变配电站综合自动化装置的设计
- 格式:pdf
- 大小:116.11 KB
- 文档页数:2
铁路牵引变电所综合自动化系统的应用摘要:随着交通网络日益完善,电气化铁路建设规模日益扩大,其具有环境污染小、承载能力强、高速等特点,是铁路发展的重要方向。
牵引变电所综合自动化系统,作为电气化铁路的关键部分,确保其可靠性与稳定性,是铁路牵引变电所的重要研究课题。
为此,通过综合自动化系统,对牵引变电所内的设备进行监控、调试,可促进设备正常运行,有利于保障铁路可靠运营。
本文主要分析综合自动化系统在铁路牵引变电所中的运用。
关键词:铁路牵引变电所;综合自动化系统;应用引言:近年来,随着科技水平不断发展,信息化、自动化技术被运用于各行业、各领域,铁路供电系统也正在逐渐创新、发展。
针对铁路供电系统中的综合自动化系统,有利于提升铁路运行质量,保障铁路供电效率,并集成了多种一次设备和二次设备。
通过综合自动化系统,可实现铁路牵引变电所供电设备监控智能化,促进应急处置的快速化。
为了满足智能电网的发展,在铁路牵引变电所运行中,运用综合自动化系统,已是电力系统运行中的重点研究课题。
笔者根据自身多年的电力系统运维管理经验,主要分析综合自动化系统在铁路牵引变电所中的运用。
一.自动化系统的发展首先,分立原件的自动化装置。
20世纪七十年代以前,诸如晶体管和其他离散元件构成的模拟电路等设备被开发并应用于电力系统,例如自动重合闸、备用电源自投等,使电力系统的整体性能得到了极大的改善。
但各个设备都是独立的,缺乏自我诊断的功能,整体的操作水平仍然十分有限。
其次,智能自动装置。
上世纪70年代,微机保护、远动装置逐步被集成电路、微机取代。
该设备具有较强的运算能力,具有较高的智能化程度和自诊断能力,使测量精度、监控可靠性及电力系统的自动化程度得到了进一步的改善。
但是,目前还存在着许多设备独立操作、资源无法共享等问题,需要进一步完善。
第三,综合自动化系统。
70年代中期和晚期,欧、意、美等发达国家相继研制出一套完整的自动控制系统。
然而,日本在1975年完成了首个数字控制系统SDCS-1,1980年开始商业化。
110kV变电站一次系统设计随着电力系统的快速发展和演化,变电站的设计和规划成为了电力系统的重要组成部分。
其中,110kV变电站作为电力系统的重要节点,其一次系统设计对于整个电力网络的稳定性和安全性具有决定性的影响。
本文将详细阐述110kV变电站一次系统设计的主要步骤和关键因素,以确保变电站的安全、可靠和高效运行。
110kV变电站一次系统设计的基本架构包括高压进线、主变压器、断路器、隔离开关、电流互感器、电压互感器以及无功补偿装置等关键部分。
设计时需要明确各部分的功能和作用,并根据系统工程原理进行整体优化。
在设备选择方面,需要考虑到设备性能、技术参数以及运行环境等多个因素。
例如,主变压器应选择低损耗、低噪音、高可靠性的产品,同时要考虑到散热和冷却问题;断路器则应选择切断能力强、动作速度快、使用寿命长的设备。
还要根据实际需求来选择适当的电流、电压互感器和无功补偿装置。
设备布置也是一项重要的设计任务。
在设备布置时,需要考虑设备的维护和操作空间,保证人员安全和设备稳定运行。
同时,要合理安排设备的排列和布局,使整个系统看起来简洁、明了,方便运行和维护。
为了保证变电站的安全和稳定运行,仪表和安全防护装置也是必不可少的。
仪表可以实时监测设备的运行状态,为运行人员提供重要的运行参考。
安全防护装置则可以在设备故障或异常情况下,快速切断电源,保护设备和人员安全。
在进行电路分析时,需要采用适当的计算方法和原理,以确定各部分的电气性能和参数。
例如,可以通过电路仿真软件进行模拟实验,得到各部分的电压、电流以及功率因数等关键数据。
根据电路分析结果,可以进一步计算设备的参数。
例如,可以通过计算得到主变压器的容量、断路器的切断能力、电流互感器的变比等关键参数。
这些参数对于设备的选择和系统的整体性能具有重要影响。
在完成上述计算和分析后,可以得出110kV变电站一次系统设计的主要内容和结论。
设计时需要权衡各种因素,如设备性能、系统稳定性、经济性等,以满足用户需求和系统规划要求。
试论铁路工程10kV配电所自动化设计1. 引言1.1 背景介绍铁路工程中的10kV配电所是铁路电气系统中非常重要的组成部分,它承担着为铁路线路、站场等提供稳定的电力供应的任务。
随着铁路运输的发展和铁路电气化程度的提高,配电所的自动化设计变得尤为重要。
传统的手动操作方式已经不能满足现代铁路运输对电力供应的高效、安全、可靠的需求,因此需要引入自动化控制系统,提高配电所的运行效率和可靠性,减少人为错误。
铁路工程10kV配电所自动化设计是一个涉及电力系统、自动化控制等多个领域的复杂工作,需要根据铁路运输的特点和需求进行系统设计和优化。
通过引入先进的自动化控制系统和监控系统,配电所的运行状态可以实时监测和控制,及时发现和处理故障,保障铁路电力系统的稳定运行。
同时配电所的保护装置设计和安全措施也至关重要,可以有效保护设备和人员安全,提高铁路电力系统的可靠性和安全性。
本文将试论铁路工程10kV配电所自动化设计,探讨自动化设计的可行性和优劣比较,同时展望未来的发展方向。
希望通过本文的研究,可以为铁路工程中配电所的自动化设计提供一定的参考和指导。
1.2 研究意义铁路工程10kV配电所自动化设计是现代铁路建设中的重要组成部分,拥有重要的研究意义。
在铁路运输发展的今天,铁路系统越来越注重提高运输效率和安全性,而自动化设计正是实现这一目标的重要手段之一。
通过引入自动化控制系统和监控系统,可以实现对配电所的远程监控和自动控制,提高配电系统的运行效率和可靠性。
铁路工程10kV配电所自动化设计的研究意义还体现在以下几个方面:自动化设计将大大提高配电系统的智能化水平,实现对电力设备的实时监测和故障诊断,减少人为操作失误带来的风险。
自动化设计将提高系统的响应速度和可靠性,保障铁路运输的安全和稳定。
自动化设计还能够降低维护成本和人工成本,为铁路建设和运营节约资源和提高效益提供有力支持。
铁路工程10kV配电所自动化设计的研究意义重大,对铁路系统的安全、高效运行具有重要的推动作用。
110kV变电站综合⾃动化系统改造⼯程施⼯组织设计⽬录⼀、施⼯组织设计纲要 (1)(⼀) ⼯程概况及特点 (1)1.1 ⼯程概况 (1)1.1.1⼯程简述 (1)1.1.2⼯程规模 (1)1.1.3⼯程承包⽅式 (2)1.2 ⼯程特点 (2)1.2.1⼯程设计特点 (2)1.2.2⼯程施⼯特点 (3)1.2.3影响施⼯的主要和特殊环节分析 (3)(⼆)施⼯现场平⾯布置图 (4)2.1 施⼯现场平⾯布置图 (4)2.2 施⼯现场平⾯布置原则 (4)2.3 施⼯总平⾯管理 (4)2.4 临时设施布置 (5)2.5 施⼯⽤电布置 (5)2.6 施⼯⽤⽔布置 (6)2.7 消防措施设置 (6)2.8 现场环境保护 (6)(三)施⼯⽅案 (7)3.1 施⼯准备 (7)3.1.1施⼯技术和资料准备 (7)3.1.2材料供应准备 (8)3.1.3施⼯通讯准备 (8)3.1.4施⼯现场准备 (9)3.1.5施⼯机具供应 (9)3.1.6施⼯⼒量配置 (10)3.1.7⽣活及办公设施配置 (11)3.2 施⼯⼯序总体安排 (12)3.2.1不停电阶段主要⼯作 (12)3.2.2停电阶段的主要⼯作 (12)3.2.3施⼯⼯序总体控制流程 (13)3.3 主要⼯序和特殊⼯序的施⼯⽅法 (15)3.3.1⽼旧电缆拆除 (15)3.3.2新电缆敷设及⼆次接线施⼯ (17)3.3.3旧屏柜拆除 (20)3.3.4新增屏柜安装 (21)3.3.5盘、柜上的电器元件安装 (22)3.3.6电⽓调试⽅案 (23)3.3.7后台监控系统调试⽅案 (29)3.4 风险评估 (33)3.4 应急处理措施 (36)(四)⼯期及施⼯进度计划 (37)4.1 ⼯期规划及要求 (37)4.1.1 ⼯期总体规划依据 (37)4.1.2停电要求 (38)4.2 ⼯期保证措施 (40)4.3 施⼯资源计划 (42)4.4 施⼯进度计划分析 (46)4.5 计划控制 (47)(五)质量⽬标、质量保证体系及技术组织措施 (51) 5.1 质量⽬标 (51)5.2 质量管理组织机构及主要职责 (52)5.3 质量管理的措施 (54)5.4 质量管理及检验标准 (59)5.5 质量保证技术措施 (62)5.6 ⼯程质量薄弱环节预测及预防措施 (64)5.7⼯程达标投产、创优措施 (64)5.8 执⾏强制性条⽂的⽅案及措施 (67)(六)安全⽬标、安全保证体系及技术组织措施 (68) 6.1 职业健康安全保证体系及管理措施 (68)6.2 职业健康安全管理组织机构及主要职责 (69)6.3 职业健康安全保证措施 (74)6.4 职业健康安全薄弱环节及预防措施 (77)6.5 重要施⼯⽅案和特殊⼯序安全过程控制 (80)6.5.1 焊接施⼯的安全过程控制 (80)6.5.2 吊装作业安全措施 (81)6.5.3 施⼯⽤电安全措施 (81)6.5.4设备搬运及开箱、安装安全措施 (81)6.5.5控制电缆敷设与电缆头制作安全措施 (82)6.5.6现场调试作业安全措施 (82)(七)环境保护及⽂明施⼯ (83)7.1 环境保护 (83)7.2 环境保护⽬标及措施 (84)7.3节能降耗措施 (89)7.4 ⽂明施⼯的⽬标、组织机构 (92)7.5 ⽂明施⼯管理措施 (93)7.6 ⽂明施⼯考核、管理办法 (94)(⼋)计划、统计与信息管理 (95)8.1 计划、统计报表 (95)8.2 信息管理 (95)8.3 电⼦化移交 (97)(九)作业现场组织机构 (97)9.1 施⼯现场组织机构图 (97)9.2主要项⽬负责⼈及部门职责 (98)⼆、项⽬管理机构 (102)(⼀)组织机构组成表、关系图 (102)(⼆)⼯程主要负责⼈简介 (103)三、技术差异表 (108)⼀、施⼯组织设计纲要(⼀) ⼯程概况及特点1.1 ⼯程概况1.1.1⼯程简述⼯程名称:110kV观澜变电站综合⾃动化系统改造⼯程招标⼈:深圳供电局有限公司项⽬建设单位:深圳供电局有限公司投标单位:河南恒润电⼒⼯程有限公司计划⼯期:458⽇历天,计划开⼯⽇期2013年09⽉30⽇,计划竣⼯⽇期2014年12⽉31 ⽇。
班级日期1、综合自动化系统屏:主体设备。
对变配电所的主要设备进行自动监测、护。
2、交直流屏:提供交直流电源。
3、网上隔离开关控制屏:对接触网上隔离开关进行远方控制。
4、环境监控屏:实时监测变配电所工作环境:温度、人员非法出入、电缆沟、明火、空调工作状况等。
5、故障标定装置及电缆头绝缘在线监测。
二、变电所综合自动化的基本概念1.变电所综合自动化:应用自动控制技术、计算机信息处理、通信与网络技术等,完成对变电所主要设备和输配电线路的监视、控制、测量、继电保护、远动控制以及调度通信等二次系统功能。
2.变电所综合自动化系统:利用多台微型计算机、接口电路、通信网络等组成的自动化系统,通过收集所需的各种数据和信息,借助计算机的高速计算力和逻辑判班级日期班级日期班级日期TA-21型牵引变电所安全监控及综合自动化系统结构图牵引主变压器是牵引变电所最重要的一次设备,为保证其正常运行,对每一台主变设置一套保护测控单元,按主变主保护、主变后备保护、主变测控三套独立装置设计,每套装置作为一个节点与LonWorks 现场总线交换信息。
完成一台牵引主班级日期班级日期班级日期班级日期图2-41 微机保护装置硬件原理示意图⒈数据采集单元班级日期班级日期⑵开放性。
硬件平台对于未来硬件的升级应具有开放性。
⑶通用性。
不同类型的保护装置应尽可能具有相同的硬件平台。
⑷灵活性和可扩展性。
硬件平台应该适用于不同保护装置的不同需求,对于现场的不同保护应用和对资源的不同需求,可增减相应的模块,完全不必对硬件及软件重新设计。
⑸模块化与智能化状态检测。
装置的硬件数量总体上减少,相互通用,功能模块技术成熟,经历更多的检验与现场考验,因而可靠性更高。
(三)提高微机保护可靠性的措施可靠性是对继电保护装置的基本要求之一,它包括两个方面:不误动和不拒动。
班级日期班级日期班级日期班级日期班级日期班级日期图2-43 SCADA系统结构示意图)调度端调度所的远动装置部分称调度端,一般设于各分局(或总公司)总部。
配电网继电保护和自动装置配电网自动化实施细则1.1 配电网继电保护和自动装置1.1.1 配电网应按GB50062《电力装置的继电保护和自动装置设计规范》、GB/T 14285《继电保护和安全自动装置技术规程》的要求配置继电保护。
1.1.2 10(20)千伏配电网的继电保护装置宜采用微机型保护装置,应考虑预留配合实施自动化的接口。
1.1.3 中压配电网应采用过流、速断保护,可选用重合闸装置;合环运行的配电网应增加纵差保护。
对于中性点经低电阻接地系统应增加零序电流保护。
1.1.4 保护信息的传输宜采用光纤通道。
对于线路电流差动保护的传输通道,往返均应采用同一信号通道传输。
1.1.5 非有效接地系统,保护装置宜采用三相保护模式,在配网中长期规划中指明的系统接地方式可能发生变化的保护装置配置,参考1.1.3条规定。
1.1.6 在中压低电阻接地方式中,考虑到零序电流保护整定值很难与熔断器的熔断曲线配合,因此当用户配电变压器容量在630千伏安及以上时,配电变压器应配置反映相间故障的电流保护和反映接地故障的零序保护;当客户配电变压器容量为500千伏安及以下,当采用熔丝保护时,熔丝熔断特性应满足200安电流下,熔断时间小于60毫秒。
否则应配置反映相间故障的电流保护和反映接地故障的零序保护。
1.2 配电网自动化1.2.1 系统构成配电网自动化系统是指对10(20)千伏及以下配电网进行监视、控制和管理的自动化系统,一般由主站、子站、远方终端设备、通道构成。
1.2.2 配电网自动化规划设计原则(1)配网自动化应以提高供电可靠性及配网运行管理水平为目标,配网自动化建设应遵循“统一规划、统一标准、统一建设”的原则,根据配电网的地区特点、负荷性质和重要性,选择适宜的配网自动化实现模式。
(2)配电网一次设备选型应性能先进、结构合理、质量可靠,并结合配电网自动化规划给二次设备留有可靠的接口。
通讯方式、自动化设备,以及电源选择与设置,应满足当故障或其它原因导致配电网设备停电时,各测控单元应可靠的上报信息和接受远方控制。