激光属于特别的光源
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
激光分类4类激光是一种能量极高的光束,可以将光的能量集中到一个点,可以被用来做很多不同的工作,其中最常见的应用就是激光分类。
在激光分类中,光束被分为不同的频率,以达到特定的目的。
激光分类一般分为四个类,分别是气体激光、激光器件、固体激光和激光系统。
每一种激光都有不同的特点,并且具有独特的应用。
气体激光是由一种气体和一种电子激发器组成的,通常由一种气体和一种电子激发器,比如氦气,用来把能量集中到一个点,形成一束激光。
气体激光的特点是高效、稳定、可靠,常被用来做材料加工和质谱分析等工作。
激光器件是用来产生气体激光的装置,比如激光棒,它通常有一种激光源,一种反射装置,一种脉冲调制器和一种偏振器,它们可以用来控制激光的强度、频率和脉冲。
激光器件的应用主要是在军工激光技术上,比如激光雷达、激光测距仪和激光投射仪等。
固体激光器是一种激光器,它的原理是将连续的能量转化为短的激光脉冲,利用自由电子的能量调制。
固体激光具有很好的稳定性和高效率,在军事、医疗和市政领域有广泛的应用,比如武器瞄准、检测星体和医疗护理等。
激光系统是一种激光产生和控制系统,可以根据不同的应用需求,将激光脉冲调制到特定的条件。
激光系统可用于许多领域,比如军事、医疗、科学研究等,可以应用于多种方面,比如激光直接进行物质的加工、数据传输、显微镜的成像、测量和精密切割等。
激光分类有四类:气体激光、激光器件、固体激光和激光系统。
它们各自具有不同的特点,并且有各自的应用领域。
它们都有表现出的优点,也有不足之处,但是它们都是激光应用的基础。
激光分类可以用来提升激光技术的效率和精确度,为各行各业中激光技术的应用提供更完美的解决方案。
浅谈普通光源与激光摘要:本文主要概括了普通光源与激光的产生差别,激光的原理和发展历程。
以及性质的不同而在运用中的不同,从而更深刻的让我们对这两个东西产生认识的兴趣以及加深对它们的了解。
关键词:本质性质发展运用总的来说“光”就是一种频率极高的电磁波,具备一定的能量和动量;但是,它具备通常电波所不具备的特殊性,比如它的产生和检测,以及与其他物质相互作用等过程中显露出粒子性的特征,①.接下来我们就来说一说道‘普通光源与激光’一、什么是光源,普通光源的分类。
闪烁物体叫作光源,光源与普通光源与激光光源之分后。
激光光源由特定的闪烁物质及特定的结构部件所共同组成,而普通光源则随处可见。
根据光源中基本发光单元激发方式的不同,普通光源大体可以分为以下几类:1)化学发光。
闪烁过程中辐射体内部出现化学变化,靠消耗自身化学能量而闪烁。
例如燃烧、放烟火等。
2)热致发光。
温度低的物体可以收到红外线。
例如白炽灯、太阳光等。
3)电致发光。
依靠电场能量的激发而发光。
如闪电、电弧灯、火花放电、辉光放电等。
4)光致发光。
用外来光激发所引起的发光现象。
如日光灯、夜光表急某些交通指示牌上的磷光物质的闪烁都属光致发光。
上面的各种闪烁方式的相同,但总的来说普通光源的原理就是自发性地原子和光子的光子。
上述各种闪烁过程,其差别就是唤起的方式相同,而闪烁的微观机制确就是共同的。
即为在外界条件的鞭策下,光源中的原子、分子稀释能量而处在一种不稳定的激发态。
在没任何外界促进作用的情况下,它能够自发性地光子回低激发态或基态,并升空出来一定频率的电磁波。
②二、激光是怎么发现的,以及在激光发现后历程。
总的来说激光就是一种人工的光,它的大多数去至于人工制作,并且只要是因为激光器的产生大大的大力推进了激光事业的发展,堪称就是一个划时代的措施。
迄今为止,光学已经有两千余年的历史,但在激光产生之前,人们使用的光源主要是炽热物体的热辐射和气体放电管,机理是自发发射,这是一个随机过程,相干性不好,两个光源甚至同一个光源的两点发出的光也不能形成干涉条纹。
LED、激光、传统光源三大光源谁将得到市场的恩宠?众所周知,一个行业的发展离不开核心技术的升级以及核心部件的变更,投影机市场亦是如此。
随着这几年投影行业的迅速发展,光源上的变化同样成为了很多人关注的焦点。
从传统灯泡光源到现在的LED光源和激光光源,投影的光源一直都在变更和优化。
虽说目前火爆的激光光源优势很大,但技术尚未成熟。
所以说像取代其他光源这样的话,说的还为时尚早。
目前主流几大光源都在各自“擅长”的领域发挥着作用。
传统灯泡光源目前的适用面很广,市场比重还很大;激光光源目前可以做到超高亮度,用于数字电影等专业领域和工程领域,近年来也开始涉猎家用领域(例如激光电视);LED光源则主要应用于娱乐、微型随身投影设备等领域。
激光光源是未来发展的大趋势未来投影市场的竞争将更加激烈,不仅体现在品牌之间的竞争,更多是技术和光源方面的较量。
就目前市面上的投影光源来说,各自的优缺点都很明显。
只有在未来的时间里,谁能在技术上有较大突破或在自身的劣势上得到很大的改善,谁便能受到未来投影市场的青睐。
今天我们就来分下一下目前主流的三种光源。
传统光源劣势较大前景不容乐观传统光源的本质主要是超高压汞灯和氙气灯,是目前发展时间最久,技术比较成熟的投影光源。
适用面很广,涵盖了家用,商务,工程以及教育等各个领域。
是目前投影机市场上比重较高的光源。
基本上在教室以及会议室中见到的投影机都是传统光源的产品。
传统光源目前应用还很多优势:传统光源是发展时间最长的一种光源,在技术上与其他光源相比更加成熟。
同时传统光源的亮度高,最高可达上万流明。
在色彩方面可调整的空间很大,使其适应面更广。
最重要的一点是价格低廉,很大程度上降低了成本。
目前传统光源主要应用在基础产品和高端产品之上,高端产品方面主要是因为其色彩表现好,所以在高端家庭影院还有灯泡光源的产品存在。
劣势:传统光源最大的缺点就是寿命短,正常使用情况下的寿命一般集中在4000—6000小时左右,与其他光源相比相差很多,而且在使用过程中有可能出现炸灯的现象出现。
关于激光的简介前言:激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。
它的亮度为太阳光的100亿倍。
它的原理早在 1916 年已被著名的美国物理学家爱因斯坦发现,但要直到 1960 年激光才被首次成功制造。
激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。
激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。
该项目在华中科技大学武汉光电国家实验室和武汉东湖中国光谷得到充分体现,也在军事上起到重大作用。
一.什么是激光:激光——人类创造的神奇之光激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。
意思是“受激辐射的光放大”。
激光的英文全名已完全表达了制造激光的主要过程。
1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。
激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。
它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。
激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。
激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。
激光的产生原理:受激辐射基于伟大的科学家爱因斯坦在1916年提出的一套全新的理论。
激光的定义及原理1. 概述激光(Laser)是一种特殊的光,具有高度的单色性、方向性和相干性,被广泛应用于科学研究、工业制造、医疗治疗等领域。
本文将介绍激光的定义及原理。
2. 激光的定义激光是一种高度聚集的电磁波,其光具有高度相干性、方向性和单色性。
相比于普通光,激光具有更小的发散角和更高的能量密度。
激光的产生是基于光学激发过程。
3. 激光的原理激光的产生是通过激发放大口径的激光介质(如气体、液体、固体等)中的原子、离子或分子,达到它们在激光的频率下能量的一个稳态。
当这些粒子回到低能稳态时,会释放出激光所对应的电磁波。
激光产生的过程包括三个重要的步骤:激发、放大和光学反馈。
3.1 激发激发是指将激光介质中的粒子从低能级激发到高能级的过程。
这通常通过能量输入的方式来实现,如电子束、光束等。
当粒子被能量激发后,会不断在高能级和低能级之间跃迁。
3.2 放大放大是指将激发态的粒子数不断增加,从而使被激发的粒子数目超过它们在低能态时的数目。
激光介质中的放大是通过受激辐射实现的。
在受激辐射过程中,当一个粒子从高能态跃迁到低能态时,它会受到在这个过程中经过的光子的激发,从而将原光子的能量、相位和方向模拟地传递给新的光子。
3.3 光学反馈光学反馈是激光发射的一个重要过程,它使得激光得以持续放大。
光学反馈是指一部分激发态的粒子跃迁回到基态时,经过激光介质中的反射,重新被重新激发,从而继续释放激光。
光学反馈会不断调整能够反射回来并与正在产生的激光波相互干涉的光的相位,以保持激光振荡波的相干性和单色性。
4. 激光的特性激光具有许多独特的特性,使其在许多领域都有广泛的应用。
4.1 高相干性激光具有高度的相干性,即光的频率和相位保持稳定。
这使得激光在干涉、衍射等现象中表现出独特的波动特性。
4.2 高度方向性激光的辐射通常比较集中,具有较小的发散角度。
这使得激光可以通过光学器件将光束聚焦到非常小的尺寸,从而在高分辨率成像、精细加工等领域有广泛应用。
光源分类及区别
光源是指向某一方向发出光的光源,它们常被用来照亮室内及外环境。
光源有许多种类,它们的质量、功率、尺寸以及发出的波长等可能都会有所不同,因此特别需要对它们进行分类并且根据实际需求来选择合适的光源。
一般来讲,光源可以分为三大类,即电光源、离子光源和激光光源。
每种光源都有自身的优点和缺点,因此在选择光源时应当根据实际情况来选择最合适的光源。
1、电光源:电光源也叫电灯,是指在高电压作用下通过电熔发出光的源泉,它可以将电能转化为光能,可以实现各种形状及色彩的光,在各种用途中都是非常有效率的,电光源属于绿色节能照明技术,可以节约能源,提高光源的使用效率。
2、离子光源:离子光源是指离子的放电发出的光,它的发光原理是在特定的真空环境下,激发离子半导体而产生的荧光。
离子光源分为微离子源和大离子源两种,主要应用于照明等领域,它的特点是小尺寸、低功耗、易操作,同时照明效果更加均匀。
3、激光光源:激光光源是指由激光器发出的光,它的发光原理是利用特定材料产生激光,可以输出非常强烈的聚焦光束,具有节约能源、高精度、高照度等特点,它主要用于精密检测及光学定位等领域,应用材料有金属粉末、荧光粉、红外线激光器等多种。
以上是关于各种光源分类及区别的简要介绍。
总结起来,电光源高效率,容易操作;离子光源特点小尺寸、低功耗、易操作以及均匀
的照明效果;激光光源高品质的聚焦光束、节能、高精度的特点。
总之,在选择光源时,应当根据使用场景及功能要求来选择最合适的光源,这样才能实现最佳的利用效果。
1、激光的三个基本特点
激光是一种高度集中、强聚焦、高频率的电磁辐射波,因此具有以下三个基本特点:
1. 高强度:激光的光束具有高强度的能量,其光束可以聚焦到非常小的区域内,从
而能够产生极高的功率密度。
激光的光束经过聚焦后,能够将其能量集中到很小的空间内,实现高功率密度的能量输出。
由于激光具有高强度的能量,因此使用激光材料加工可以显
著提高加工效率。
2. 单色性:激光的光线是非常单色的光线。
激光通常只有一种波长,而且光的相位、频率、波长等参数非常稳定。
因此,激光可以非常有效地用于光学测量和光学通信等领域。
激光光线的单色性还使得它可以被用来制造光阀和光学传感器等设备。
3. 相干性:激光的光线具有相干性,即所有光的波向初始波的偏移是一致的。
这种
相干性可以使激光具有高质量的光学特性,能够保持高光强度和高能量密度。
激光使用中,其相干性可以使得激光干涉现象得到有效控制,从而实现了多种无线通信和高速网络通信
技术的开发应用。
总的来说,激光的三个基本特性,高强度、单色性和相干性,使其在许多现代科技领
域得到广泛应用,如制造业、医疗、军事、通信等领域。
激光是⼀种颜⾊最单纯的光,激光的⽅向性好激光到底是什么呢?还是让我们来对此认识⼀番吧!激光虽带有“光”字,然⽽,它却和普通的光截然不同。
那么,激光和普通光到底有什么不同呢? 第⼀,激光是⼀种颜⾊最单纯的光。
太阳光和电灯光看起来似乎是⽩⾊的,但当让它通过⼀块三棱镜的时候,就可以看到红、橙、黄、绿、蓝、青、紫七种颜⾊的光,其实,还含有我们看不见的红外光和紫外光。
激光的颜⾊⾮常单纯,⽽且只向着⼀个⽅向发光,亮度极⾼。
第⼆,激光的⽅向性好。
在发射⽅向的空间内光能量⾼度集中,所以激光的亮度⽐普通光的亮度⾼千万倍,甚⾄亿万倍。
⽽且,由于激光可以控制,使光能量不仅在空间上⾼度集中,同时在时间上也⾼度集中,因⽽可以在⼀瞬间产⽣出巨⼤的光热,成为⽆坚不摧的强⼤光束。
平时,我们见到的灯光,都是向四⾯⼋⽅发光,就好像电影院散场后,⼤家前前后后地向着四⾯⼋⽅以不同步伐⾛出来。
打开室内的电灯,整个房间都照亮了。
⼜如,打开⼿电筒,在发出的部位,直径不过3~5厘⽶,待射到⼏⽶之外后,就扩展成⼀个很⼤的光圈。
这说明,光在传播中发散了。
然⽽,激光却不同,它是⼤量原⼦由于受激辐射所产⽣的发光⾏为。
激光在传播中始终像⼀条笔直的细线,发散的⾓度极⼩,⼀束激光射到38万千⽶外的⽉球上,光圈的直径充其量只有2千⽶左右。
就好⽐电影院散场后,⼤家排着队朝着⼀个⽅向,迈着相同⼤⼩的步伐,随着“⼀、⼆、⼀”的⼝令,整整齐齐地前进。
第三,激光亮度最⾼。
太阳是⼈类共有的⾃然光源,整个世界沐浴在明亮的阳光之下。
太阳表⾯的亮度⽐蜡烛⼤30万倍,⽐⽩炽灯⼤⼏百倍。
激光的出现,更是光源亮度上的⼀次惊⼈的飞跃。
⼀台普通的激光器的输出亮度,⽐太阳表⾯的亮度⼤10亿倍。
从地球照到⽉亮上在反射回来也不成问题。
可见激光是当今世界上⾼亮度的光源。
第四,激光还可以具有很⼤的能量,⽤它可以容易地在钢板上打洞或切割。
在⼯业⽣产中,利⽤激光⾼亮度特点已成功地进⾏了激光打孔、切割和焊接。
激光属于特别的光源,激光的发明给予我们电器,美容整形,电子等等,光器输出的光,波长分布范围非常窄,因此颜色极纯,亮度非常高,激光有非常多的特点,本文主要介绍以下3个特点。
1.定向发光
普通光源是向四面八方发光。
要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。
激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.002弧度,接近平行。
1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。
若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。
2.亮度极高
在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。
因为激光的亮度极高,所以能够照亮远距离的物体。
红宝石激光器发射的光束在月球上产生的照度约为0.02勒克斯,颜色鲜红,激光光斑明显可见。
若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。
激光亮度极高的主要原因是定向发光。
大量光子集中在一个极小的空间范围内射出,能量密度自然极高。
3.颜色极纯
光的颜色由光的波长(或频率)决定。
一定的波长对应一定的颜色。
太阳光的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。
发射单种颜色光的光源称为单色光源,它发射的光波波长单一。
比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。
单色光源的光波波长虽然单一,但仍有一定的分布范围。
如氪灯只发射红光,单色性很好,
被誉为单色性之冠,波长分布的范围仍有0.00001纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。
由此可见,光辐射的波长分布区间越窄,单色性越好。
激以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10-9纳米,是氪灯发射的红光波长分布范围的万分之二。
由此可见,激光器的单色性远远超过任何一种单色光源。
此外,激光还有其它特点:相干性好。
激光的频率、振动方向、相位高度一致,使激光光波在空间重叠时,重叠区的光强分布会出现稳定的强弱相间现象。
这种现象叫做光的干涉,所以激光是相干光。
而普通光源发出的光,其频率、振动方向、相位不一致,称为非相干光。
闪光时间可以极短。
由于技术上的原因,普通光源的闪光时间不可能很短,照相用的闪光灯,闪光时间是千分之一秒左右。
脉冲激光的闪光时间很短,可达到5飞秒闪光时间
极短的光源在生产、科研和军事方面都有重要的用途
6.激光的四大特性:
单色性、相干性、方向性和高亮度
产生激光三个条件:
①外界激励源(泵浦),能使上、下能级粒子数(集居数)
反转;(集居数:各能级上的粒子数)
②产生光放大作用的增益物质(激光工作物质);
③激光谐振腔(法布里—珀罗(F—P腔)谐振腔)。