破解圆锥曲线综合题的策略
- 格式:doc
- 大小:188.00 KB
- 文档页数:6
“先猜后证”——解决圆锥曲线探究性问题的有效策略徐亚辉【期刊名称】《高中数理化》【年(卷),期】2018(000)017【总页数】2页(P9-10)【作者】徐亚辉【作者单位】广东省广州市第四十四中学【正文语种】中文近年来,高考试题中出现了一类探究运动变化中不变的几何性质的圆锥曲线试题,常常以“是否存在”的设问方式出现.这类问题中的结论成立与否对问题的解决有直接影响,所以如果事先能够猜到“结论”就显得至关重要.解决这类问题的一种有效策略是“先猜后证”.即从满足条件的特殊情形入手,找到这个可能的数学对象,再通过逻辑推理给出一般的肯定性证明.例1 已知椭圆的离心率为长轴长为图1(1) 求椭圆C的方程;(2) 如图1所示,点M是以长轴为直径的圆O上任意一点,圆O在点M处的切线交直线x=3于点N.在x轴上,是否存在点P,使得过点M且垂直于直线ON的直线l 过该点?若存在,求出点P的坐标;若不存在,请说明理由.(1) 易得椭圆C的方程为(2) 如果这个点P存在,它的坐标可能是什么?因为事物的一般性寓于特殊性之中,并通过特殊性表现出来,没有特殊性就没有一般性.所以通过特殊化可以找到这个可能的点.假设满足条件的点P存在,因为对圆O上任意一点M处的切线,对应的直线l都过点P,因此我们选择一条特殊的切线——垂直于y轴的切线,直线l也应该过点P. 图2如图2所示,当点M坐标为时,因为MP⊥ON,所以设P(t,0),则解得t=1.这实际上得到了直线l过定点的一个必要条件,即如果满足题目要求的点P 存在,它只能是(1,0).下面从一般的角度证明对于任意切线下的直线l恒过点P(1,0).又因为过一点与已知直线垂直的直线有且仅有一条,所以只需证明直线MP与ON 垂直即可.由题意可知,圆O的方程为x2+y2=3.设M(x0,y0) (x0y0≠0),直线MN的方程为即x0x+y0y=3,所以点N的坐标为所以3(1-x0)-(3-3x0)=0,即MP⊥ON.所以在x轴上存在点P(1,0),使得过点M且垂直于直线ON的直线l 恒过点P.首先假设这个点P存在,然后通过一种特殊情形猜测出这个可能点为(1,0).在验证一般情形结论也成立的过程中,充分发挥图形的几何性质,直接证明MP⊥ON,把复杂的数学计算问题变得简捷流畅.例2 已知圆O:x2+y2=4和椭圆C:x2+2y2=4,F是椭圆C的左焦点.图3(1) 求椭圆C的离心率和点F的坐标;(2) 如图3,点P在椭圆C上,过点P作x轴的垂线,交圆O于点Q (P,Q不重合),l是过点Q的圆O的切线.圆F的圆心为点F,半径长为|PF|.试判断直线l与圆F的位置关系,并证明你的结论.(1)略;(2) 我们知道,证明直线l与圆F具有某种位置关系,要比探究直线l与圆F的位置关系简单得多.因此,应该从特殊情形入手,找到直线l与圆F可能的位置关系,借此简化解题过程.图4因为事物的普遍性蕴涵在事物的特殊情形中,并通过特殊情况体现出来,所以我们考察特殊情形:如图4所示,当点P在椭圆的短轴端点时,切线l的方程为y=2,点O到切线l的距离为2,而又易知|PF|=2,所以此时直线l与圆F相切.我们猜想,在一般情况下,直线l与圆F也相切.下面证明这个结论.设P(x0,y0),其中-2<x0<2,则依题意可设Q(x0,y1),则直线l的方程为即 x0x+y1y-4=0.所以圆F的圆心F到直线l的距离因为所以|PF|2=d2,即|PF|=d,故直线l与圆F相切.在本文的两个探究性问题中,因为题设中并不知道这个定点是否存在或直线与圆的位置关系是什么,所以求解时会有一定的困难.通过特殊情形猜出这个定点的坐标、位置关系,则问题就变成验证了.而验证有明确方向,因此就要容易得多.“没有大胆的猜想,就做不出伟大的发现.”有意识地进行“先猜后证”的思维训练,对于提高解题能力,提升数学核心素养是极为有益的.。
高考数学试题中圆锥曲线的复习策略
1. 首先要掌握圆锥曲线的基本概念、定义以及基本性质;
2. 熟练掌握圆锥曲线的参数方程、极坐标方程以及参数变换的方法;
3. 熟悉圆锥曲线的图形特征,如锥轴、焦点、准线、锥角等;
4. 熟练掌握圆锥曲线的极坐标表示法,以及极坐标变换的方法;
5. 掌握圆锥曲线的曲率和法线,以及其变换的方法;
6. 熟悉圆锥曲线的切线方程,以及切线在极坐标中的表示方法;
7. 熟悉圆锥曲线的渐近线,以及渐近线在极坐标中的表示方法;
8. 熟练掌握圆锥曲线的极限性质,以及极限的计算方法;
9. 熟悉圆锥曲线的曲率半径及其变换的方法;
10. 熟悉圆锥曲线的特殊点,并能确定其特殊性质;
11. 熟悉圆锥曲线的拉格朗日变换,以及拉格朗日变换的应用;
12. 多做练习题,熟悉各种类型的高考题型,提高解题能力。
普通高中生学习“圆锥曲线与方程”的常见问题与对策摘要:圆锥曲线是高考的必考内容,在高考的考题中,以大题的形式出现,近年来都处于压轴题的地位。
同学们在学习这一内容时,普遍感到困难。
常会出现不会恰当运用圆锥曲线的定义来解题;直线与圆锥曲线的问题的解题模式不够熟练;不习惯结合几何性质解题;对圆锥曲线与方程的一些综合问题求解的“整体”意识不强;不会用特殊化解定值问题“等五方面的问题。
关键词:圆锥曲线;整体;特殊化;定义;几何性质中图分类号:g633.6 文献标志码:b 文章编号:1674-9324(2013)18-0090-03普通高中的学生在学习高中数学选修2-1“圆锥曲线与方程”这一章时,常会有以下几点常见问题。
一、不会恰当运用圆锥曲线的定义来解题例如,人教a版《高中数学选修2-1》教材中的习题2.2a组的第1题:“如果点m(x,y)在运动的过程中,总满足关系式■+■=10,点m的轨迹是什么曲线?为什么?请写出它的方程。
”(一)常见的存在问题在解该题的时候,绝大多数的同学都是从方程入手,对所给的方程两边平方、简化、整理,最后花了大量的时间,经过大量的运算,才能得出曲线方程。
而用这种方法时,又常常会因为计算能力的问题做不下去。
其实,只要利用所给方程式子右边所反映的几何意义,再结合椭圆的定义,很快就能求解。
由题意可知,由于点m(x,y)是到两个定点f1(0,-3)与f2(0,3)的距离之和等于定值10,且定值10大于两定点的距离6,所以点m的轨迹是以f1(0,-3)与f2(0,3)为焦点,长轴长为的椭圆,因此它的轨迹方程为:■+■=1。
(二)存在问题的分析由此可见,圆锥曲线的定义在这一章中的重要位置。
可是很多同学对定义不够重视。
再如,课本教材的习题2.2a组的第7题、课本习题2.3a组的第5题等,都是运用定义就可以简化运算的题目,可以很多同学都不会恰当结合定义来解题。
这种现象可能与教师在教学过程中过于重视讲完定义后如何推导标准方程,而对变式理解定义不够有关。
如何破解圆锥曲线解答题摘要:新课程标准下的高考越来越注重对学生的综合素质的考查,圆锥曲线这一章出题形式灵活多变,可以充分考查学生综合素质,在培养学生思维的灵活性、创造性等方面起积极的作用。
关键词:轨迹方程设而不求点差法众所周知,圆锥曲线这一章一直以难想、难算在高中阶段著称,致使许多学生谈“锥”色变。
其实,只要我们多从解题中发现共性,总结规律,那么圆锥曲线中的难题便会迎刃而解。
下面是笔者从教学中得到的一些规律方法,希望对读者有所启示。
题型一:求曲线的轨迹方程规律方法:求轨迹方程的一般步骤。
(1)根据已知条件,建立适当的平面直角坐标系。
(2)设取所求轨迹上的任意一点p(x,y),即求谁设谁。
(3)建立(x,y)的一个等量关系,即f(x,y)=0。
建立等量关系的方法:①直接法,包括勾股定理、点点距离、点线距离、垂直等。
②坐标转移法,包括中点坐标公式、定比分点公式、向量等。
③参数法,先得到(x,y)的参数方程,再消去参数得到一般方程。
④定义法,通过已知条件先明确所求曲线的类别,进而转成待定系数。
(4)对所得的轨迹方程进行检验,确保所得轨迹的纯粹性和完备性。
一般把所得到的曲线画出来,即可看到有无不合适的点。
例1.过点p(1,3)作两条互相垂直的直线l1和l2,分别与x轴,y轴交于a,b两点,求a,b两点中点m的轨迹方程?■解法一:当l1的斜率不存在时,a(1,0),b(0,3)可得m (■,■)当l1的斜率存在时,设l1的斜率为k(k≠0),动点m(x,y),则l1:y-3=k(x-1)?圯a(-■+1,0),l2:y-3=-■(x-1)?圯b(0,■+3),得x=-■(■-1)y=■(■+3)?圯x+3y-5=0,(x≠■)综上所述:m的轨迹方程为x+3y-5=0。
解法二:设a(a,0),b(0,b),m(x,y),由中点坐标公式得,x=■y=■?圯a(2x,0),b(0,2y),由两直线垂直得■·■=0?圯(2x-1,-3)·(-1,2y-3)=0,得m的轨迹方程为x+3y-5=0。
攻克圆锥曲线解答题的策略1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-=或12AB y y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ②212121//b b k k l l ≠=⇔且 2、圆锥曲线方程与性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22p px x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以与根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元··,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
龙源期刊网 从考题探析圆锥曲线题解题策略作者:戴锦权来源:《理科考试研究·高中》2013年第07期圆锥曲线是是高中数学的重点之一,也是近几年高考数学试题命题的热点和重点;它往往是综合题,在高考试卷中常处于压轴题的位置,题型变化灵活,能考查学生多方面运用能力,是出活题,考能力的典范;由于向量、导数等新内容的充实,圆锥曲线试题逐渐向多元化、交汇型发展。
高考中,对于圆锥曲线的考试,很少单独考查它的定义、性质,往往是在此基础上,考查与其他知识点的组合,要想解决题目,就必须掌握一些综合知识,还要能有效地整合这些知识点。
一、对于圆锥曲线定义的考查对于圆锥曲线的考查一般没有什么答题,多数是单选题或者填空题,重在考查它的性质特征,这需要学生掌握基本的圆锥曲线知识。
三、圆锥曲线与面积的综合考查圆锥曲线与面积相结合的知识考查是在学生了解圆锥曲线基本知识的同时,结合面积相关的知识,虽然结合的是面积问题,但考查的范围却很广,常牵涉弦长、点和直线距离等问题。
例题3 在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-13。
(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
解题分析本题的面积问题巧妙地转化成了解斜三角函数知识,再过渡成简单的比例问题,省去了大量的计算麻烦,此题没有用常用的韦达定理,着重考查考生的分析观察能力。
四、圆锥曲线与不等式的综合考查不等式因为其本身灵活多变的特点本就是高考中的一大难点,常作为综合压轴大题,当不等式与圆锥曲线结合时,其难度确实有所加大,但只要熟悉不等式的常见基本特性等,解决此类问题难度也不是大;要学会将不等式的基本性质灵活运用,这样就能迎刃而解。
圆锥曲线综合大题5大重要思路
一、若题中涉及到三角形的面积:
此类题无外乎两种
第一类:已知面积,待求的实质是参数值
第二类:存在某些参数(往往是两个参数),求面积为定值或者最值
1、万能方法:某个已知点作为三角形的顶点,该点到弦长的距离作为高,弦长用弦
长距离公式表示出来,两者相乘即为面积
注:
(1)直线的信息完全未知时,要将直线设成斜截式,并且对直线的斜率是否存在进行分类讨论
(2)将直线方程和圆锥曲线方程联立,判别式一般都起到对参数范围进行限定的作用,必须要写出来,写明韦达定理的表达式。
(3)已知点到弦长的距离,按照点到直线的距离公式表示,这个式子中是有绝对值的,此时注意判别式对参数范围的限制能将绝对值消掉。
(4)计算量看似很大,实际计算过程中可以约分的地方非常多
2、分割法:(1)将所求原来的三角形分割成两个同底或者同高的三角形面积之和
(2)举例假如底边相同,那就需要表示两个高的长度之和,此时往往都需要使用韦达定理。
(3)该方法需要设点,但不需要将点的坐标求出
3、若该三角形有角度为已知时:
(1)主要思路是利用面积公式
(2)此时这类题与正余弦定理有非常大的关系,特别是余弦定理4、注:当求最值时,可能会使用到均值不等式、分离常数、分离参数、换元法
这几个方法在此类高考题中都是很常见的求最值方式。
齐次化巧解斜率的和积问题1.曲线的平移法则:对于给定曲线,平移口决:左加右减(针对x ),下加上减(针对y )2.两直线的斜率之和或积为定值方法拓展1.拓展:齐次化巧解斜率的和积问题2.原理:平移不改变直线的斜率、韦达定理的运用3.步骤:①设:设两直线的斜率分别为k 1和k 2;②移:将直线和曲线整体平移,使得两直线的公共点落在原点,写出平移后曲线的方程,并将平移后的目标直线设为固定形式:mx+ny =1若与定点(00,y x )的斜率关系,则可设直线方程为1)()(00=-+-y y n x x m ③联:联立直线和曲线方程,得到开如:)0(022≠=++p rx qxy py 方程两边同时除以x 2,得到形如)0(0)((2≠=++p r x y q x y p ④换:令k =x y ,得到)0(02≠=++p r qk pk ,则k 1和k 2是该方程的两根⑤达:韦达定理得到k 1+k 2和k 1k 2,从而得到m 和n 的关系4.优点:相比传统的韦达定理,计算量大大减少,缺点:mx+ny =1不能表示经过原点的直线常见三种类型:①MB MA k k ⋅为定值(不为0)②MB MA k k +为定值(不为0)③)0(πθθβα<<=+例1A 、B 是抛物线x y 42=上的两点,且满足OA ⊥OB(O 为坐标原点),求证:直线AB 经过一个定点.练习1已知抛物线C :)0(22>=p px y 上一点A(2,a )到其焦点的距离为3(1)求抛物线C 的方程;(2)过点(4,0)的直线与抛物线C 交于点P 、Q 两点,O 为坐标原点,证明∠POQ=90°.例2设曲线C :)0(22>=p py x 上一点M(m ,2)到焦点的距离为3.(1)求曲线C 方程;(2)设P 、Q 为曲线C 上不同于原点O 的任意两点,且满足以线段PQ 为直径的圆过原点O ,试问直线PQ 是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,说明理由.练习2已知离心率为25的双曲线C 的中心在坐标原点,左、右焦点F 1、F 2在x 轴上,双曲线C 的右支上一点A 使0AF AF 21=⋅→→且△AF 1F 2的面积为1.(1)求双曲线C 的标准方程;(2)若直线l :y=kx+m 与双曲线C 相交于E 、F 两点(E 、F 不是左右顶点),且以EF 为直径的圆过双曲线C 的右顶点D ,求证:直线l 过定点,并求出该定点的坐标.例3如图,椭圆E :)0(12222>>=+b a b y a x 经过点A(0,-1),且离心率为22(1)求椭圆E 的方程;(2)经过点(1,1)且斜率为k 的直线与椭圆E 交于不同的两点P 、Q(异于点A),证明:直线AP 与AQ 的斜率之和为2.练习3已知椭圆C 过点A(231,),两个焦点为(-1,0),(1,0)(1)求椭圆的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.例4(2017全国I 卷)已知椭圆)0(12222>>=+b a b y a x ,四点)23,1()23,1()1,0()1,1(4321P P P P -,中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A 、B 两点,若直线P 2A 与直线P 2B 的斜率之和为-1,求证:l 过定点.练习4设抛物线C :x y 22=点A(2,0),B(-2,0),过点A 的直线l 与C 交于M 、N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM=∠ABN参考答案例1设A(11,y x )、B(22,y x )直线AB 的解析式为mx+ny =1,与抛物线联立有)(42ny mx x y +=即有044(2=--m x y n x y ,此方程是关于2211,x y x y 的一元二次方程,142211-=-=⋅=⋅m x y x y k k OB OA ,即41=m ,直线AB 的方程为141=+ny x ,过定点(4,0)练习1(1)2+2p =3得p=2,抛物线的方程为x y 42=(2)设P(11,y x )、Q(22,y x )直线PQ 的解析式为mx+ny =1,与抛物线联立有)(42ny mx x y +=即有044(2=--m x y n x y ,此方程是关于2211,x y x y 的一元二次方程,直线PQ 过点(4,0)得41=m 142211P -=-=⋅=⋅m x y x y k k OQ O ,故∠POQ=90°例2(1)2+2p =3得p=2,抛物线的方程为y x 42=(2)设P(11,y x )、Q(22,y x )直线PQ 的解析式为mx+ny =1,与抛物线联立有)(42ny mx y x +=即有014(42=-+x y m x y n ,此方程是关于2211,x y x y 的一元二次方程,以PQ 为直径的圆过原点,则1412211P -=-=⋅=⋅nx y x y k k OQ O 得n=41,直线PQ 方程为141=+y mx ,过定点(0,4)练习2(1)易知AF 1-AF 2=2a ,AF 21+BF 22=4c 2,25=a c 得2a =4,b=1,故双曲线的方程为1422=-y x (2)设P(11,y x )、Q(22,y x )直线PQ 的方程为m (x-2)+ny =1,令p=x -2,q=y ,则直线PQ 的方程为mp+nq =1与双曲线联立有)(4)2(2nq mp q p +=+即有044))(41(2=--+pq n q pm ,此方程是关于2,22211--x y x y 的一元二次方程,则1414222211D DP -=+-=-⋅-=⋅mx y x y k k Q 得m=43,直线PQ 方程为1)2(43=+-ny x ,过定点(310,0)例3(1)1222=+y x (2)设P(11,y x )、Q(22,y x )直线PQ 的方程为mx+n (y+1)=1,令p=x ,q=y+1,则直线PQ 的方程为mp+nq =1与椭圆联立有2)1(222=-+q p 即有014))(42(2=++-p q mp q n ,此方程是关于22111,1x y x y ++的一元二次方程,则n m k k Q 424D DP --=+,而直线PQ 过点(1,1)则有m +2n =1即有m =1-2n ,代入可得242)21(4D DP =+--=+nn k k Q 练习3(1)13422=+y x (2)设E(11,y x )、F(22,y x )直线EF 的方程为m (x-1)+n (y-23)=1,令p=x -1,q=y-23,则直线EF 的方程为mp+nq =1与椭圆联立有1223(4)1(322=+++q p 即有063)126()(124(2=+++++m pq m n p qn ,此方程是关于123,1232211-+-+x y x y 的一元二次方程,则0412126AE =++-=+n m n k k AF 得n=-2m,故直线EF 的斜率为21例4(1)易知点P 2P 3P 4在椭圆上,可得椭圆方程为1422=+y x (2)设A(11,y x )、B(22,y x )直线AB 的方程为mx+n (y -1)=1,令p=x ,q=y-1,则直线AB 的方程为mp+nq =1与椭圆联立有4)1(4322=++q p 即有034)(44(2=+++p q mp q n ,此方程是关于22111,1x y x y --的一元二次方程,则1444AE -=+-=+n m k k AF 得m=n+21,故直线方程为0121)1(=-+-+x y x n ,故直线过定点(2,1)练习4(1)121121--=+=x y x y 或(2)设M(11,y x )、N(22,y x )直线MN 的方程为m(x+2)+ny =1,令p=x+2,q=y ,则直线MN 的方程为mp+nq =1与椭圆联立有)2(22-=p q 即有024)28()(41(222=-+-++m m p q n mn p q n ,此方程是关于2,22211++x y x y 的一元二次方程,则2BN BM 4128n n mn k k +--=+,而直线过点A(2,0),m=41,得0BN BM =+k k 故∠ABM=∠ABN。
圆锥曲线解答题中的定点和定值问题的解题策略在圆锥曲线中有一类曲线,当参数取不同值时,曲线本身性质不变或形态发生变化时,其某些共同的性质始终保持不变,我们把这类问题成为圆锥曲线的定值问题.圆锥曲线中的定值问题是近几年高考的热点题型,解题过程中应注重解题策略,善于在动点的“变”中寻求定值的“不变”性.题型一:定值问题解答圆锥曲线定值问题的策略:1、把相关几何量用曲线系的参变量表示,再证明结论与参数无关.求解这类问题的基本方法是“方程铺路、参数搭桥”,解题的关键是对问题进行综合分析,挖掘题目中的隐含条件,恰当引参,巧妙化归.2、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关,即特殊到一般的思想.1、两点间的距离为定值例1:(2021·广东中山市高三期末)已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x y a b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.【答案】(1)2212x y +=;(2.【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫- ⎪--⎝⎭,所以PQ =====为定值. 解题思路:设动点()00,P x y ,由题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可.2、求某一代数式为定值例2:(2021·全国高三模拟)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为F ,离心率2e =,焦距为4. (1)求双曲线C 的方程;(2)设M 是双曲线C 上任意一点,且M 在第一象限,直线MA 与MF 的倾斜角分别为1α,2α,求122αα+的值.【答案】(1)2213y x -=;(2)π. 【详解】(1)由242c c a=⎧⎪⎨=⎪⎩,得12a c =⎧⎨=⎩,所以2223b c a =-=,所以双曲线C 的方程为2213y x -=.(2)由(1)知双曲线C 的方程为2213y x -=,所以左顶点()1,0A -,右焦点()2,0F .设()()0000,0,0M x y x y >>,则22013y x -=.当02x =时,03y =,此时1MA k =,1π4α=,2π2α=, 所以122παα+=;当02x ≠,010tan 1MA y k x α==+,020tan 2MF yk x α==-.因为()220031y x =-,所以()()()()()00000001222220000000221211tan 22113111y x y x y x y x x y x x y x α+++-====-+-+--⎛⎫- ⎪+⎝⎭,又由点M 在第一象限,易知1π0,3α⎛⎫∈ ⎪⎝⎭,()20,πα∈,所以122παα+=. 综上,122αα+的值为π.解题思路:利用点在双曲线上,满足22013y x -=,利用整体代换思想求出1tan 2α和2tan α相反.例3:(2021·安徽安庆市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>,过椭圆左焦点F 的直线0x -+=与椭圆C 在第一象限交于点M ,三角形MFO(1)求椭圆C 的标准方程;(2)过点M 作直线l 垂直于x 轴,直线MA 、MB 交椭圆分别于A 、B 两点,且两直线关于直线l 对称,求证∶直线AB 的斜率为定值.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)直线0x -+=过左焦点F ,所以()F ,c =又由124OMF M S y ∆==可知1=2M y从而椭圆经过点12M ⎫⎪⎭由椭圆定义知1242a =+=,即2a = 故椭圆的方程为22:14x C y +=.(2)由条件知,直线MA MB 、斜率存在,且两直线斜率互为相反数,设直线(12MA y k x -=:交椭圆于点()11,A x y ,直线(12MB y k x -=--:交椭圆于点()22,B x y ,由(221244y k x x y ⎧-=⎪⎨⎪+=⎩得()()22224141230k x k x k +-++--=1=1x =,112y =+故1)2A +,同理可得221)2B +,k ===即证直线AB. 解题思路:将直线(12MA y k x -=:与椭圆方程联立求出交点221)2A +的坐标,再将A 中的k 用k -替换,即可求出B 点坐标,,再利用斜率公式,化简,即可.例4.(2021·河南高三月考(理))已知点()2,0A -,()2,0B ,动点(),S x y 满足直线AS 与BS 的斜率之积为34-,记动点S 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么样的曲线;(2)设M ,N 是曲线C 上的两个动点,直线AM 与NB 交于点P ,90MAN ∠=︒. ①求证:点P 在定直线上;②求证:直线NB 与直线MB 的斜率之积为定值.【答案】(1)()221243x y x +=≠±,曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点;(2)①证明见解析;②证明见解析. 【详解】(1)解:由题意,得()32224y y x x x ⋅=-≠±+-, 化简,得()221243x y x +=≠±,所以曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点. (2)证明:①由题设知,直线MA ,NB 的斜率存在且均不为0. 设直线AM 的方程为()20x ty t =-≠,由AM AN ⊥,可知直线NA 的斜率为NA k t =-,方程为12x y t=--.由2212,{3412,x y t x y =--+=得()2243120t y ty ++=, 解得21243N ty t =-+,则2221126824343N t t x t t t -⎛⎫=-⋅--= ⎪++⎝⎭,即2226812,4343t t N t t ⎛⎫-- ⎪++⎝⎭. 直线NB 的斜率为222120343684243NBtt k t tt --+==--+, 则直线BN 的方程为()324y x t =-,将()324y x t=-代入2x ty =-,解得14x =-, 故点P 在直线14x =-上.②由(1),得34NA NB k k ⋅=-,34MA MB k k ⋅=-,所以3394416NA NB MA MB k k k k ⎛⎫⎛⎫⋅⋅⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭.结合1NA MA k k ⋅=-,得916MB NB k k ⋅=-为定值.即直线NB 与直线MB 的斜率之积为定值.解题思路:①设直线AM 的方程,由AM AN ⊥,可得直线AN 方程,与椭圆联立可求点N 坐标,进而可求得直线BN 方程,与AM 联立即可得证点P 在定直线上;②由(1)得34NA NB k k ⋅=-,34MA MB k k ⋅=-,又AM AN ⊥,进而可得直线NB与直线MB 的斜率之积.例5、(2021·江苏南通市高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMBAMNS S △△为定值.【答案】(1)22143x y +=;(2)53. 【详解】(1)因为椭圆的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭, 所以22911,214c a a b +==,又222a b c =+,解得224,3a b ==,所以椭圆C 的方程为22143x y +=; (2)设()()()112233,,,,,A x y B x y N x y ,因为点M 为线段OA 的中点,所以11,22x y M ⎛⎫⎪⎝⎭,因为B ,M ,N 三点共线,所以BN BM λ=, 所以()()3123121,122x x x y y y λλλλ=+-=+-,又因为A ,B 点在椭圆上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 又因为直线OA ,OB 的斜率之积为34-,所以1212340x x y y +=, 因为点N 在椭圆上,所以2233143x y +=,即()()()()()12122222221122341341482261x y x y x x y y λλλλ++-+-+=+,所以()22114λλ+-=,解得85λ=,所以85BN BM =,则53BM MN =,所以152132BOMB B AMNN N OM d BM Sd Sd MN AM d ⋅⋅====⋅⋅为定值.解题思路:设()()()112233,,,,,A x y B x y N x y ,根据M 为线段OA 的中点和B ,M ,N 三点共线,由BN BM λ=,表示点N 的坐标,再根据A ,B ,N 在椭圆上,结合直线OA ,OB 的斜率之积为34-,求得λ,从而得到BM 与MN 的比值,然后由1212BOMB B AMNN N OM d BM S dSd MN AM d ⋅⋅===⋅⋅求解. 例6、(2021·山东泰安市高三期末)已知椭圆)(2222:10x y C a b a b+=>>的左顶点为)(2,0A -,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上.(1)求椭圆C 的方程;(2)过橢圆C 的右焦点F 作斜率为)(0k k ≠的直线l ,交椭圆C 于M ,N 两点,直线AM ,AN 分别与直线2b x c=交于点P ,Q ,则FP FQ ⋅是否为定值?请说明理由.【答案】(1)22143x y +=;(2)是定值,94-. 【详解】(1)∵2a =,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上,∵219144b +=,∵23b =,∵椭圆C 的方程为:22143x y +=.(2)是定值94-,理由如下:设)(11,M x y ,)(22,N x y ,直线l 的方程为)()(10y k x k =-≠,由)(221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得)(22224384120k x k x k +-+-=,∵2122843k x x k +=+,212241243k x x k -=+,设)(3,P P y ,)(3,Q Q y ,则11322P y y x =++,∵)(111151522P k x y y x x -==++, 同理可得)(22512Q k x y x -=+,∵)(11512,2k x FP x ⎛⎫- =⎪⎪ +⎭⎝,)(22512,2k x FQ x ⎛⎫- =⎪⎪ +⎭⎝, ∵)()()()()()(212121221212122511144252224k x x x x x x FP FQ kx x x x x x ---++⋅=+=++++++222222222412819434342541216444343k k k k k k k k k --+++=+=--++++,∵FP FQ ⋅为定值94-.解题思路:设直线l 的方程,与椭圆方程联立,设)(3,P P y ,)(3,Q Q y ,由三点共线可得P y ,Q y ,结合韦达定理坐标表示FP FQ ⋅可得.3、求某一个量为定值例7、(2021·江苏盐城市伍佑中学高三期末)已知椭圆2222:1(0)x y C a b a b +=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为(1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ的交点为T ,求证:点T 横坐标为定值.【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【详解】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩ 故C 的标准方程为22195x y +=. (2)由(1)知()30A -,,()3,0B ,()2,0F , 设00,,()T x y ,11(,)P x y ,()22,Q x y ,由010133TA PA y yk k x x =⇒=++'①, 020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++, 又2211195x y +=,故2211195x y -=-,所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+.所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③ 由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点, 所以设直线PQ 的方程为2x my =+,(直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率)代入22195x y +=整理,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=解得092x =. 所以点T 横坐标为定值92. 解题思路:设00,,()T x y ,11(,)P x y ,()22,Q x y ,根据TA PA k k =,TB QB k k =可得0126123333x y x x x y --=⋅++,根据11(,)P x y 在椭圆C 上,代入方程化简整理可得0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---,设直线PQ 的方程为2x my =+,与椭圆C 联立,得到关于y 的一元二次方程,根据韦达定理,可得1212,y y y y +⋅的表达式,代入上式即可.例8、(2021·湖北武汉市高三月考)已知椭圆C :()222210x y a b a b +=>>的左右顶点分别为A ,B ,过椭圆内点2,03D ⎛⎫⎪⎝⎭且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,43PD BD ==. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线AP ,AQ 和直线l :x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【答案】(Ⅰ)22142x y +=;(Ⅱ)29t =-或103t =.【详解】(Ⅰ)由43BD =,得24233a =+=,故C 的方程为22214x y b+=,此时24,33P ⎛⎫ ⎪⎝⎭.代入方程2116199b +=,解得22b =,故C 的标准方程为22142x y +=. (Ⅱ)设直线PQ 方程为:23x my =+,与椭圆方程联立.得()224322039m m y y ++-=.设()11,P x y 、()22,Q x y ,则()()1221224323292m y y m y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩.①此时直线AP 方程为11(2)2y yxx ,与x t =联立.得点11(2),2t y M t x ⎛⎫+ ⎪+⎝⎭,同理,点22(2),2t y N t x ⎛⎫+ ⎪+⎝⎭.由MD ND ⊥,1MD ND k k ⋅=-.即()()1212(2)(2)1222233t y t y t x t x ++⋅=-⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭. 所以221212288(2)0333t y y t my my ⎛⎫⎛⎫⎛⎫++-++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.即()2221212122864(2)0339m t y y t m y y y y ⎛⎫⎡⎤++-+++= ⎪⎢⎥⎝⎭⎣⎦. 将①代入得:()()()222222232(2)2323264039929292t m m t m m m ⎡⎤-+-⎛⎫⎢⎥+--+= ⎪+++⎝⎭⎢⎥⎣⎦. 化简得:()22222232(2)323264203t t m m m ⎛⎫⎡⎤-++---++= ⎪⎣⎦⎝⎭. 即222(2)403t t ⎛⎫+--= ⎪⎝⎭.2223t t ⎛⎫+=±- ⎪⎝⎭.解得29t =-或103t =.解题思路:设直线PQ 方程为:23x my =+,与椭圆方程联立,结合韦达定理得1212,y y y y +,再联立AP 方程得M 同理得N 坐标,结合MD ND ⊥恒成立得1MD ND k k ⋅=-,化简计算可得参数t 值.例9、(2021·陕西榆林市高三一模(理))已知椭圆222:1(1)Γ+=>y x a a与抛物线2:2(0)C x py p =>有相同的焦点F ,抛物线C 的准线交椭圆Γ于A ,B 两点,且1AB =.(1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,若P 为椭圆Γ上任意一点,以P 为圆心,OP 为半径的圆P 与椭圆Γ的焦点F 为圆心,F 交于M ,N 两点,求证:MN 为定值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)证明见解析. 【详解】(1)椭圆222:1(1)Γ+=>y x a a可得焦点(,抛物线2:2(0)C x py p =>的焦点为0,2p ⎛⎫ ⎪⎝⎭2p =①,由22221p y y x a ⎧=-⎪⎪⎨⎪+=⎪⎩可得22214p x a +=,解得x =,所以1AB ==②,由①②可得:24a =,p =所以椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)设(,)P m n ,则2214+=n m ,圆P 的方程为:2222()()-+-=+x m y n m n ,圆F的方程为:22(5+-=x y ,所以直线MN的方程为:(10+--=mx n y , 设点F 到直线MN 的距离为d ,则2d ====.||2MN ==. 所以MN 为定值.解题思路:设(,)P m n ,则2214+=n m ,写出圆P 和圆F 的方程,两个圆的方程相减可得直线MN 的方程,计算点F 到直线MN 的距离为d ,再利用||MN =.题型二、证明动直线过定点或动点在定直线上的问题解答圆锥曲线的定点问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.1、直线过定点问题例10、(2020·江西吉安市高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>经过点12P ⎫⎪⎭,且离心率e =(1)求椭圆C 的方程;(2)已知斜率存在的直线l 与椭圆相交于A ,B 两点,点Q ⎫⎪⎪⎝⎭总满足AQO BQO ∠=∠,证明:直线l 过定点.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)因为椭圆()2222:10x y C a b a b +=>>的离心率e =所以22221b e a =-=⎝⎭,即224a b =, 又椭圆()2222:10x y C a b a b+=>>经过点12P ⎫⎪⎭,代入椭圆方程可得223114a b +=, 联立方程组可得222231144a b a b⎧+=⎪⎨⎪=⎩,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222148440k x kmx m +++-=,()2216410k m ∆=-+>,即2241m k <+, 122814km x x k -+=+,21224414m x x k -=+,因为AQO BQO ∠=∠,所以0AQ BQ k k +=,AQ BQ k k +===,即()()1221kx m x kx m x ⎛⎛+++ ⎝⎭⎝⎭()121220kx x m x x ⎛⎫=+-+= ⎪ ⎪⎝⎭得()()22244814033k m km m m k ⎛⎫----+= ⎪ ⎪⎝⎭,化简得m =,直线l 的方程为(y k x =-,所以,直线l 恒过定点).解题思路: 设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,将直线方程与椭圆方程联立,写出韦达定理,又因为AQO BQO ∠=∠,所以0AQ BQ k k +=,将韦达定理代入得出答案.例11、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.【答案】(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫⎪⎝⎭.解题思路:设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点.例12、(2021·山东德州市高三期末)已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=. (1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【答案】(1)22121x y +=;(2)证明见解析,(-2,0). 【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b+=由题意可得2222221(,)(,)0c a x y x c y x c y b c a ⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++ 有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=,所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线,所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mk km k m k k --+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0).解题思路:先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0)."设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.2、动点在定直线上的问题例13、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【答案】(1)22143x y +=;(2)证明见解析. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅= 解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=. 显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x =故点M 在定直线4x =上.解题思路:设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线BO 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果.例14、(2021·福建高三模拟)椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,12P ⎛ ⎝⎭在C 上.(1)求椭圆C 的标准方程;(2),E F 设为短轴端点,过()0M ,1作直线l 交椭圆C 于AB 、两点(异于,E F ),直线AE BF 、交于点T .求证:点T 恒在一定直线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)因为点1,24P ⎛⎫ ⎪ ⎪⎝⎭在C 上,所以222141a b ⎝⎭+=, 又12c e a ==,222a b c =+,所以24a =,23b =, 故所求椭圆C 的方程为22143x y +=. (2)由题意知直线l 的斜率存在,设其方程为1y kx =+. 设()11,A x y ,()22,B x y ,(10x ≠,20x ≠).()222214388034120y kx k x kx x y =+⎧⇒++-=⎨+-=⎩, 122843kx x k -+=+,122843x x k -=+,且有1212x x kx x +=. 1122::AEBFy l y x x y l y x x ⎧=⎪⎪⎨+⎪+=⎪⎩(10x ≠,20x ≠) 11111y kx x x +====,故1y ⎤=⎥⎦2kx x xx x x +++-=3x x x x +-=3=故点T 恒在一定直线3y =上.解题思路:设出直线1y kx =+,联立直线与椭圆的方程结合韦达定理求出,AE BF 的直线方程,联立求出交点纵坐标为3,进而可得结果.3、圆过定点问题例14、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.【答案】(1)22143x y +=;(2)过定点,证明见解析,定点为(1,0),(1,0)-. 【详解】解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=,解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--. 在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.解题思路: 设00(,)P x y ,设过P 的椭圆的切线为y kx b =+,与椭圆方程联立由0∆=,求出切线的斜率0034x k y =-,得出切线方程000334x x y y y =-+,由条件求出12,B B 坐标,在x 轴上取点(),0M t ,由120MB MB ⋅=得出答案.【巩固训练】1、(2020·广东高三一模)已知点()2,1P --为椭圆2222:1x y C a b+=(0)a b >>上一点,且椭圆C的一个焦点与抛物线2y =的焦点重合,过点P 作直线PA ,PB ,与椭圆C 分别交于点A ,B .(1)求椭圆C 的标准方程与离心率;(2)若直线PA ,PB 的斜率之和为0,证明:直线AB 的斜率为定值.【答案】(1)22163x y +=,离心率为2;(2)证明见解析. 【详解】(1)由题设,得22411a b+== 由①②解得26a =,23b =,所以椭圆C 的标准方程为22163x y +=,椭圆C 的离心率为2c e a ===. (2)直线AB 的斜率为定值1.证明:设直线PA 的斜率为k ,则直线PB 的斜率为k -, 记11(,)A x y ,22(,)B x y .设直线PA 的方程为1(2)y k x +=+,与椭圆C 的方程联立,并消去y 得()()222212848840k x k k x k k ++-+--=,则2-,1x 是该方程的两根,则212884212k k x k ---=+,即21244212k k x k-++=+. 设直线PB 的方程为1(2)y k x +=-+,同理得22244212k k x k --+=+.因为()1112y k x +=+,()2212y k x +=-+,所以()()()212121212121228224121812ABkk x k x k x x y y k k k x x x x x x k +++++-+=====---+,因此直线AB 的斜率为定值.2、(2021·山西阳泉市高三期末(理))已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.【答案】(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析.【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->, ∴122814kt x x k +=-+,21224414t x x k-=+, 111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==,∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k -+=+,解得12k =±.1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 3、(2021·湖北宜昌市高三期末)已知点A 、B坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-.(1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.【答案】(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P 的轨迹方程为221(84x y x +=≠±.(2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上, 由题意得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,∴()1212my y y y =-+,2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=---()1211212121221y y y my y y y y y y -+++=-=-=--,3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+2222(4)3)2222x x m m my my +-+++==++ ∴3x =-时0y =, ∴直线ND 过定点()3,0-.4、(2021·安徽池州市高三期末(理))已知椭圆C :()222210x y a b a b+=>>的左顶点、右焦点分别为A ,F ,点31,2M ⎛⎫⎪⎝⎭在椭圆C 上,且椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过点F 且斜率为()0k k ≠的直线l 与椭圆C 交于D ,E 两点,直线AD ,AE 斜率分别为1k ,2k ,证明:12kk kk +为定值.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)由题意可得2222222312112a b c a a b c ⎧⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎪⎪=⎨⎪-=⎪⎪⎪⎪⎩,解得2a =,b =所以椭圆C 的方程为22143x y +=. (2)证明:由(1)可知()1,0F ,则直线l 的方程为()1y k x =-.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+,所以()()1212121212112222k x k x y yk k x x x x --+=+=+++++12331122k x x ⎛⎫=-+- ⎪++⎝⎭()()()()()12121212123434222224x x x x k k x x x x x x ⎡⎤⎡⎤++++=-=-⎢⎥⎢⎥+++++⎣⎦⎣⎦2222228344324128244343k k k k k k k ⎡⎤⎛⎫+⎢⎥ ⎪+⎝⎭⎢⎥=-⎢⎥-+⨯+⎢⎥++⎣⎦()222223816122412161612k k k k k k ⎡⎤++⎢⎥=--+++⎢⎥⎣⎦ 222112k k k k ⎛⎫+=-=- ⎪⎝⎭, 所以1211kk kk k k ⎛⎫+=-=- ⎪⎝⎭(定值).5、(2021·安徽蚌埠市高三二模(理))已知圆()22:224E x y ++=,动圆N 过点()2,0F 且与圆E 相切,记动圆圆心N 的轨迹为曲线C . (1)求曲线C 的方程;(2)P ,Q 是曲线C 上的两个动点,且OP OQ ⊥,记PQ 中点为M ,OP OQ t OM ⋅=,证明:t 为定值.【答案】(1)22162x y +=;(2)证明见解析.【详解】解:(1)点()2,0F 在圆()22:224E x y ++=内,∴圆N 内切于圆E,∴NE NF EF +=>,所以N 点轨迹是以E ,F为焦点的椭圆,且a =2c =,从而b =故点N 的轨迹C 的方程为:22162x y +=.(2)设()11,P x y ,()22,Q x y ,若直线PQ 斜率存在,设直线PQ 方程为y kx m =+,联立22162y kx mx y =+⎧⎪⎨+=⎪⎩,整理得:()222136360k x kmx m +++-=,122613km x x k -+=+,21223613m x x k-=+ 因为OP OQ ⊥,所以0OP OQ ⋅=,即12220x x y y +=.化简得:()()22121210k x x km x x m ++++=,即()22222366101313m km k km m k k--+⋅+⋅+=++, 从而,222330m k --=,①因为OP OQ ⊥,且M 为PQ 中点,所以2PQ OM =, 在直角ABC 中,记原点O 到直线PQ 的距离为d ,则2OP OQ d PQ d OM ⋅==,由①知,原点O 到直线l的距离为d ===所以t.若直线PQ 斜率不存在,设直线PQ 方程为x n =,联立22162x n x y =⎧⎪⎨+=⎪⎩,解得p n ⎛ ⎝,,n ⎛ ⎝ 由OP OQ ⊥得n =t = 综上,t.6、(2021·江苏无锡市高三月考)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N .(1)求椭圆C 的标准方程和点A 的坐标; (2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.【答案】(1)22182x y +=,()4,0A ;(2)(4)6y x =±-;(3)PM 与QN 的交点恒在直线2x =上,理由见解析.【详解】(1)由题意,椭圆()2222:10,0x y C a b a b +=>>过点(2,1)-可得22411a b +=且2c e a ==,又由222c a b =-, 解得228,2a b ==,即椭圆C 的方程为22182x y +=,又由抛物线216y x =-,可得准线方程为:4l x =,所以()4,0A .(2)设()00,N x y ,则004,22x y M +⎛⎫⎪⎝⎭, 联立方程组()2200220018241328x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001,x y ==当5,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-;当5,,(1,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-; 所以直线MN的方程为4)y x =-. (3)设()()4,,4,P t Q t -,可得:4MN x ky =+, 设()()1122,,,M x y N x y联立方程组224480x ky x y =+⎧⎨+-=⎩,整理得()224880k y ky +++=,所以12122288,44k y y y y k k +=-=++,则1212y y ky y +=-, 又由直线111114:44y t tx y PM y x x x --=+--,222224:44y t y tx QN y x x x ++=---, 交点横坐标为()121212242ky y y y x y y ++==+,所以PM 与QN 的交点恒在直线2x =上.7、(2021·全国高三专题练习)已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程;(2)若直线l 的方程为1y x =-+,求1211λλ+的值; (3)若123,试证明直线l 恒过定点,并求此定点的坐标.【答案】(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,, 设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,, 可得(0,)(,0)P km Q m -,, 由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111xm x λ=-,同理222xm x λ=-,又123,∴212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=,则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③③代入①得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∴2m =,(满足②) 故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 8、(2020·湖北高三月考)已知抛物线2:2(0)C y px p =>的焦点F ,若平面上一点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7. (1)求抛物线C 的方程;(2)又已知点P 为抛物线C 上任一点,直线PA 交抛物线C 于另一点M ,过M 作斜率为43k =的直线MN 交抛物线C 于另一点N ,连接.PN 问直线PN 是否过定点,如果经过定点,则求出该定点,否则说明理由.【答案】(1)28y x =;(2)过定点,1,34⎛⎫⎪⎝⎭.【详解】(1)由已知,定点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7.272p ⎛⎫+= ⎪⎝⎭,则4p =,即抛物线的方程28y x =(2)设11(,)P x y ,22(,)M x y ,33(,)N x y ,则121211212222888PM y y y y k y y x x y y ++=-=+=-,同理:238MNk y y =+,138PN k y y =+, 由23843MN k y y ==+知:236y y +=,即236y y =- ① 直线11128:()PM y y x x y y -=-+,即1212()8y y y y y x +-=过(2,3)A 求得1211633y y y -=- ② 同理求直线PN 方程1313()8y y y y y x +-= ③ 由①②得13133()2y y y y =+- 代入③得1313()3()28y y y y y x +-++=13()(3)280y y y x +-+-=故3y =且280x -=时,直线PN 恒过点1,34⎛⎫⎪⎝⎭. 9、(2021·北京高三期末)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上. 【答案】(1)22143x y +=;(2)证明见解析.【详解】解:(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+, 直线BN 的方程是()322y x =-. 所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上. ②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120kx k x k+-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834kx x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是()1122y y x x =++. 令4x =,得1162=+y y x . 直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-. 所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦. ()12122258k x x x x =-++⎡⎤⎣⎦ ()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.10、(2021·安徽高三月考(理))已知圆22:5O x y +=,椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点为12,F F ,过1F 且垂直于x 轴的直线被椭圆和圆所截得弦长分别为1和.(1)求椭圆的标准方程;(2)如图P 为圆上任意一点,过P 分别作椭圆两条切线切椭圆于A ,B 两点. (ⅰ)若直线PA 的斜率为2,求直线PB 的斜率; (ⅱ)作PQ AB ⊥于点Q ,求证:12QF QF +是定值.【答案】(1)2214x y +=;(2)(i )12-;(ii )证明见解析.【详解】解:(1)由题意得:222221a b c ba ⎧=+⎪⎪=⎨⎪=⎪⎩2,1,a b c ===得椭圆的标准方程为:2214x y +=(2)(ⅰ)设()00,P x y ,切线()00y y k x x -=-,则22005x y +=。
2015年新课标高考数学复习之
圆锥曲线综合题
1.已知椭圆E 经过点()2,3A ,对称轴为坐标轴,焦点12,F F 在x 轴上,离心率
1
2
e =
. (Ⅰ)求椭圆E 的方程; (Ⅱ)求12F AF ∠的角平分线所在直线l 的方程;
(Ⅲ)在椭圆E 上是否存在关于直线l 对称的相
异两点?若存在,请找出;若不存在,说明理由.
2.已知椭圆C 的中心与坐标系的原点重合,焦点在x 轴上且过点1)2
P ,离
.直线l 过点(1,0)E -且与椭圆C 交于A , B 两点. (Ⅰ)求椭圆C 的标准方程;
(Ⅱ)若2EA EB =,求直线l 的方程.
(Ⅱ)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.
3.设,A B分别为椭圆
22
22
1(0)
x y
a b
a b
+=>>的左、右顶点,椭圆的长轴长为4,
且点在该椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线4
x=上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形.
4.已知(2, 0)
A-,(2, 0)
B为椭圆C的左、右顶点,F为其右焦点,P是椭圆C
上异于A,B的动点,且APB
∆面积的最大值为
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
5. 已知椭圆2222:1(0)x y C a b a b
+=>>过点,过椭圆右顶点A 的两条斜率乘积为14
-的直线分别交椭圆C 于M ,N 两点. (Ⅰ)求椭圆C 的标准方程;
(Ⅱ)直线MN 是否过定点D ?若过定点D ,求出点D 的坐标;若不过,请说
明理由.
6.以12(0,1),(0,1)F F -为焦点的椭圆C 过点P (
2
,1). (Ⅰ)求椭圆C 的方程; (Ⅱ)过点S (13
-,0)的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点T ,使得以线段AB 为直径的圆恒过点T? 若存在,求出点T 的坐标;若不存在,请说明理由.
7.如图,椭圆22
22:1x y E a b
+=(0a b >>)的左焦点为F 1,右焦点为F 2,离心率12
e =.过1F 的直线交椭圆于A ,B 两点,且2ABF ∆的周长为8. (Ⅰ)求椭圆E 的方程;
(Ⅱ)设动直线:l y kx m =+与椭圆E 有且只有一个公共点P ,且与直线4x =相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.
8. 已知O 为坐标原点,F 为椭圆12:2
2
=+y x C 在y 轴正半轴上的焦点,过F 且斜率为2-的直线l 与C 交于A ,B 两点,点P 满足0OA OB OP ++=.
(Ⅰ) 证明:点P 在C 上;
(Ⅱ) 设点P 关于点O 的对称点为Q ,证明:A ,P ,B ,Q 四点在同一个圆上.
9.椭圆C :22
221x y a b
+=(a >b >0)的左、右焦点分别是F 1,F 2
,离心率为,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为l .
(Ⅰ) 求椭圆C 的方程;
(Ⅱ) 点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2,的斜率分别为k 1,k 2,若k ≠0,试证明12
11kk kk +为定值,并求出这个定值.
10.(2011,“华约”,14)已知双曲线22
22:1x y C a b -=(0,0)a b >>F 1,F 2分别为C 的左右焦点.P 为C 右支上一点,且使12=
3F PF π∠, 12F PF ∆
的面积为2.
(I)求C 的离心率e ; (II) 设A 为C 的左顶点,Q 为第一象限内C 上的任意一点,问是否存在常数λ(λ>0),使得22QF A QAF λ∠=∠恒成立.若存在,求出λ的值;若不存在,请说明理由.。