北师版初二数学图形的平移与旋转全章同步讲义
- 格式:docx
- 大小:687.75 KB
- 文档页数:23
八年级数学精讲——第三章:图形的平移与旋转【基础知识】1.平移的定义与规律(1)定义:在平面内将一个图形沿某个方向移动一定的距离,•这样的图形运动称为平移.关键:平移不改变图形的形状和大小,也不会改变图形的方向.(2)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(3)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的.2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向.(2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.3.图案的分析与设计首先找到图中的基本图案,然后分析其图案与它的关系,即由它作何种运动变换而形成的,我们主要遇到的变换有:轴对称、平移、旋转.在相似形一章里还会学到图形的放大与缩小等.【典例剖析】1、请你完成下列问题.图形的操作过程(本题中四个长方形的水平方向的边长均为a,•竖直方向的边长均为b);在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);(1)(2)(3)在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画一条有两个折点的折线,同样向右平移一个单位,•从而得到一个封闭图形,并用斜线画出阴影.(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_____,S2=_______,S3=_______;(3)联想与探索如图4,在一块长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少,并说明你的猜想是正确的.2、如图,有边长为1的等边三角形ABC和顶角为120°的等腰△DBC,•以D为顶点作60°角,两边分别交AB、AC于M、N的三角形,连结MN,试说明△AMN的周长为2.3、如图,小正六边形沿着大正六边形的边缘顺时针滚动,小正六边形的边长是大正六边形边- 1 - / 8- 2 - / 8长的一半,当小正六边形由图①位置滚动到图②位置时,线段OA 绕点O 顺时针转过的角度为 度.4、如图,已知ABC △中,AB AC =,90BAC ∠=o ,直角EPF ∠的顶点P 是BC中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:①AE CF=②APE CPF ∠=∠③EPF△是等腰直角三角形④EF AP=⑤12AEPFABC S S =四边形△;当EPF ∠在ABC △内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的序号有5、如图,P 是正三角形ABC 内的一点,且68PA PB ==,,10PC =.若将PAC△绕点A 逆时针旋转后,得到P AB '△,则点P 与点P '之间的距离为 ,APB ∠=第4题 第5题变式:△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP /重合,如果AP=3,那么线段P P /的长是多少?6、如图,ABC△中,90301B C AB ∠=∠==o o ,,,将ABC △绕顶点A 旋转180o ,点C 落在C '处,则CC '的长为 。
成都百分师资教育VIP教育辅导第三章图形的平移与旋转【主要知识点】1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为 .平移不改变图形和,改变了图形的;经过平移,对应点所连的线段且,对应角。
注意:1.平移有两个要素:(1);(2);2.图像上每点都沿同一方向移动的距离,这个距离是指对应点之间线段的长度;3.平移前后两图形是的。
2.旋转:在平面内,将一个图形绕一个沿某个方向转动一个角度,这样的图形运动称为 . 这点定点称为,转动的角称为。
旋转不改变图形的和,改变了图形的;经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度;任意一对对应点与旋转中心的连线所成的角都是;对应点到旋转中心的相等。
注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的(也称为旋转的三要素); 3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)【经典例题】例1、如图,正方形ABCD中,E为BC边上的一点,将△ABE旋转后得到△CBF.(1)指出旋转中心及旋转的角度;(2)判断AE与CF的位置关系;(3)如果正方形的面积是18cm2,△BCF的面积是5cm2,问四边形AECD的面积是多少?例2、如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF的度数.例3、如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.例4、如图,正方形纸片ABCD和正方形EFGH边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转过程中,(1)观察两个正方形的重叠部分的面积是否保持不变?(2)如果保持不变,求出它的值;否则,请简要说明理由。
例5、操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.例6、如图(1),已知△ABC是边长为2的等边三角形,D,E,F分别为AB,AC,BC边上的中点,连接DE,DF,EF.将△ADE向下平移,使得A点与C点重合,将△BDF向右平移,使得B点与C点重合,(如图2)。
第05讲图形的平移与旋转知识梳理要点一、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.要点二、旋转的概念把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如∠AOA′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点三、旋转的性质(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形的形状与大小不变.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点四、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点五、中心对称和中心对称图形1.中心对称图形:把一个图形绕着中心旋转180°后能与自身重合,这种图形叫做中心对称图形,这个中心叫做对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.2.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.3.中心对称与中心对称图形的区别与联系:要点六、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点P(x,y)关于原点的对称点P'坐标为P'(−x,−y),反之也成立.例题讲解类型一:生活中的平移现象1.下列现象属于数学中的平移的是(B)A.树叶从树上随风飘落B.升降电梯由一楼升到顶楼C.汽车方向盘的转动D.“神舟”号卫星绕地球运动2.中国上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”平移到图(B)A.B.C.D.类型二:平移的性质3.如图,△ABC沿射线BC方向平移到△DEF(点E在线段BC上),如果BC=8cm,EC=5cm,那么平移距离为(A)(第3题)(第4题)A.3cm B.5cm C.8cm D.13cm4.如图,将周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,则四边形ABFD的周长为16.5.如图,两个直角三角形重叠在一起,将△ABC沿AB方向平移2cm得到△DEF,CH=2cm,EF=4cm,下列结论:①BH∥EF;②AD=BE;③BD=CH;④∠C=∠BHD;⑤阴影部分的面积为6cm2.其中正确的是(A)A.①②③④⑤B.②③④⑤C.①②③⑤D.①②④⑤6.如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE∥AB,连接AE,∠B=∠E.(1)试说明AE∥BC.(2)将线段AE沿着直线AC平移得到线段PQ,如图2,连接DQ.若∠E=75°,当DE⊥DQ时,求∠Q的度数.【解答】解:(1)∵DE∥AB,∴∠BAE+∠E=180°,∵∠B=∠E,∴∠BAE+∠B=180°,∴AE∥BC;(2)如图2,过D作DF∥AE交AB于F,∵PQ∥AE,∴DF∥PQ,∵∠E=75°,∴∠EDF=105°,∵DE⊥DQ,∴∠EDQ=90°,∴∠FDQ=360°−105°−90°=165°,∴∠DPQ+∠QDP=165°,∴∠Q=180°−165°=15°.7.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)直线OC与AB有何位置关系?请说明理由.(2)求∠EOB的度数;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【解答】解:(1)AB∥OC,理由如下:∵CB∥OA,∴∠ABC+∠OAB=180°,∵∠C=∠OAB=100°,∴∠C+∠ABC=180,∴AB∥OC;(2)∵CB∥OA,∠C=100°,∴∠AOC=80°,又∵∠FOB=∠AOB,OE平分∠COF,∴∠EOB=∠BOF+∠EOF=12(∠AOF+∠COF)=12×80°=40°;(3)存在,∵在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=14∠AOC=14×80°=20°,∴∠OEC=180°−∠C−∠COE=180°−100°−20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.类型三:坐标与平移8.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(−5,2)、N(1,−4),将线段MN向上移动3个单位,向左移动2个单位平移后,点M,N的对应坐标为(C)A.(−5,1),(0,−5)B.(−4,2),(1,−3)C.(−7,5),(−1,−1)D.(−5,0),(1,−5)9.坐标平面内,将点A(a,1)向右平移两个单位长度后恰好与点B(−4,b)关于原点对称,则a+b的值为(D)A.5B.−5C.3D.110.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为(D)(第10题)(第11题)A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)11.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移后得到△O′A′B′,平移后点A′的横坐标为6√3,则点B′的坐标为(C)A.(8√3,−4√3)B.(8,−4√3)C.(8√3,−4)D.(8,−4)类型四:旋转的性质12.如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A′BC′,若点C′在AB上,则AA′的长为(C)(第12题)(第13题)A.√13B.4C.2√5D.513.如图,四边形ABCD中,∠DAB=30°,连接AC,将△ABC绕点B逆时针旋转60°,点C的对应点与点D 重合,得到△EBD,若AB=5,AD=4,则点AC的长度为(D)A.5B.6C.√26D.√4114.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为(C)A.50°B.55°C.60°D.65°15.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°.(1)写出点A,B的对应点;(2)求∠AOB'和∠A'OB的度数.【解答】解:(1)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴点A的对应点A',点B的对应点B';(2)∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠AOA'=∠BOB'=45°,∴∠AOB'=30°,∠A'OB=60°.16.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.(1)求点P与点Q之间的距离;(2)求∠BPC的度数;(3)求△ABC的面积.【解答】解:(1)连结PQ,如图1,∵△ABC是等边三角形,∴∠ABC=60°,BA=BC,∵△QCB是△P AB绕点B逆时针旋转得到的,∴△QCB≌△P AB,∴BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∵BP=BQ=4,∠PBQ=60°,∴△PBQ是等边三角形,∴PQ=PB=4;(2)∵QC=5,PC=3,PQ=4,而32+42=52,∴PC2+PQ2=CQ2,∴△PCQ是直角三角形,且∠QPC=90°,∵△PBQ是等边三角形,∴∠BPQ=60°,∴∠BPC =∠BPQ +∠QPC =60°+90°=150°; (3)如图2,过点C 作CH ⊥BP ,交BP 的延长线于H ,∵∠BPC =150°,∴∠CPH =30°,∴CH =12PC =32,PH =√3HC =3√32, ∴BH =4+3√32,∴BC 2=BH 2+CH 2=94+(4+3√32)2=25+12√3, ∵S △ABC =√34BC 2,∴S △ABC =√34(25+12√3)=25√34+9. 17.已知△ABC 为等边三角形.(1)如图,P 为△ABC 外一点,∠BPC =120°,连接P A ,PB ,PC ,求证:PB +PC =P A ; (2)如图,P 为△ABC 内一点,若P A =12,PB =5,PC =13,求∠APB 的度数.【解答】证明:(1)如图1,延长BP 至点E ,使得PE =PC ,连接CE , ∵∠BPC =120°,PE =PC ,∴∠CPE =60°,∴△CPE 为等边三角形, ∴CP =PE =CE ,∠PCE =60°,∵△ABC 是等边三角形,∴AC =BC ,∠BCA =60°,∴∠ACB =∠ECP ,∴∠ACB +∠BCP =∠ECP +∠BCP ,即:∠ACP =∠BCE , 在△ACP 和△BCE 中,{AC =BC∠ACP =∠BCE PE =PC,∴△ACP ≌△BCE (SAS ),∴AP =BE ,∵BE =BP +PE =BP +PC ,∴PB +PC =P A ; (2)如图2,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ',连接PP ', 由旋转知,△APB ≌△CP ′B ,∴∠BP A =∠BP ′C ,P ′B =PB =5,P ′C =P A =12,∠PBP '=∠ABC =60°, 又∵P ′B =PB =5,∴△PBP ′是等边三角形,∴∠PP ′B =60°,PP ′=5, 在△PP ′C 中,PC =13,PP ′=5,P ′C =12,∴PC 2=PP ′2+P ′C 2, 即∠PP ′C =90°,∴∠APB =∠BP ′C =60°+90°=150°.类型五:中心对称图形18.(2020秋•南昌期中)下列图形中,只是中心对称图形而不是轴对称图形的是( A )A.B.C.D.19.(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是(C)A.B.C.D.20.点P(2a+1,4)与P'(1,3b−1)关于原点对称,则2a+b=(C)A.3B.−2C.−3D.221.在平面直角坐标系中,点P(−1,m2+1)关于原点对称点在(D)A.第一象限B.第二象限C.第三象限D.第四象限类型六:简单的图案设计22.如图,四边形ABCD是轴对称图形,对角线BD所在的直线是它的对称轴,∠A=∠C=90°,AB≠AD,若把这个轴对称图形沿对角线BD剪开成两个三角形后,再把这两个三角形的一边完全重合在一起,重新拼成一个中心对称图形,则拼法共有(D)A.0种B.1种C.2种D.3种23.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:①使得6个阴影小等边三角形组成一个轴对称图形.②使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解答】解:①如图1所示:②如图2所示:24.如图,由5个全等的正方形组成的图案,请按下列要求画图:(1)在图案(1)中添加1个正方形,使它成轴对称图形但不是中心对称图形.(2)在图案(2)中添加1个正方形,使它成中心对称图形但不是轴对称图形.(3)在图案(3)中添加1个正方形,使它既成轴对称图形,又成中心对称图形.【解答】解:(1)如图所示;(2)如图所示;(3)如图所示.课后作业一.选择题(共5小题)1.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( C )A .B .C .D .2.如图,△ABC 沿射线BC 方向平移到△DEF (点E 在线段BC 上),如果BC =8cm ,EC =5cm ,那么平移距离为( A )(第2题)(第3题)A .3cmB .5cmC .8cmD .13cm3.如图,△OCD 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若∠AOD =90°,则∠BOC 的度数是( B ) A .5°B .10°C .15°D .20°4.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将△ABC 绕点B 逆时针旋转60°,点C 的对应点与点D 重合,得到△EBD ,若AB =5,AD =4,则点AC 的长度为( D )A .5B .6C .√26D .√415.在 Rt △ABC 中,AC =BC ,点D 为AB 中点.∠GDH =90°,∠GDH 绕点D 旋转,DG ,DH 分别与边AC ,BC 交于E ,F 两点.下列结论①AE +BF =√22AB ,②AE 2+BF 2=EF 2,③S 四边形CEDF =12S △ABC , ④△DEF 始终为等腰直角三角形.其中正确的是( D )A.①②④B.①②③C.①③④D.①②③④二.填空题(共5小题)6.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b的值为2.(第6题)(第8题)7.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为43n+m.(用含m,n的式子表示)8.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB'C',点C′恰好落在边AB上,连接BB',则∠C′B'B的度数是20°.9.如图,在△ABC中,∠ACB为钝角,边AC绕点A沿逆时针方向旋转90°得到AD,边BC绕点B沿顺时针方向旋转90°得到BE,作DM⊥AB于点M,EN⊥AB于点N,若AB=10,EN=4,则DM=6.10.如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,将BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+4√3,其中正确的结论是①②③④.三.解答题(共4小题)11.如图,已知△ABC中,∠ABC=90°,边BC=12cm,把△ABC向下平移至△DEF后,AD=5cm,GC=4cm,请求出图中阴影部分的面积.【解答】解:∵把△ABC向下平移至△DEF,∴BC=EF=12cm,△ABC≌△DEF,∴阴影部分面积=梯形BGFE的面积,∵GC=4cm,∴BG=12−4=8cm,∴阴影部分面积=12×(8+12)×5=50cm2.12.如图,点O是等边△ABC内一点,将CO绕点C顺时针旋转60°得到CD,连接OD,AO,AD,(1)求证:△BCO≌△ACD.(2)若∠BOC=150°,OB=8,OC=6,求△AOD的面积.【解答】(1)证明:∵△ABC是等边三角形,∴CB=CA,∠ACB=60°,∵CO=CD,∠OCD=60°,∴∠ACB=∠OCD,∴∠BCO=∠ACD,在△BCO和△ACD中,{CB=CA∠BCO=∠ACDCO=CD,∴△BCO≌△ACD(SAS).(2)解:∵△BCO≌△ACD,∴BO=AD=8,∠BOC=∠ADC=150°,∵CO=CD,∠OCD=60°,∴△ODC是等边三角形,∴OD=OB=6,∠ODC=60°,∴∠ADO=150°−60°=90°,∴S△ADO=12•AD•DO=24.13.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.【解答】14.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【解答】解:(1)③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=√2OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.。