【数学】福建省2018年高中数学联赛(福建省赛区)预赛试题 含答案
- 格式:doc
- 大小:1.06 MB
- 文档页数:9
备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题13导数与极限第二辑1.【2018年广东预赛】设函数.f (x )=e x‒1‒x ⑴求在区间(n 为正整数)上的最大值;f (x )[0,1n ]b n ⑵令(n 、k 为正整数).求证:.a n =e 1n‒1‒b n ,p k =a 2a 4⋯a 2ka 1a 3⋯a 2k ‒1p 1+p 2+⋯+p n <2a n+1‒1【答案】(1)(2)见解析b n =e 1n‒1‒1n 【解析】⑴因为,所以当时,,即上是增函数,故上的最大值为f'(x )=e x‒1x ∈[0,1n ]f'(x )≥0f (x )在[0,1n ]f (x )在[0,1n ].b n =e 1n‒1‒1n ⑵由⑴知.因为,a n =e 1n‒1‒b n =1n (2k ‒1)(2k +1)(2k )2=4k 2‒14k 2<1所以.[1⋅3⋅5⋅⋯⋅(2k ‒1)2⋅4⋅⋯⋅(2k )]2=1⋅322⋅3⋅542⋅5⋅762⋅⋯⋅(2k ‒1)(2k +1)(2k )2⋅12k +1<12k +1又容易证明.12k +1<2k +1‒2k ‒1所以p k =a 2a 4⋯a 2ka 1a 3⋯a 2k ‒1=1⋅3⋅5⋅⋯⋅(2k ‒1)2⋅4⋅⋯⋅(2k )<12k +1<2k +1‒2k ‒1所以.p 1+p 2+⋯+p n <(3‒1)+(5‒3)+⋯+(2n +1‒2n ‒1) =2n +1‒1=2a n+1‒1即.p 1+p 2+⋯+p n <2a n+1‒12.【2018年甘肃预赛】设函数).f (x )=x ‒2x ‒a ln x (a ∈R ,a >0(1)讨论的单调性;f (x )(2)如果有两个极值点,我们记过点的直线斜率为.问:是否存在,f (x )x 1和x 2A (x 1,f (x 1)),B (x 2,f (x 2))k a 使得?若存在,求出的值,若不存在,请说明理由.k =2‒a a 【答案】(1)见解析(2)不存在【解析】(1)f(x)的定义域为,(0,+∞)。
2024年全国高中数学联赛福建赛区预赛暨2024年福建省高中数学竞赛试卷(考试时间:2024年6月22日上午9:00-11:30, 满分160分)一、填空题(共10小题, 每小题6分, 满分60分. 请直接将答案写在题中的横线上)1在△ABC 中,已知AB =4,BC =2,AC =23,若动点P 满足CP =1,则AP ⋅BP的最大值为.【答案】 5【解答】取 AB 中点 O ,则AP ⋅BP =PA ⋅PB =14PA +PB 2-PA -PB 2 =142PO 2-BA 2 =PO 2-14×42=PO 2-4由 AB =4,BC =2,AC =23,知 AB 2=CA 2+CB 2,于是 CA ⊥CB .所以 CO =12AB =2 .又 CP =1,所以 PO的最大值为 CO +1=3 .所以 AP ⋅BP的最大值为 32-4=5 .2已知z 1,z 2,z 3为方程z 3=-i 的三个不同的复数根,则z 1z 2+z 2z 3+z 3z 1=.【答案】 0【解答】设 z =x +yi x ,y ∈R 为方程 z 3=-i 的复数根,则 z 3=x +yi 3=x 3+3x 2yi +3x yi 2+yi 3=-i .即 x 3+3x 2yi -3xy 2-y 3i =-i ,x 3-3xy 2+3x 2y -y 3 i =-i .由 x ,y ∈R ,得 x 3-3xy 2=03x 2y -y 3=-1,解得 x 1=0y 1=1 , x 2=32y 2=-12,x 3=-32y 3=-12.于是 z 1=i , z 2=32-12i , z 3=-32-12i .所以 z 2+z 3=32-12i+-32-12i =-i ,z 2z 3=32-12i-32-12i =-12i 2-322=-14-34=-1.因此 z 1z 2+z 2z 3+z 3z 1=z 1z 2+z 3 +z 2z 3=i ×-i -1=0 .3设a =66⋯6⏟10个6,b =33⋯3⏟6个3,则a ,b 的最大公约数为.【答案】 33【解答】用 x ,y 表示正整数 x ,y 的最大公约数.则 a ,b =66⋯6⏟10个6,33⋯3⏟6个3=33⋯3⏟10个3,33⋯3⏟6个3=311⋯1⏟10个1,11⋯1⏟6个1.设 m =11⋯1⏟10个1, n =11⋯1⏟6个1,则由 m =11⋯1⏟10个1=104×11⋯1⏟6个1+1111,可知 m ,n =1111,11⋯1⏟6个1.同理可得, m ,n =1111,11⋯1⏟6↑1=11,1111 =11,11 =11 .所以 a ,b =3m ,n =33 .4某校三个年级举办乒乓球比赛, 每个年级选派4名选手参加比赛. 组委会随机将这12名选手分成6组, 每组2人, 则在上述分组方式中每组的2人均来自不同年级的概率为.【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有:C 212C 210C 28C 26C 24C 22A 66=11×9×7×5×3×1 种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个 年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有 C 24×C 24×A 44=36×24 种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有 2×1 种.所以每组的 2 人均来自不同年级的分组方式有 36×24×2 种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F分别为AB ,BC 的中点,点G 在棱CC 1上. 若平面EFG 与底面ABCD 所成角的余弦值为31717,则平面EFG 截正方体ABCD -A 1B 1C 1D 1所得截面多边形的周长为.【答案】 613+32【解答】如图,以 D 为原点,射线 DA ,DC ,DD 1 分别为 x 轴, y 轴,(第 5 题图)z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E 6,3,0 ,F 3,6,0 . 设 G 0,6,t ,则 EF =-3,3,0 , EG=-6,3,t .设 m=x ,y ,z 为平面 EFG 的一个法向量,则m ⋅EF=-3x +3y +0=0m⋅EG =-6x +3y +tz =0,于是 m=t ,t ,3 为平面 EFG 的一个法向量.又 n =0,0,1 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为31717,所以 cos ⟨m ,n⟩ =m ⋅nm ⋅n=32t 2+9⋅1=31717 .结合 t >0,解得 t =2 . 所以 G 0,6,2 ,CG =2 .延长 EF 交直线 DC 于点 M ,由 E ,F 分别为 AB ,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 .由CG DD 1=26=39=MCMD知, M ,G ,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由 AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD -A 1B 1C 1D 1 所得的截面多边形.易知 EF =32+32=32,FG =32+22=13,GD 1=42+62=213 ,D 1P =62+42=213, PE =22+32=13.所以截面五边形的周长为 613+32 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF ,∠GHC 为二面角 G -EF -D 的平面角,于是 tan ∠GHC =CG CH=CG 322=223,因此 CG =2 。
2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。
11)13=A知,A⊆B。
⎨,解得0<a≤1。
1+a≤4141πB.πC.πD.π【解答】设圆锥底面半径为R,母线长为l,则⨯2πl=2πR,l=2R。
福建省高一数学竞赛试题参考答案及评分标准(考试时间:5月11日上午8:30-11:00)一、选择题(每小题6分,共36分)1.已知集合A={x值范围为()x-1<a},B={y y=2x,x≤2},若A⋂B=A,则实数a的取A.(-∞,]B.(-∞,【答案】A【解答】a≤0时,A=φ,符合要求。
C.(0,]D.(-∞,]a>0时,A=(1-a,+a),B=(0,]。
由A⋂B⎧1-a≥0⎩∴a的取值范围为(-∞,]。
2.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥内切球的体积为()A.43323416272733= π l 2 = 2π 。
因此, l = 2 , R = 1 。
圆锥的轴截面是边长为 2 的正三角形。
所以,其内切球半径 r = ⨯,其体积 V = π ⨯ ( )3 =π 。
2⎦ ⎣2⎦ ⎣ ⎦ ⎣ ⎦2⎦2又 S圆锥测1 21 3 3 ⨯2 = 32 34 3 4 3 3 3 273.函数 y = x + 4 - x 2 的值域为()A . ⎡⎣-2 2 , 2 ⎤B . ⎡-2 , 2 ⎤C . ⎡-1, 2 ⎤D . ⎡- 2 , 2 ⎤【答案】 B【解答】由 y - x = 4 - x 2 ,知 y 2 - 2 x y + x 2 = 4 - x 2 , 2 x 2 - 2 y x + y 2 - 4 = 0 。
∴= 4 y 2 - 8( y 2 - 4) ≥ 0 , -2 2 ≤ y ≤ 2 2 。
又 y ≥ x ≥ -2 ,因此, -2 ≤ y ≤ 2 2 。
值域为 ⎡⎣-2 , 2 ⎤ 。
1设 AB = BC = a ,则 CO = ⨯ a = a , cos ∠ACO = 5.已知 f ( x ) 是定义在 R 上的奇函数,且对任意 x ∈ R ,均有 f ( x + 3) = f ( x ) ,当 x ∈ (0 ,)∴f ( x ) 在区间 (0 , ) 内有唯一零点 1。
(完整)2018年全国高中数学联赛福建赛区预赛仿真模拟(20)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2018年全国高中数学联赛福建赛区预赛仿真模拟(20))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2018年全国高中数学联赛福建赛区预赛仿真模拟(20)的全部内容。
2018年全国高中数学联赛福建赛区预赛仿真模拟(20)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 【第1题:集合与不等式】设有集合2{|log (34)2,0}x S x x x x =-≥>,22{|log (2)2,0}x T x x k x x =-≥>满足S T ⊆,则实数k 的取值范围是 。
【第2题:函数性质】若函数()23log 2a f x ax x ⎛⎫=-+ ⎪⎝⎭在区间[]1,2上递增,则a 的取值范围是___________。
【第3题:柯西不等式】a b 、为正的常数,10<<x ,xbx a x f -+=1)(,求)(x f 的最小值是_____。
【第4题:平面向量】.在ABC ∆中,02,3,30AB AC BAC ==∠=,P 是ABC ∆所在平面上任意一点, 则PA PB PB PC PC PA μ=⋅+⋅+⋅的最小值是______________ 【第5题:函数图像性质】方程230x x e -=的实根的个数为 。
【第6题:三角函数:三倍角、四倍角】 二元函数22()cos47cos47cos4cos48sin sin 6f x y x y x y x y =+++++-+,的最大值为___ 【第7题:空间几何体,球】一个球外接于四面体ABCD ,另一半径为1的球与平面ABC 相切,且两球内切于点D ,已知3AD =,4cos ,cos cos 52BAC BAD CAD ∠=∠=∠=,则四面体ABCD 的体积为【第8题:圆锥曲线】已知B 是双曲线22:2410C x y 上靠近点(0,)(1)A m m 的一个顶点.若以点A 为圆心,AB 长为半径的圆与双曲线C 交于3个点,则m 的取值范围是 . 【第9题:规划面积问题:高斯函数中不等关系】设R 是满足00[][]5x y x y x y ≥⎧⎪≥⎨⎪+++≤⎩,,的点(),x y 构成的区域,则区域R 的面积为_______.(其中[]x 表示不超过实数x 的最大整数)。
备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题12导数与极限第一辑1.【2021年福建预赛】若关于x 的不等式(x −2)e x <ax +1有且仅有三个不同的整数解,则整数a 的最小值为.【答案】3【解析】设f(x)=(x −2)e x , g(x)=ax +1.则f ′(x)=(x −1)e x ,x <1时,f ′(x)<0;x >1时,f ′(x)>0. 因此,f(x)在区间(−∞,1)上递减,在区间(1,+∞)上递增: 且x <2时,f(x)<0;x >2时,f(x)>0. 由此作出f(x)的草图如图所示.又g(x)的图像是过点(0,1)的直线,结合图像可知a >0.由于a >0时,f(0)=−2<g(0)=1;f(1)=−e <g(1)=a +1; f(2)=0<g(2)=2a +1,因此,0,1,2是不等式(x −2)e x <ax +1的三个整数解. 由于不等式(x −2)e x <ax +1有且仅有三个不同的整数解, 所以{f(−1)≥g(−1)f(3)≥g(3) ,即{−3e −1≥−a +1e 3≥3a +1,1+3e ≤a ≤e 3−13 .经检验,a=3符合要求,所以,符合条件的a 的最小值为3.2.【2019年贵州预赛】已知函数f(x)=(e x −e −x )⋅x 3,若m 满足f (log 2m )+f (log 0.5m )⩽2(e 2−1e).则实数m 的取值范围是 .【答案】[12,2]【解析】由f(x)=(e x −e −x )⋅x 3⇒f(−x)=f(x),且x ∈(0,+∞)时,f(x)是增函数.又由f(log2m)+f(log0,5m)≤2(e2−1e)⇒f(log2m)≤f(1).所以|log2m|≤1⇒−1≤log2m≤1⇒12≤m≤2.即m的取值范围是[12,2].3.【2018年广西预赛】若定义在R上的函数f(x)满足f′(x)−2f(x)−4>0,f(0)=−1,则不等式f(x)> e2x−2的解为___________.【答案】x>0【解析】构造函数g(x)=e−2x[f(x)+2],则g(0)=1.由g′(x)=e−2x[f′(x)−2f(x)−4]>0可知g(x)在(−∞,+∞)内单调递增,从而有g(x)>1⇔x>0.故f(x)>e2x−2⇔x>0.4.【2018年甘肃预赛】已知函数f(x)=x3+sinx(x∈R),函数g(x)满足g(x)+g(2−x)=0(x∈R),若函数ℎ(x)=f(x−1)−g(x)恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数f(x)=x3+sinx为奇函数,从而f(x−1)的图象关于(1,0)点对称.函数g(x)+g(2−x)=0,可知g(x)的图象也关于(1,0)点对称.由此ℎ(x)的图象关于(1,0)点对称,从而这2019个零点关于点(1,0)对称,由于ℎ(1)=f(0)−g(1)=0⇒x=1是ℎ(x)的一个零点,其余2018个零点首尾结合,两两关于(1,0)点对称,和为2018,故所有这些零点之和为2019.5.【2018年四川预赛】设直线y=kx+b与曲线y=x3−x有三个不同的交点A、B、C,且|AB|=|BC|=2,则k的值为______.【答案】1【解析】曲线关于点(0,0)对称,且|AB|=|BC|=2,所以直线y=kx+b必过原点,从而b=0.设A(x,y),则{y=kx, y=x3−x,√x2+y2=2.由此得x=√k+1,y=k√k+1,代入得(k+1)+k2(k+1)=4,即(k−1)(k2+2k+3)=0,解得k=1.故答案为:16.【2017年广西预赛】设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R 有f (x )+f (−x )=x 2,在(0,+∞)上f ′(x )>x .若f (1+a )−f (1−a )≥2a ,则实数a 的范围是 .【答案】a ≥0【解析】提示:由题意得f ′(x )>x ,构造函数g (x )=f (x )−12x 2,则g ′(x )=f ′(x )−x >0.从而g (x )在(0,+∞)上单调递增. 由条件f (x )+f (−x )=x 2得g (x )+g (−x )=0,则g (x )是奇函数.因为g (x )在R 上单调递增,由f (1+a )−f (1−a )≥2a 知g (1+a )−g (1−a )≥0,g (1+a )≥g (1−a ), 所以1+a ≥1−a 解得a ≥0.7.【2017年湖南预赛】设函数f (x )是定义在(−∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2017)2f (x +2017)−f (−1)>0的解集为 .【答案】(−∞,−2018)【解析】提示:将不等式(x +2017)2f (x +2017)−f (−1)>0 化为(x +2017)2f (x +2017)>(−1)2f (−1),①构造F (x )=x 2f (x ),使得①式化为F (x +2017)>F (−1),② 因为F ′(x )=2xf (x )+x 2f ′(x ),由已知条件2f (x )+xf ′(x )>x 2, 两边同乘以x ,可得F ′(x )=2xf (x )+x 2f ′(x )<x 3<0(因x ∈(−∞,0)). 所以,F (x )在(−∞,0)上是减函数,不等式②化为x +2017<−1,即x <−2018, 所以,不等式的解集为(−∞,−2018).8.【2016年福建预赛】函数f (x ) =x 2lnx +x 2-2零点的个数为________. 【答案】1 【解析】由条件知f ′(x)=2x ln x +x +2x =x(2lnx +3). 当0<x <e −32时,f ′(x)<0; 当x >e −32时,f ′(x)>0.于是,f (x )在区间(0,−32)上为减函数,在区间(−32,+∞)上为增函数.又0<x <e −32时,lnx +1<−32+1=−12<0f (x )=x 2(lnx +1)-2<0,注意到,f(e −32)=e −3(−32+1)−2<0,f(e)=2e 2−2>0 故函数f (x )零点的个数为1.9.【2015年山东预赛】设a >1.若关于x 的方程a x =x 无实根,则实数a 的取值范围是______. 【答案】a >e 1e【解析】由函数y =a x 与y =x 的图像,知若a >1,且a x =x 无实根,则a x >x 恒成立, 设f (x )=a x −x .则:f′(x )=a x (lna )−1>0⇒x >−log a (lna ).故f (x )=a x −x 在区间(−∞,−log a (lna ))上递减,在区间(−log a (lna ),+∞)上递增. 从而, f (x )在x =−log a (lna )时取得最小值,即:f (x )min =f(−log a (lna ))=a −log a (ln a )−(−log a (lna ))>0, ⇒1lna −(−log a (lna ))>0.又1lna =log a e,−log a (lna )=log a 1lna , ⇒log a e >log a1lna⇒lna >1e⇒a >e 1e .10.【2015年福建预赛】函数f (x )=e x (x −ae x )恰有两个极值点x 1,x 2(x 1<x 2),则a 的取值范围是__________. 【答案】(0,12) 【解析】∵函数f (x )=e x (x −ae x ),∴f′(x )=(x +1−2a ⋅e x )e x ,由于函数f (x )两个极值点为x 1,x 2,即x 1,x 2是方程f′(x )=0的两个不等实数根,即方程x +1−2ae x =0,且a ≠0,∴x+12a=e x ;设y 1=x+12a(a ≠0),y 2=e x ,在同一坐标系内画出两个函数图象,如图所示,要使这两个函数有2个不同的交点,应满足{12a >01 2a >1,解得0<a<12,所以a的取值范围为(0,12),故选A.【方法点睛】本题主要考查函数的极值、函数与方程以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解11.【2018年湖南预赛】函数f(x)=ln(x2+1)的图像大致是()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.12.【2018年湖南预赛】设函数f(x)是R上的奇函数,当x>0时,f(x)=e x+x−3,则f(x)的零点个数是A.1 B.2 C.3 D.4【答案】C【解析】∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点;当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f (x )有一个零点,又根据对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3个, 故选:C .13.【2017年四川预赛】已知函数f (x )=a ln x +x 2在x =1处有极值,则实数a 的值是()(A)−2(B)−1(C)1(D)2【答案】A【解析】提示:因为f ′(x )=ax+2x =a+2x 2x由条件知f ′(1)=0,解得a =−2.14.【2016年陕西预赛】设函数f (x )=x 3+ax 2+6x +c (a 、b 、c 均为非零整数).若f (a )=a 3,f (b )=b 3,则c 的值为(). A .-16 B .-4 C .4 D .16 【答案】D 【解析】设g (x )=f (x )-x 3=ax 2+bx +c . 由f (a )=a 3,f (b )=b 3⇒g (a )=g (b )=0.则a 、b 为方程g (x )=0的两个根⇒a +b =−ba,ab =ca⇒c =−a 4a+1=−(a 2+1)(a −1)−1a+1.因为c 为整数,所以,a +1=±1⇒a =0(舍去)或-2. 故c =16. 选D.15.【2015年黑龙江预赛】设0(sin cos )k x x dx π=-⎰,若8280128(1)kx a a x a x a x -=++++,则128a a a +++=()A.-1B.0C.1D.256 【答案】B 【解析】试题分析:000(sin cos )sin cos cos sin 2k x x dx xdx xdx x x πππππ=-=-=--=⎰⎰⎰,所以88280128(1)(12)kx x a a x a x a x -=-=++++,令1x =得80128(12)1a a a a ++++=-=,,令0x =得01a =,所以12801280()110a a a a a a a a +++=++++-=-=,故选B.考点:1.积分运算;2.二项式定理.16.【2015年黑龙江预赛】设函数f (x )=sin 5x +1.则∫f (x )π2−π2dx 值为()。
2018年福建省高一数学竞赛试题参考答案及评分标准(考试时间:5月13日上午8:30-11:00)一、选择题(每小题6分,共36分)1.已知集合{}1327x A x =≤≤,{}22log ()1B x x x =-<,则A B = ()A .(12),B .(]13-,C .[)02,D .(1)(02)-∞- ,,【答案】A【解答】由1327x ≤≤,得03x ≤≤。
因此,[]03A =,。
由22log ()1x x -<,得2202x x x x ⎧->⎪⎨-<⎪⎩,解得,10x -<<或12x <<。
因此,(10)(12)B =- ,,。
所以,A B = (12),。
2.若直线l 与两直线1l :70x y --=,2l :133110x y +-=分别交于A ,B 两点,且线段AB 中点为(12)P ,,则直线l 的斜率为()A .2-B .3-C .2D .3【答案】B【解答】由点A 在直线1l :70x y --=上,设(7)A t t -,。
由AB 中点为(12)P ,,知(211)B t t --,。
∵点B 在直线2l :133110x y +-=上,∴13(2)3(11)110t t -+--=。
解得,3t =。
∴(34)A -,,2(4)313l PA k k --===--。
3.如图,在正方体1111ABCD A B C D -中,M 、E 分别为棱BC 、1BB 的中点,N 为正方形11B BCC 的中心。
l 为1A MN 平面与1D BE 平面的交线,则直线l 与正方体ABCD 底面所成角的大小为()A .30︒B .45︒C .60︒D .90︒【答案】D【解答】如图,由正方体的性质与条件,易得MN ABCD ⊥面,BE ABCD ⊥面。
∴1A MN ABCD ⊥面面,1D BE ABCD ⊥面面。
∴l ABCD ⊥面,l 与ABCD 面所成角的大小为90︒。
备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题06基本初等函数第二缉1.【2019年重庆预赛】函数f (x )=(√1+x +√1−x −3)(√1−x 2+1)的最小值为m ,最大值为M ,则M m=________.【答案】3−√22【解析】设t =√1+x +√1−x ,则t ≥0且t 2=2+2√1−x 2,∴t ∈[√2,2]. f (x )=(t −3)·t 22,令g (t )=12t 2(t −3),t ∈[√2,2].令g ′(t )=0得t =2,g(√2)=√2−3,g (2)=−2, ∴M =g (t )max =√2−3,m =g (t )min =−2,∴Mm =3−√22.2.【2019年重庆预赛】设f(x)是定义在(0,+∞)上的单调函数,对任意x >0有f(x)>−4x ,f(f(x)+4x )=3,则f(8)=. 【答案】72【解析】由题意存在x 0>0使f(x 0)=3。
又因f(x)是(0,+∞)上的单调函数,这样的x 0>0是唯一的,再由f(f(x 0)+4x 0)=3得x 0=f(x 0)+4x 0=3+4x 0解得x 0=4或x 0=−1(舍)。
所以f(x)=4−4x,f(8)=4−48=72。
3.【2019年北京预赛】函数f (x )满足f (1)=1,且f (n )=f (n −1)+1n (n−1),其中n ≥2,n ∈N +,那么f (2019)=. 【答案】40372019.【解析】因为f(n)−f(n −1)=1n(n−1)=1n−1−1n ,所以 f(2)−f(1)=1−12, f(3)−f(2)=12−13,f(4)−f(3)=13−14,⋯⋯f(2018)−f(2017)=12017−12018,f(2019)−f(2018)=12018−12019,将以上各式等号两边分别相加得f(2019)−f(1)=1−12019,进而有 f(2019)=2−12019=120182019.4.【2019年福建预赛】函数f(x)=√2x −x 2+x 的值域为 .【答案】[0,√2+1]【解析】解法一:f(x)=√1−(x −1)2+x .设x −1=sinα (−π2≤α≤π2),则f(x)=cosα+(1+sinα)=√2sin (α+π4)+1.由−π2≤α≤π2,得−π4≤α+π4≤3π4, −√22≤sin (α+π4)≤1.∴f (x )值域为[0,√2+1]. 解法二:f ′(x)=√2+1=√21 (0<x <2).∵ 0<x <1+√22时,f ′(x)>0;1+√22<x <2时,f ′(x)<0.∴f (x )在区间[0,1+√22]上为增函数,在区间[1+√22,2]上为减函数. ∴f (x )值域为[0,√2+1].5.【2019年福建预赛】已知f(x)=x 3+ax 2+bx +2的图象关于点(2,0)对称,则f (1)=.【答案】4【解析】解法一:由f (x )的图象关于点(2,0)对称,知:f(x +2)=(x +2)3+a(x +2)2+b(x +2)+2=x 3+(a +6)x 2+(b +4a +12)x +4a +2b +10为奇函数.∴{a +6=04a +2b +10=0,{a =−6b =7∴ f(1)=1+a +b +2=1−6+7+2=4. 解法二:由f (x )的图象关于点(2,0)对称,知 对任意x ∈R ,f (2+x )+f (2-x )=0于是,对任意x ∈R ,(2+x)3+a(2+x)2+b(2+x)+2+(2−x)3+a(2−x)2+b(2−x)+2=0. 即(2a +12)x 2+(8a +2b +20)=0恒成立. ∴{2a +12=08a +4b +20=0,{a =−6b =7.∴ f(1)=1+a +b +2=1−6+7+2=4.解法三:依题意,有f (x )=(x -2)3+m (x -2). 利用f (0)=-8-2m =2,得m =-5.于是,f (x )=(x -2)3-5(x -2),f (1)=-1-(-5)=4.6.【2019年福建预赛】已知f(x)=x 5−10x 3+ax 2+bx +c ,若方程f (x )=0的根均为实数,m 为这5个实根中最大的根,则m 的最大值为 .【答案】4【解析】设f (x )=0的5个实根为x 1≤x 2≤x 3≤x 4≤m ,则由韦达定理,得m +x 1+x 2+x 3+x 4=0. m (x 1+x 2+x 3+x 4)+(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=−10. 于是,x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4=−10+m 2.∴ x 12+x 22+x 32+x 42=(x 1+x 2+x 3+x 4)2−2(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=m 2−2(−10+m 2)=20−m 2.另一方面,由柯西不等式,知(x 1+x 2+x 3+x 4)2≤4(x 12+x 22+x 32+x 42)于是,m 2≤4(20−m 2),m 2≤16,m ≤4.又对f(x)=(x −4)(x +1)4=x 5−10x 3−20x 2−15x −4,方程f (x )=0的根均为实数,且5个实根中最大的根m =4. ∴m 的最大值为4.7.【2019年广西预赛】已知xyz +y +z =12,则log 4x +log 2y +log 2z 的最大值为 .【答案】3【解析】log 4x +log 2y +log 2z =log 2x 2+log 2y +log 2z =log 2(xyz⋅y⋅z)2⩽log 2(xyz+y+z 3)32=3.当xyz=y=z=4取到等号.8.【2019年贵州预赛】已知方程x 5−x 2+5=0的五个根分别为x 1,x 2,x 3,x 4,x 5,f(x)=x 2+1.则∏s i=1f (x i )=.【答案】37【解析】设g(x)=x 5−x 2+5,则g(x)=∏(x −x k )5k=1,又f(x)=x 2+1=(x-i)(x+i),所以∏5i=1f (x k )=∏(x k −i )5i=1⋅∏(x k +i )5i=1=g(i)⋅g(−i)=(i 5−i 2+5)⋅[(−i)5−(−i)2+5]=(6+i)(6−i)=37.9.【2019年吉林预赛】已知函数f(x)=-x 2+x+m+2,若关于x 的不等式f(x)≥|x|的解集中有且仅有1个整数,则实数m 的取值范围为.【答案】[-2,-1)【解析】f(x)≥|x|⇔2−|x|≥x 2−x −m . 令g(x)=2−|x|,h(x)=x 2−x −m . 在同一直角坐标系内作出两个函数的图象, 由图象可知,整数解为x=0,故{f(0)≥0−0−m f(1)<1−1−m.解得−2≤m <−1.10.【2019年吉林预赛】已知函数f(x)=a +x −b x 的零点x 0∈(n,n +1)(n ∈Z),其中常数a 、b 满足条件2019a =2020, 2020b =2019,则n 的值为 .【答案】-1【解析】因为2019°=2020,2020b =2019,所以1<a<2,0<b<1,故函数f(x)在R 上为増函数,又f(0)=a −1>0, f(−1)=a −1−1b <a −1−1<0,故由零点定理可知,函数f(x)在区间(1,0)有唯ー的零点,则n 的值是-1. 11.【2019高中数学联赛A 卷(第01试)】已知正实数a 满足a a =(9a)8a ,则log a (3a)的值为.【答案】916【解析】由条件知9a =a 18,故3a =√9a ⋅a =a 916,所以log a (3a)=916.12.【2018年山西预赛】函数y =√1−x 22+x的值域为________.【答案】[0,√33] 【解析】由条件知x ∈[−1,1]. 令x =cosα(α∈[0,π]).则 y =sinα2+cosα(y ≥0),⇒2y =sinα−ycosα=√1+y 2sin (α+θ)≤√1+y 2, ⇒1+y 2≥4y 2⇒y 2≤13, 因为y ≥0,所以,y ∈[0,√33]. 13.【2018年福建预赛】函数f(x)=[log 3(13√x)]⋅[log √3(3x 2)]的最小值为________. 【答案】−258【解析】设log 3x =t ,则log 3(13√x)=−1+12t ,log √3(3x 2)=32log √3=2(1+2t).∴f(x)=g(t)=(−1+12t)⋅2(1+2t)=2t 2−3t −2=2(t −34)2−258.∴当t =34,log 3x =34,x =334时,f (x )取最小值−258.14.【2018年福建预赛】若函数f (x )=x 2-2ax +a 2-4在区间[a -2,a 2](a >0)上的值域为[-4,0],则实数a 的取值范围为________. 【答案】[1,2] 【解析】∵f (x )=x 2-2ax +a 2-4=(x -a )2-4,f (a )=-4,f (a -2)=0,f (x )在区间[a -2,a 2]上的值域为[-4,0],f (x )的图像为开口向上的拋物线.∴{a −2≤a ≤a 2a ≥a−2+a 22 ,解得-1≤a ≤0或1≤a ≤2.结合a >0,得1≤a ≤2. ∴a 的取值范围为[1,2].15.【2018年江苏预赛】设g(n)=∑(k,n)nk=1,期中n ∈N *,(k,n)表示k 与n 的最大公约数,则g(100)的值为________. 【答案】520 【解析】如果(m,n)=1,则g(mn)=g(m)g(n),所以g(100)=g(4)g(25). 又g(4)=1+2+1+4=8.g(25)=5×4+25+(25−5)=65, 所以g(100)=8×65=520. 故答案为:52016.【2018年贵州预赛】牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手,这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是_______.【答案】牛得亨先生的女儿 【解析】由题意知,最佳选手和最佳选手的孪生同抱年龄相同;由②,最佳选手和最差选手的年龄相同;由①,最佳选手的孪生同胞和最差选手不是间一个人.因此,四个人中有三个人的年龄相同.由于牛得亨先生的年龄肯定大于他的儿子和女儿,从而年龄相同的三个人必定是牛得亨先生的儿子、女儿和妹妹.由此,牛得亨先生的儿子和女儿必定是①中所指的孪生同胞.因此,牛得亨先生的儿子或女儿是最佳选手,而牛得亨先生的妹妹是最差选手.由①,最佳选手的孪生同胞一定是牛得亨先生的儿子,而最佳选手无疑是牛得亨先生的女儿. 故答案为:牛得亨先生的女儿17.【2018年贵州预赛】函数z =√2x 2−2x +1+√2x 2−10x +13的最小值是______. 【答案】√10 【解析】因为z =√2x 2−2x +1+√2x 2−10x +13=√(x −0)2+(x −1)2+√(x −2)2+(x −3)2此即为直线y =x 上的点(x ,y )到点(0,1)与到点(2,3)的距离之和,根据镜像原理,z 的最小值应为点(1,0)到点(2,3)的距离√10. 故答案为:√1018.【2018年贵州预赛】若方程a x >x (a >0,a ≠1)有两个不等实根,则实数a 的取值范围是_______. 【答案】1<a <e 1e 【解析】由a x >x 知x >0,故x ⋅lna −lnx =0⇒lna =lnx x,令f(x)=lnx x(x >0),则f ′(x)=1−lnx x 2.当x ∈(0,e)时,f ′(x)>0;当x ∈(e ,+∞)时,f ′(x)<0.所以f(x)在(0,e )上递增,在(e ,+∞)上递减.故0<lna <f(e)=1e,即1<a <e 1e . 故答案为:1<a <e 1e19.【2018年浙江预赛】已知a 为正实数,且f(x)=1a −1a x +1是奇函数,则f(x)的值域为________.【答案】(−12,12) 【解析】由f(x)为奇函数可知1a −1a x +1=−1a +1a −x +1,解得a = 2,即f(x)=12−12x +1, 由此得f(x)的值域为(−12,12).20.【2018年北京预赛】已知实数a,b,c,d 满足5a =4,4b =3,3c =2,2d =5,则(abcd )2018=________. 【答案】1 【解析】化5a =4,4b =3,3c =2,2d =5为对数,有a =log 54=ln4ln5,b =ln3ln4,c =ln2ln3,d =ln5ln2,所以(abcd )2018=(ln4ln5×ln3ln4×ln2ln3×ln5ln2)2018=12018=1.21.【2018年北京预赛】已知函数f (x )满足f (x +1x )=x 2+1x 2,那么f (x )的值域为_______.【答案】[2,+∞) 【解析】设函数y =f (x )满足f (t +1t )=t 2+1t 2,{x =t +1t (|x |≥2)y =t 2+1t 2(y ≥2),y =t 2+1t 2=(t +1t)2−2=x 2−2.所以所求函数是f (x )=x 2−2(|x |≥2),其图像如图,易知f (x )=x 2−2(|x |≥2)的值域是[2,+∞).22.【2018年湖南预赛】函数f(x)=√4−x 2+ln(2x −1)的定义城为_________. 【答案】[−2,12)【解析】由{4−x 2≥02x −1>0得-2≤x <12,所以函数f(x)=√4−x 2+ln(2x −1)的定义城为[−2,12). 故答案为[−2,12)23.【2018年湖南预赛】已知函数f(x)对任意的实数满足:f(x +6)=f(x),且当−3≤x <−1时,f(x)=−(x +2)2,当−1≤x <3时,f(x)=x ,则y =f(x)象与y =lg |1x |的图象的交点个数为___________。
2018年全国高中数学联赛福建赛区预赛模拟(3)一、填空题(每小题6分,共60分)1、设a , b 是两个正整数, 它们的最小公倍数是24·33·72·11, 那么这样的有序正整数对(a , b )有 _ 组.2、方程16sin πx cos πx =16x +1x 的解集合为3、三棱锥S ABC -是三条侧棱两两垂直的三棱锥,O 是底面ABC ∆内的一点, 那么tan tan tan W OSA OSB OSC =∠⋅∠⋅∠的最小值是______________4、对任意,x y R ∈,代数式M =________5、计算:232010sinsinsin sin2011201120112011ππππ=_______________ 6、篮球场上有5个人在练球,其战术是由甲开始发球(第一次传球),经过六次传球跑动后(中途每人的传球机会均等)回到甲,由甲投3分球,其中不同的传球方式为___________种. 7、对,x y R ∀∈,函数(,)f x y 都满足:①(0,)1f y y =+;②(1,0)(,1)f x f x +=; ③(1,1)(,(1,))f x y f x f x y ++=+;则(3,2011)f =__________________ 8、设2n 个实数122,,,n a a a 满足条件21211()1n i i i a a -+=-=∑则12212()()n n n n a a a a a a μ++=+++-+++的最大值为________________9. 如图,在△ABC 中,cos25C =,0,AH BC ⋅=0)(=+⋅, 则过点C ,以A 、H 为两焦点的双曲线的离心率为_________10. 若实数a , b , x , y 满足3,ax by +=227ax by +=,3316ax by +=,4442ax by +=,则55ax by +=________ 二、解答题(每小题20分,共100分)11.已知数列{a n }:30,2021==a a ,.311-+-=n n n a a a ⑴ 证明:500112-=-+-n n n a a a )2(≥n⑵ 求出所有的正整数n ,使得151++n n a a 为完全平方数.12、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点. (1)若||||||CD BC AB ==,求证:AOD ∆的面积为定值; (2)若BOC ∆的面积等于AOD ∆面积的31, 13、已知函数()ln ()2f x x ax 2a x =-+-.若函数()y f x =的图像与x 轴交于,A B 两点,线段AB 中点的横坐标为0x ,试证明:01x a>.14. 如图,已知K L 、分别是ABC ∆的边AC AB 、的中点,ABC ∆的内切圆I 分别与边CA BC 、切于点E D 、.求证:DE KL 、的交点在ABC ∠的角平分线上.15.给定大于2011的正整数n ,将21,2,3,,n 分别填入n n ⨯的棋盘的方格中,使每个方格恰有一个数,如果一个方格中填的数大于它所在行至少2011个方格内所填的数,且大于它所在列至少2011个方格内所填的数,则称这个方格为“优格”,求棋盘中“优格”个数的最大值.2018年全国高中数学联赛福建赛区预赛模拟3 参考答案1、设3312412423711,23711a b αβαααβββ=⋅⋅⋅=⋅⋅⋅, 则有11max 22max 33max 44max {,}4,{,}3,{,}2,{,}1αβαβαβαβ====.故有序正整数对(a , b )有(241)(231)(221)(211)⨯+⨯+⨯+⨯+=945组.2、当x >0时,16x +1x ≥8,(x =14取到等号)而,(x =14+k , k ∈Z 取到等号), 于是有当x >0时,方程只有一个解x =14。
2018年全国高中数学联赛(福建省赛区)预赛暨2018年福建省高中数学竞赛试卷(考试时间:2018年5月20日上午9:00—11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分.请直接将答案写在题中的横线上)1.将正偶数集合{}2,4,6,从小到大按第n 组有32n -个数进行分组:{}{}{}2,4,6,8,10,12,14,16,18,20,22,24,,则2018位于第 组.2.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若2,3,2a b C A ===,则cos C = .3.设复数z 满足2z i -= ,则 z z -的最大值为 .(i 为虚数单位,z 为复数z 的共轭复数)4.已知定义在R 上的奇函数()f x 的图像关于直线2x =对称,当02x <≤时,()1f x x =+,则()()100101f f -+-= .5.从如图所示的由9个单位小方格组成的33⨯方格表的16个顶点中任取三个顶点,则这三个点构成直角三角形的概率为 .6.如图,在三棱锥P ABC -中,,PAC ABC ∆∆都是边长为6的等边三角形,若二面角P AC B --的大小为0120,则三棱锥P ABC -外接球的面积为 .7.已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,点P 在双曲线C 上,,G I 分别为12F PF ∆的重心、内心,若//GI x 轴,则12F PF ∆的外接圆半径R = .8.最近网络上有一篇文章很火.源于一道常见题目:(见图),这貌似易解的题目,里面竟然蕴藏了深奥的大道理.(本题不作为本次考试的试题,本次试题如下)设{},2,3,4,5,6,7,8a b ∈,则1010a b b a a b+++的最大值为.9.已知整数系数多项式()543212345f x x a x a x a x a x a =+++++,若0f =,()()130f f +=则()1f -= .10.已知函数()f x 满足:对任意实数,x y ,都有()()()6f x y f x f y xy +=++成立,且()()119f f ⋅-≥,则23f ⎛⎫= ⎪⎝⎭ . 二、解答题(共5小题,每小题20分,满分100分.要求写出解题过程)11.已知数列{}n a 的前n 项和n S 满足2,*n n S na n n N -=∈,且23a =.(1)求数列{}n a 的通项公式;(2)设n b =n T 为数列{}n b 的前n 项和,求使920n T >成立的最小正整数n 的值.12.已知12,F F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P ⎫⎪⎪⎝⎭在椭圆C上,且12F PF ∆的垂心为533P ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于,D E 两点,记直线,AD AE 的斜率分别为12,k k ,若1212k k +=-,求直线l 的方程. 13.如图,在锐角ABC ∆中,,D E 是边BC 上的点,,,ABC ABD ADC ∆∆∆的外心分别为,,O P Q .证明:(1)APQ ∆∽ABC ∆;(2)若EO PQ ⊥,则QO PE ⊥.14.已知()xf x e mx =-. (1)若0x >时,不等式()()2220x f x mx -++>恒成立,求实数m 的取值范围; (2)若12,x x 是函数()f x 的两个零点,求证:122x x +>.15.设M 是由有限个正整数构成的集合,且12201220M A A A B B B ==,这里,,1,2,20i i A B i φφ≠≠=,并对任意的120i j ≤<≤,都有i j A A φ=,i j B B φ=. 已知对任意的120,120i j ≤≤≤≤,若i j A B φ=,则18i j A B ≥,求集合M 的元素个数的最小值.(这里,X 表示集合X 的元素个数)试卷答案一、填空题:1.27 2. 14 3. 6 4. 2 5. 935 6. 84π 7. 5 8. 89287 9. 24 10. 43二、解答题:11. 解:(1)由2n n S na n -=,得()11211n n S n a n ++-+=+.将上述两式相减,得()11211n n n a n a na ++-++=;()111n n na n a +∴--=① ()1211n n n a na ++∴+-=②① -②,得122+0n n n na na na ++-= 212n n n a a a ++∴+=∴数列{}n a 为等差数列;又由1121S a -=,及23a =,得11a =,{}n a 的公差2d =;()12121n a n n ∴=+-=-.解法二:用数学归纳法(略)注:若猜出()12121n a n n ∴=+-=-,没有证明,扣5分.(2)由(1)知,n b =1122n b ∴====122112nT n ∴=++-⎛= ⎝ 由920n T ∴>,得191220⎛> ⎝110<,21100n∴+>,992n∴>∴使得920nT>成立的最小正整数n的值为50.12.解:设()()12,0,,0F c F c-.由12F PF∆的垂心为53⎫-⎪⎪⎝⎭,得12F H PF⊥.12252451,93F H PFk k c-∴⋅==--=,解得21c=.由点3P⎛⎫⎪⎪⎝⎭在椭圆C上,得2224119a b+=.结合2221a b c-==,解得224,3a b==.∴椭圆C的方程为22143x y+=.(2)由(1),知()()22,0,1,0A F-若l斜率不存在,则由对称性,12k k+=,不符合要求若l斜率存在,设为k,则l的方程为()1y k x=-由()221143y k xx y⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k+-+-=①设()()1122,,,D x yE x y,则221212228412,4343k kx x x xk k-+=⋅=++()()121212121212113311222222k x k xy yk k kx x x x x x--⎛⎫∴+=+=+=-+-⎪++++++⎝⎭()()()212212342112222x x kk kx x k k⎡⎤++⎛⎫+=⋅-=⋅-=-⎢⎥ ⎪++⎝⎭⎣⎦又1212k k+=-,因此2k=,直线l的方程为:()21y x=-,即220x y--=.13.解:(1)连结,PD QD,P Q ∴分别为ABD ADC ∆∆,的外心,PQ ∴为线段的AD 垂直平分线.1=2APQ APD ABD ABC ∴∠∠=∠=∠, 1=2AQP AQD ACD ACB ∴∠∠=∠=∠. APQ ∴∆∽ABC ∆.(2)连结,,,,OA OB OP PB QC ,延长OQ 与AC 相交于点F ,由,,O P Q 分别为,,ABC ABD ADC ∆∆∆的外心,知,,OP OQ PQ 分别是线段,,AB AC AD 的垂直平分线. ()22APB APD PBD ABD BAD ADC AQC ∴∠=∠+∠=∠+∠=∠=∠. 又11,22OBP OAP AQF AQC APB AQC ∠=∠∠=∠=∠=∠, ∴,,,A P O Q 四点共圆,OAP OQP ∠=∠.又EO PQ ⊥,DA PQ ⊥,∴//EO DA ,12OEC ADC APB BPO ∠=∠=∠=∠ ∴,,,P B E O 四点共圆,OEP OBP ∠=∠.设,EO QO 的延长线分别与,PQ PE 相交于,M N ,则OEP OBP OAP OQP ∠=∠=∠=∠ ,,,M N E Q ∴四点共圆,又QO PQ ⊥090QNE QME ∴∠=∠= QO PE ∴⊥.14.解:(1)设()()()222g x x f x mx =-++,则()()222xg x x e mx =-++ 0x >时,不等式()()2220x f x mx -++>恒成立0x ⇔>时,()0g x >恒成立.()()()2212x x x g x e x e m x e m '=+-+=-+,()()1x x x g x e x e xe ''=+-=0x ∴>时,()0x g x xe ''=>,()()12x g x x e m '=-+在区间[)0,+∞上为增函数. 另由()2420g m =+>,知12m >-. ① 若1122m -<<,则()()2012,220g m g e m ''==-+=+> 此时,()g x '在区间()0,2内有唯一零点,设为0x ,则00x x <<时,()0g x '<()g x ∴在区间()00,x 上为减函数,()()000g x g <=.因此,1122m -<<不符合要求. ② 若12m ≥,则0x >时,()()0120g x g m ''>=-+≥,此时,()g x 在[)0,+∞上为增函数.0x ∴>时,()()00g x g >=.因此,12m ≥符合要求. 由①、②,得m 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.(2)12,x x 是函数()x f x e mx =-的两个零点,()12121212,,x x x x e mx e mx m x x e e ∴==+=+,()1212x x m x x e e -=-.不妨设12x x >,易知0m ≠,联立上述两式,消m ,得()()()()1212121212121211x x x x x x x x x x e e x x e x x e e e ---+-++==--又由(1)知,对12m =,当0x >时,()()2220x g x x e mx =-++>恒成立. ∴当0x >时,()220x x e x -++>恒成立.∴当0x >时,()()()()()()1222220111x x x x x x x x e x e x xe x e e e e +-+++-+-==>---. ()()1212121212201x x x x x x e x x e ---+∴+-=->-,122x x +>;当12x x <时,同理可得:122x x +>,122x x ∴+>.15. 解:记{}12201220min ,,,,,A A A B B B t =不妨设1,,1,2,ii A t A B i k φ=≠=;,1,2,20i j A B j k k φ==++. 设1i i a A B φ∈≠,1,2,i k =. 对任意的120i j ≤<≤,都有i j B B φ=,12,,k a a a ∴互不相同,1A k ≥,即t k ≥.对任意的120,120i j ≤≤≤≤,若i j A B φ=,则18i j A B ≥, ∴当=1,2,20j k k ++时,1118j j A B A B +=≥ 即当=1,2,20j k k ++时,18j B t ≥-.()()()()1220111202018360218201802109k k M B B B B B B B B kt k t kt k t k t +∴==++++++≥+--=+--=+--若9t ≤,则9k t ≤≤,()()1802109180M k t ∴=+--≥ 若10t ≥,则20200M t ≥≥ ∴总有180M ≥另一方面,取()()(){}911,912,,919,1,2,,20i i A B i i i i ==-+-+-+=, 则{}122012201,2,,180M A A A B B B ===符合要求. 此时,180M =.综上所述,集合M 的元素个数的最小值为180.。