=所以当cos()1αϕ+=时,d………………………………10分 D .选修4-5:不等式选讲 因为2220x y xy +≥≥,所以()()()3322x y x y x xy y xy x y +=+-+≥+, ………………………………4分 同理()33y z yz y z +≥+,()33z x zx z x +≥+三式相加即可得()()()()3332x y z xy x y yz y z zx z x ++≥+++++ 又因为()()()()()()222xy x y yz y z zx z x x y z y x z z x y +++++=+++++所以()()()()3332222x y z x y z y x z z x y ++≥+++++ ………………10分 22.解:(1)建立如图所示直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)C ,1(0,0,1)A ,1(1,0,1)B ,1(0,1,1)C , 1(,0,1)2P ,1(0,1,)2M ,11(,,0)22N ,1(0,,1)2=-,AM 1(0,1,)2=, 因为⋅11001(1)022=⨯+⨯+-⨯=,所以AM PN ⊥. (4)(2)设平面PMN 的一个法向量为1111(,,)n x y z =,1(0,,1)2NP =-,111(,,)222NM =-,则1100n NP n NM ⎧⋅=⎪⎨⋅=⎪⎩⇒1111110,21110.222y z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩令12y =,得11z =,13x =所以1(3,2,1)n =. …………………………………………………6分 又1(1,1,)2MB =--,所以1112sin 342||||2n MB n MB θ⋅===⨯. ……………………10分23.证明:⑴因为1n a >,3143n n n a a a +=-所以2311143(43)1n n n n n a a a a a +++=-=->. ……………………2分 ⑵① 假设11a >,则232111143(43)1a a a a a =-=->若1k a >,则2311143(43)1k k k k ka a a a a +++=-=->.所以当1||1a >时,有*||1()n a n N >∈,这与已知1m a =矛盾,所以11a ≤. ………………………………………………………6分 ②由①可知,存在θ,使得1cos a θ=.则324cos 3cos cos3a θθθ=-=假设 n k =时,有1cos3n n a θ-=即1cos3k k a θ-=则()()33111434cos33cos3cos3k k k k k k a a a θθθ--+=-=-=所以对任意*n N ∈,1cos3n n a θ-=,则1cos3m m a θ-==1,132m k θπ-=,其中k Z ∈即123m k πθ-=, 所以112cos 3m k a π-= (其中k 为整数). ……………………………10分。
9的最大正整数n 的值为 。
江苏南京市2011届高三第二次模拟考试数学一、填空题(每题 5分,共70分)1、 已知复数 乙=3-4i , Z 2= 4 + bi (b € R , i 为虚数单位),若复数Z i *Z 2是纯虚数,则b 的 值为___________ 。
2 __________________________________________________2、 已知全集U = R , Z 是整数集,集合 A ={ x | x-x-6 > 0,x € R },则ZA QA 中元素的个数 为 。
3、 用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形(第3题)4、某校为了解高三男生的身体状况,检测了全部480名高三男生的体重(单位kg )。
所得数据都在区间[50,75]中,其频率分布直方图如图所示。
若图中从左到右的前 3个小组的频率之比为1 : 2: 3,则体重小于60 kg 的高三男生人数为 ____________ 。
(第 4题)5、 已知向量a,b 的夹角为120°,且| a | =3, | a | =1,则| a-2b | = _______________6、 下图是一个算法的流程图,则输出的e 值是 __________ 。
(第 6 题)7、若抛物线y 2=2x 上的一点M 到坐标原点O 的距离为 3,则M 到该抛物线焦点的距离为& 若直线y=kx-3与y=2Inx 曲线相切,则实数 K= ________________ 。
9、 已知函数 f (x )=2sin (3 x+Y )( co >0),若 f ( — )=0, f ( — )=2,则实数3 的最小值为 _ 。
3 2110、已知各项都为正数的等比数列 {a n }中,a 2*a 4=4, a 1+a 2+a 3=14,则满足a n +a n+1+a n+2>一动点,则当 AM+MC i 最小时,△ AMC i 的面积为11、3x 已知集合P= (x, y) | 4x 4y3y3 0 6, Q={(x,y)|(x-a)2+(y-b)2< r 2(r>0),若“点 M12、€ P 堤“点M € Q”的必要条件, 则当 r 最大时ab 的值是如图,直三棱柱 ABC-AB i C i 中, AB=1, BC=2, AC= . 5,AA 1=3,M 为线段 BBi 上的13、14、(第12题)定义:若函数f(x)的图像经过变换 T 后所得图像对应的函数与 f(x)的值域相同,则称变换T 是f(x)的同值变换。
第3题图宿迁市2011届高三数学高考押题试卷(二)数学Ⅰ试题2011.5注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分160分,考试时间120分钟.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色字迹的签字笔填写在试卷的指定位置.3.答题时,必须用书写黑色字迹的0.5毫米签字笔写在试卷的指定位置,在其它位置作答一律无效.4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚一、填空题:本大题共14小题,每小题5分,计70分不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.复数(i 1)i z =-对应复平面内的点位于第 象限.2.抛物线2:4C y x =上任意一点P 到直线:1l x =-的距离都等于P 到定点F 的距离,则定点F 的坐标为 .3.《中华人民共和国道路交通安全法》规定:车辆驾 驶员血液酒精浓度在20100mg ml 到80100mg ml (不含80)之间,属于酒后驾车;血液酒精浓度在80100mg ml (含80)以上时,属于醉酒驾车.据统计,2011年4月,江苏省查处酒后驾车和醉酒驾车 共2000人,如图,是对这2000人酒后驾车血液中 酒精含量进行检测所得结果的频率分布直方图,则 属于醉酒驾车的人数约为 .4.若命题“2,(1)1)(1)0R x a x a x a ∀∈+-+->”是真命题,则实数a 的取值范围是 .5.投掷两颗质地均匀的骰子,向上的点数和能被5整除的概率是 .6.函数22()(1)ln e f x e x x x x=-++的最小值是 . 7.已知圆O 的方程为224x y +=,P 是圆O 上的一个动点,若对线段OP 的垂直平分线上任意一点Q (,)x y ,不等式1422≥+y ax 恒成立,则实数a 的取值范围是 .8.设变量x ,y 满足约束条件:3,1,23,x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数()2x y z xy -=的取值集合为 .9. 已知直角ABC ∆的三边长a b c ,,构成等比数列,则a b c ,,三个数中整数的个数最多有个 .10.两个集合{}1003,0,3,6,,A a =- 和{}10015,19,23,27,,B b = 都各有100个元素,且每个集合中的元素从小到大都组成等差数列,则集合A B 中元素的最大值为 .11.椭圆22221(0)x y a b a b +=>>与双曲线22221x y a b-=的渐近线在第一象限相交于点P ,点F 为椭圆的右焦点,O 为坐标原点.若2OPF π∠=,则椭圆的离心率为 .12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h = .13.已知O 是锐角△ABC 的外心,10,6==AC AB ,若y x +=,且5102=+y x , 则=∠BAC cos . 14.已知16a ≤≤,函数21()x a M x e-+=,1()x a N x e-+=, ()()()()()22M x N x M x N x f x +-=-在区间[]1,6上的最小值为e ,则实数a 的取值范围是 .二、解答题:本大题共6小题,计90分。
苏北四市2016-2017学年度高三年级第二次调研测试数学I 试题一、填空题(本大题共14小题,每小题5分,共70分)1、已知集合{}{}2,0,2,3A B =-=-,则AB = .2、已知复数z 满足(1)2i z i -=,其中i 为虚数单位,则z 的模为 .3、某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个 分数的方差为 .4、根据如图所示的伪代码,则输出S 的值为 .5、从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率 为 .6、若抛物线28y x =的焦点恰好是双曲线2221(0)3x y a a -=>的右焦点,则实数a 的值为 .7、已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 . 8、若函数()sin()(0)6f x x πωπω=->的最小正周期为15,则1()3f 的值为 .9、已知等比数列{}n a 的前n 项和为n S ,若223323,23S a S a =+=+,则公比q 的值为 .10、已知函数()f x 是定义R 在上的奇函数,当0x >时,()23xf x =-,则不等式()5f x -≤ 的解集为 .11、若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 . 12、已知非零向量,a b 满足a b a b ==+,则a 与2a b -夹角的余弦值为 .13、已知,A B 是圆221:1C x y +=上的动点,AB =P 是圆222:(3)(4)1C x y -+-=上的动点,则PA PB +的取值范围为 .14、已知函数32sin ,1()925,1x x f x x x x a x <⎧=⎨-++⎩≥,若函数()f x 的图象与直线y x =有三 个不同的公共点,则实数a 的取值集合为 .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明 或演算步骤)15、在ABC ∆中,角,,A B C 的对边分别为,,a b c .已知2cos (cos cos )A b C c B a +=. (1)求角A 的值; (2)若3cos 5B =,求sin()BC -的值.16、如图,在四棱锥E ABCD -中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA EB ⊥,点,M N 分别是,AE CD 的中点.求证:(1)直线MN ∥平面EBC ;(2)直线EA ⊥平面EBC .17、如图,已知,A B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,3tan,44BAN BCNπ∠=∠=.现计划铺设一条电缆联通,A B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求,A B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?18、如图,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为,且右焦点F到左准线的距离为.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(ⅰ)当直线的PA斜率为12时,求FMN∆的外接圆的方程;(ⅱ)设直线AN交椭圆C于另一点Q,求APQ∆的面积的最大值.19、已知函数2(),()ln ,2R x f x ax g x x ax a e=-=-∈. (1)解关于()R x x ∈的不等式()0f x ≤; (2)证明:()()f x g x ≥;(3)是否存在常数,a b ,使得()()f x ax b g x +≥≥对任意的0x >恒成立?若存在,求 出,a b 的值;若不存在,请说明理由.20、已知正项数列{}n a 的前n 项和为n S ,且11,(1)(1)6()n n n a a a a S n +=++=+,*∈N n .(1)求数列{}n a 的通项公式;(2)若对于N n *∀∈ ,都有(31)n S n n +≤成立,求实数a 取值范围;(3)当2a =时,将数列{}n a 中的部分项按原来的顺序构成数列{}n b ,且12b a =,证明: 存在无数个满足条件的无穷等比数列{}n b .苏北四市2016-2017学年度高三年级第二次调研测试数学II(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 为半圆O 的直径,D 为弧BC 的中点,E 为BC 的中点, 求证:AB ·BC=2AD ·BD .B .【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵A=的一个特征值为2,其对应的一个特征向量为a =,求实数a ,b 的值.C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线l ρsin (θ一4π)=m (m ∈R ),圆C 的参数方程为(t 为参数).当圆心C 到直线l 时,求m 的值。
盐城中学2011届高三年级第二次模拟考试数学试题数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上..1.设i 是虚数单位,则复数i 2)i 1(⋅+=z 所对应的点落在第 ▲ 象限. 2.同时掷两枚质地均匀的骰子,所得的点数之和为5的概率是 ▲ . 3.为了了解初中生的身体素质,某地区随机抽取了n 名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第一小组的频数是100,则n = ▲ .4.在等比数列{}n a 中,12236,12,n a a a a S +=+=为数列{}n a 的前n 项和,则22010log (2)S += ▲ .5.已知2cos()3cos()02x x ππ-+-=,则tan 2x = ▲ .6.右图是一个算法的流程图,最后输出的=x ▲ .7.设b a ,是两条不同的直线,βα,是两个不同的平面,则下列条件中能推得b a ⊥的条件是 ▲ . (把你认为所有正确命题的序号都填上)①,α⊂a b ∥β,βα⊥;②βαβα⊥⊥⊥,,b a ; ③,α⊂a β⊥b ,α∥β;④α⊥a ,b ∥β,α∥β.8.若,x y 满足不等式组2201x y x y +≥⎧⎨+≤⎩,则2x y +的取值范围是▲ .9.设F 为抛物线22(0)y px p =>的焦点,点A 在抛物线上,O 为坐标原点,若120OFA ∠=,且8FO FA ⋅=-,则抛物线的焦点到准线的距离等于 ▲ .10.已知P 为边长为1的等边ABC ∆所在平面内一点,且满足2,CP CB CA =+则PA PB ⋅= ▲ .11.如右图,设矩形()ABCD AB CD >的周长为20,把ABC∆沿AC 折起来,AB 折过去后交DC 于点,F 设,AB x =则ADF ∆的面积最大时的x 的值为 ▲ .(第3题) C12.椭圆2212516x y +=的左,右焦点分别为12,,F F 弦AB 过1F ,若2ABF ∆的内切圆的周长为,π,A B 两点的坐标分别为1122(,),(,),x y x y 则21||y y -= ▲ .13.已知函数32()f x x x =-在1x =处切线的斜率为b ,若()ln a g x b x x=-,且()g x 2x <在(1,)+∞上恒成立,则实数a 的取值范围是 ▲ .14.设,a b 均为大于1的自然数,函数()(sin ),()cos ,f x a b x g x b x =+=+若存在实数m ,使得()(),f m g m =则a b +的值为 ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)已知直三棱柱111C B A ABC -中,E D ,分别为11,CC AA 的中点,AC BC ⊥,点F 在线段AB 上,且AF AB 4=.(Ⅰ)求证:D C BC 1⊥;(Ⅱ)若M 为线段BE 上一点,ME BE 4=求证:1//C D 平面1B FM .16(本小题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知1,sin .23C A B π-== (Ⅰ)求sin A 的值;(Ⅱ)设AC =求ABC ∆的面积.17.(本小题满分14分)第15题ABC1B1A1CD E F某公司生产的A 种产品,它的成本是2元,售价是3元,年销售量为100万件.为获得更好的效益,公司准备拿出一定的资金做广告。
OEFM DCBA数学参考答案及评分标准一、填空题:本大题共14小题,每小题5分,共70分。
1.{}2;2.2- ; 3.43-; 45.221169x y -=; 6.2π; 7.1,42-;8.5;9.8π; 10.16a -≤≤; 11.51630x y -+=; 12.27; 13. 213x x <->或;14.③④二、解答题:本大题共6小题,共90分…………………………………4分 ……………………………………8分(Ⅱ) ∵抽样的20只产品中在[39.98,40.02]范围内有17只,………………………………10分∴合格品的概率为17100%85%20⨯=. ……………………………………12分∴1000085%8500⨯=(只) ……………………………………13分答:根据抽样检查结果,可以估计这批产品的合格数为8500只. (14)分16.(Ⅰ)设AC BD O =,连OE .由题意可得11,22===EM EF AC AO又∵EM AO , ∴EOAM 为平行四边形,∴ .EO AM ……………… 4分⊂⊄EO EBD AM EBD 平面,平面∴AM EBD 平面 ……………………… 6分(Ⅱ)连DM ,BM ,MO,,AF AC EC AC AFEC ABCD ⊥⊥⊥平面平面,,,,AF ABCD EC ABCD AF AD EC DC ∴⊥⊥∴⊥⊥平面平面 ABCD 又为菱形,∴A D=DC ,∴DF=DE . (5)39.95 40.01 39.99 39.97 40.03直径/mm8分又点M 是EF 的中点,∴DM EF ⊥ ……………………………………10分12,2BD AF DO BD AF MO =∴=== ∴45DM O ∠=︒,同理45BM O ∠=︒ D M B M ∴⊥又EF BM M =∴⊥DM BEF 平面 ………………………………………12分,DM EFD EFD BEF ⊂∴⊥平面平面平面. ……………………………14分17.(Ⅰ)A 、B 、C 成等差数列,2,B A C ∴=+又A B C π++=,3π=∴B , (2)分由23-=⋅得,2332cos-=⋅πa c ,3=∴ac ① (4)分又由余弦定理得ac c a ac c a b -+=∴-+=222223,3cos 2π622=+∴c a ② (6)分由①、②得,32=+c a ……………………………………8分(Ⅱ)39,.44⎛⎫ ⎪⎝⎭18.(Ⅰ)直线1:2,l y =设1l l D D 交于点,则().l 的倾斜角为30,260l ∴的倾斜角为,……2分2k ∴=反射光线2l 所在的直线方程为2y x -=-.40y --=.……4分已知圆C 与1l A 切于点,设C (a,b)圆心C 在过点D 且与l垂直的直线上,8b ∴=+ ①…………………………6分 又圆心C 在过点A 且与1l垂直的直线上,a ∴=②,由①②得1a b ⎧=⎪⎨=-⎪⎩圆C 的半径r=3.故所求圆C的方程为22((1)9x y -++=. ………………………………………10分(Ⅱ)设点()0,4B -关于l 的对称点00(,)B x y ',则000044,232y x y x -+==且12分得(B '-.固定点Q 可发现,当B P Q '、、共线时,PB PQ +最小,故PB PQ +的最小值为为3B C '-. …………………………………………………………14分1213y y x ⎧+=⎪+⎪⎨⎪=⎪⎩得1(),22P最小值33B C '-=. ………………………16分19.(Ⅰ)由题意得(1)(1)0f g -=,即l o g 22l o g (2)a at =+,解得2t =-.…………2分(Ⅱ)不等式f (x )≥g (x )恒成立,即12log a (x +1)≥log a (2x +t) (x ∈[0,15])恒成立,它等价于x +1≤2x +t (x ∈[0,15]),即t ≥x +1-2x (x ∈[0,15])恒成立.………………………6分令x +1=u (x ∈[0,15]),则u ∈[1, 4],21x u =-,x +1-2x =221172(1)2()48u u u --+=--+,当1u =时,x +1-2x 最大值为1, ∴t ≥1为实数t 的取值范围.……………………………………………………………………8分(Ⅲ)F (x )=2g (x )-f (x ) =4log a (2x +t ) - log a (x+1)4log a=.z (x ∈[0,15]),则z ∈[1, 2],41x z =-,432(1)22z t t z z z -+-==+,z ∈[1, 2],…………………………………10分 设32()2t p z z z -=+,z ∈[1, 2],则222()6t p z z z-'=-.令()0p z '=,得z . ∵[26,56]t ∈,∴[1,2]z =⊆,当1z ≤<()0p z '<2z <≤,()0p z '>.故34min 2[()]8()6t p z p -==,…………………………………………………………12分且()p z 的最大值只能在1z =或2z =处取得. 而(1)22p t t =+-=,2(2)161522t tp -=+=+, ∴(1)(2)152tp p -=-, 当2630t ≤≤时,(1)(2)p p ≤,max ()(2)152tp z p ==+, 当3056t <≤时,(1)(2)p p >,max ()(1)p z p t ==, ∴max 15, 2630,[()]2, 3056.tt p z t t ⎧+≤≤⎪=⎨⎪<≤⎩…………………………………………………………14分∴当1a >时,342()4log [8()]6a t h t -=; 当01a <<时,4log (15), 2630,()24log , 3056.a a t t h t t t ⎧+≤≤⎪=⎨⎪<≤⎩…………………………………………16分20.(Ⅰ)数表中第i +1行数依次所组成数列的通项为f (i +1,j ),则由题意可得 f (i +1,j+1)-f (i +1,j )=[f (i ,j +1)+f (i ,j +2)]-[f (i ,j )+f (i ,j +1)]=f (i ,j +2)-f (i ,j ),………………2分又数表中第i (1≤i ≤n -3)行的数依次成等差数列,设其公差为d , 故f (i +1,j +1)- f (i +1,j )=f (i ,j +2)- f (i ,j )=2d 是与j 无关的常数,故第i +1行数依次所组成数列为等差数列,且其公差为2d .……………………………………4分(Ⅱ)∵f (1,j )= 4j ,∴第 1行的数依次成等差数列,由(Ⅰ)可得第2行的数也依次成等差数列,依此类推,可知数表中任一行的数(不少于3个)都依次成等差数列. 设第i 行的公差为d i ,则d i+1=2d i ,故d i = d 1×2i -1=2i+1(易知f (n-1,2)- f (n -1,1)= 2n )………6分∴f (i ,1)= f (i -1,1) +f (i -1,2) =2f (i-1,1) +2i =2[2f (i-2,1) +2i -1]+2i =22f (i-2,1) +2×2i = … =2i -1f (1,1) +(i -1)×2i=2i -1×4+(i -1)×2i =(i +1)×2 i .…………………………10分[另法:由f (i ,1)= 2f (i-1,1) +2i ,得f (i ,1)2i = f (i -1,1)2i-1+1,故f (i ,1)2i = i +1,故f (i ,1)=(i +1)×2i](Ⅲ)由f (i ,1) = (i +1)(a i -1),可得a i =f (i ,1)i +1+1=2i +1, 11111111()(21)(21)22121i i i i i i i i b a a +++===-++++,…………………………………12分 令()2i g i =,则1111111()()2221212121ii i i i i i b g i ++=-⨯=-++++, 2231111111()()()212121212121n n n S +=-+-++-++++++11113213n +=-<+.…………………………………………………………………………………14分要使n S m >,即111321n m +->+,只要111132133n mm +-<-=+, ∵m ∈(14, 13),∴10134m <-<,∴只要132113n m ++>-,即只要23log (1)113n m >---, ∴令λ=23log (1)13m--,则当n λ>时,都有n S m >.所以适合题设的一个函数为()2=x g x .……………………………………………16分。
连云港市2011届高三年级调研考试数学I一、填空题: 1. 若1a ii+-(i 是虚数单位)是实数,则实数a 的值是_________ 2. 已知集合2{|1},{|20}A x x B x x x =>=-<,则A B =_________3. 为了了解某校教师使用多媒体进行教学的情况,从该校200名授课教师中随机抽取20名教师,调查他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中使用多媒体进行教学次数在【15,30】内的人数是_________ 4. 在如图所示的流程图中,输出的结果是_________5. 若以连续两次骰子得到的点数m ,n 分别作为点P 的横坐标和纵坐标,则点P 在圆2216x y +=内的概率是6. 在约束条件010221x y y x ≤≤⎧⎪≤≤⎨⎪-≥⎩_________7. 一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是_________ 8. 已知集合222{(,)|||||1},{(,)|,0}A x y x y B x y x y r r =+≤=+≤>若点(x,y)∈A是点(x,y)∈B的必要条件,则r 的最大值是_________9. 已知点A(0,2)抛物线22(0)y px p =>的焦点为F ,准线为l ,线段FA 交抛物线与点B ,过B 做l 的垂线,垂足为M ,若A M ⊥MF ,则p=_________ 10.若函数2,0()2,0xx x f x x -⎧<⎪=⎨->⎪⎩,则函数(())y f f x =的值域是_________11. 如图所示,在直三棱柱中,A C ⊥BC ,AC =4,BC =CC 1=2,若用平行于三棱柱A 1B 1C 1-ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小 值为 。
12.已知椭圆22142x y +=,A 、B 是其左右顶点,动点M 满足MB ⊥AB ,连接AM 交椭圆与点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为_________ 13. 在三角形ABC 中,过中中线AD 中点E 任作一直线分别交边AB ,AC 与M 、N两点,设,,(0)AM xAB AN xAC xy ==≠则4x+y 的最小值是_________14. 如图是一个数表,第一行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两个数的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行,第10个数为_________二、解答题15.如图,在平面直角坐标系中,点A 在x 轴正半轴上,直线AB 的倾斜角为4π,OB=2,设3,(,)24AOB πθθπ∠=∈ (1) 用θ表示OA(2) 求OA OB ⋅的最小值.16.如图,已知四面体ABCD 的四个面均为锐角三角形,EFGH 分别是边AB ,BC ,CD ,DA 上的点,BD||平面EFGH ,且EH=FG 。
(1) 求证:HG||平面ABC(2) 请在平面ABD 内过点E 做一条线段垂直于AC ,并给出证明。
17.如图,已知位于y 轴左侧的圆C 与y 轴相切于点(0,1)且被x 轴分成的两段圆弧长之比为1:2,过点H (0,t )的直线l 于圆C 相切于MN 两点,且以MN 为直径的圆恰好经过坐标原点O 。
(1) 求圆C 的方程;(2) 当t=1时,求出直线l 的方程; (3) 求直线OM 的斜率k 的取值范围。
18.心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量144y x =+;若在t (t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y 2随时间变化的曲线恰好为直线的一部分,其斜率为2(0)(4)aa t <+,存留量随时间变化的曲线如图所示。
当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点” (1)若a=-1,t=5,求“二次复习最佳时机点”; (2)若出现了“二次复习最佳时机点”,求a 的取值范围。
19.已知各项均为正数的等差数列{}n a 的公差d 不等于0,设13,,k a a a 是公比为q 的等比数列{}n b 的前三项, (1)若k=7,12a =(i )求数列{}n n a b 的前n 项和T n ;(ii )将数列{}n a 和{}n b 的相同的项去掉,剩下的项依次构成新的数列{}n c ,设其前n 项和为S n ,求211*21232(2,)n n n n S n n N -----+⋅≥∈的值(2)若存在m>k,*m N ∈使得13,,,k m a a a a 成等比数列,求证k 为奇数。
20.已知函数222121451()ln ,()ln ,()2,6392f x ax x f x x x x f x x ax a R =+=++=+∈ (1)求证:函数()f x 在点(,())e f e 处的切线横过定点,并求出定点的坐标; (2)若2()()f x f x <在区间(1,)+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间(1,)+∞上,满足12()()()f x g x f x <<恒成立的函数()g x 有无穷多个。
连云港市2011届高三年级第二次模拟考试数学参考答案及评分标准一、填空题: 1.1-; 2.}{x x >;3.100; 4. 60; 5.92; 67.14; 8910.11(1,)(,1)22-- ; 11.24; 12.(0,0); 13.94; 14.162(或者65536). 二、解答题:15. (1)在△ABC 中,因为2OB =,4BAOp?,344ABO p p p q q ?--=-, 由正弦定理,得sin sin4OB OA ABOp=Ð,……………………………………3分3sin()4OAp q =-,所以3)4OA p q =-. ……………6分 注:仅写出正弦定理,得3分. 若用直线AB 方程求得2(sin cos )OA q q =+或)4OA πθ=+也得分.(2)由(1)得3||||cos sin()cos 4OA OB OA OB pq q q ?鬃- uu r uu u r uu r uu u r ,…………………8分2(sin 2cos2)2θθ=++)24θπ=++, …………………10分因为3(,),24p p q Î所以572(,)444p p pq + , 所以当3242p p q +=,即58pq =时,OA OB ×u u r u u u r的最小值为2-14分16. (1)因为BD //平面EFGH ,BDC EFGH FG = 平面平面,所以BD //FG . 同理BD //EH ,又因为EH FG =,所以四边形EFGH 为平行四边形, 所以HG //EF ,又HG ABC ⊄平面,所以HG ABC 平面 . ……………………………………………………6分 (2)在ABC 平面内过点E 作EP AC ⊥,且交AC 于P 点,在ACD 平面内过点P 作PQ AC ⊥,且交AD 于Q 点,连结EQ ,则EQ 即为所求线段.………………………………………………10分 证明如下:EP AC AC EPQ PQ AC EQ AC EQ EPQ EP PQ P ⊥⎫⇒⊥⎫⎪⊥⇒⊥⎬⎬⊂⎭⎪=⎭平面平面…………………………………14分17解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0,1),所以圆心C 在直线1y =上, 设圆C 与x 轴的交点分别为A 、B ,由圆C 被x 轴分成的两段弧长之比为21:,得23ACB π∠=, 所以2CA CB ==,圆心C 的坐标为(2,1)-,所以圆C 的方程为:22(2)(1)4x y ++-=. ………………………………4分 (2)当1t =时,由题意知直线l 的斜率存在,设直线l 方程为1y mx =+,由221(2)(1)4y mx x y =+⎧⎨++-=⎩得01x y =⎧⎨=⎩或22241411x m m m y m -⎧=⎪⎪+⎨-+⎪=⎪+⎩, 不妨令222441(,),(0,1)11m m M N m m --+++, 因为以MN 为直径的圆恰好经过(0,0)O ,所以2222244141(,)(0,1)0111m m m m OM ON m m m m --+-+⋅=⋅==+++ ,解得2m =,所以所求直线l方程为(21y x =+或(21y x =+.………………………………10分(3)设直线MO 的方程为y kx =,2,解之得34k ≤,同理得,134k-≤,解之得43k ≤-或>0k . 由(2)知,=0k 也满足题意. 所以k 的取值范围是43(,][0,]34-∞- . ………………………………………14分18. 设第一次复习后的存留量与不复习的存留量之差为y , 由题意知,228()(4)(4)4a y x t t t t =-+>++ ………………………………2分 所以21284()(4)(4)44a y y y x t t t t x =-=-+->+++ ……………………4分(1) 当1,5a t =-=时,2184(5)(54)544y x x -=-+-+++(4)41814x x -+=-++≤1-59=, 当且仅当 14x = 时取等号,所以“二次复习最佳时机点”为第14天. ………………10分 (2) 284()(4)44a y x t t t x =-+-+++22(4)48(4)(4)44(4)a x a t t x t t -++=--+-++++≤84at --+, …………………………………………14分 当且仅当4)4(244)4()4(2-+-=+=++-t ax x t x a 即 时取等号,由题意t t a>-+-4)4(2,所以 40a -<<. ………………16分注:使用求导方法可以得到相应得分.19.⑴ 因为7k =,所以137,,a a a 成等比数列,又{}n a 是公差0d ≠的等差数列,所以()()211126a d a a d +=+,整理得12a d =, 又12a =,所以1d =, 112b a ==,32111122a b a d q b a a +====, 所以()11111,2n n n n a a n d n b b q -=+-=+=⨯=, ……………………………4分 ①用错位相减法或其它方法可求得{}n n a b 的前n 项和为12n n T n +=⨯; ………6分 ② 因为新的数列{}n c 的前21n n --项和为数列{}n a 的前21n -项的和减去数列{}n b 前n 项的和,所以121(21)(22)2(21)(21)(21)221n n n n n n n S ----+-=-=---. 所以211212321n n n n S -----+⋅=-. ………………………10分 ⑵ 由d k a a d a ))1(()2(1121-+=+,整理得)5(412-=k d a d , 因为0≠d ,所以4)5(1-=k a d ,所以3111232a a d k q a a +-===.因为存在m >k,m ∈N *使得13,,,k m a a a a 成等比数列,所以1312⎪⎭⎝==a q a a m , ………………………………………………12分又在正项等差数列{a n }中,4)5)(1()1(111--+=-+=k m a a d m a a m , ……13分所以3111234)5)(1(⎪⎭⎫⎝⎛-=--+k a k m a a ,又因为01>a ,所以有[]324(1)(5)(3)m k k +--=-, …………………………………14分 因为[]24(1)(5)m k +--是偶数,所以3(3)k -也是偶数,即3-k 为偶数,所以k 为奇数. ……………………………………16分20. (1)因为1()2f x ax x '=+ ,所以()f x 在点(e,(e))f 处的切线的斜率为12k ae e=+, 所以()f x 在点(,())e f e 处的切线方程为21(2)()1y ae x e ae e=+-++ ,……2分整理得11(2)()22e y ae x e -=+-,所以切线恒过定点1(,)22e . ………4分(2) 令x ax x a x f x f x p ln 2)21()()()(22+--=-=<0,对(1,)x ∈+∞恒成立,因为21(21)21(1)[(21)1]()(21)2a x ax x a x p x a x a x x x--+---'=--+== (*)………………………………………………………………6分 令()0p x '=,得极值点1x 1=,2121x a =-, ①当112a <<时,有1x x 12=>,即1a 21<<时,在(2x ,+∞)上有()0p x '>,此时)(x p 在区间2(,)x +∞上是增函数,并且在该区间上有)(x p ∈2((),)p x +∞,不合题意;②当1a ≥时,有211x x <=,同理可知,)(x p 在区间(1,)+∞上,有)(x p ∈((1),)p +∞,也不合题意; …………………………………………… 8分 ③当12a ≤时,有210a -≤,此时在区间(1,)+∞上恒有()0p x '<, 从而)(x p 在区间(1,)+∞上是减函数;要使0)(<x p 在此区间上恒成立,只须满足021)1(≤--=a p 12a ⇒≥-, 所以1122a -≤≤.综上可知a 的范围是,22-⎢⎥⎣⎦. ……………………………………………12分 (3)当23a =时,221214514()ln ,()63923f x x x x f x x x =++=+记22115()()ln ,(1,)39y f x f x x x x =-=-∈+∞.因为225650399x x y x x-'=-=>,所以21()()y f x f x =-在(1,)+∞上为增函数, 所以21211()()(1)(1)3f x f x f f ->-=, ………………………………14分设11()(),(01)3R x f x λλ=+<<, 则12()()()f x R x f x <<, 所以在区间()1,+∞上,满足12()()()f x g x f x <<恒成立的函数()g x 有无穷多个. ………………………………………………………………16分。