大物指导书答案
- 格式:pdf
- 大小:1.55 MB
- 文档页数:53
1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r)4321()53(2-+++=m (4) 1s m )3(3d d -⋅++==j t i tr v则 j i v734+= 1s m -⋅(6) 2s m 1d d -⋅==j tv a这说明该点只有y 方向的加速度,且为恒量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s)的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得ts stl ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s h slv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tv a 34d d +==分离变量,得 t t v d )34(d += 积分,得12234c t t v ++=由题知,0=t ,00=v ,∴01=c 故 2234t t v += 又因为 2234d d t t tx v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x所以s 10=t 时m70551021102sm 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v ts v -==0d dRbt v Rva b t v a n 202)(d d -==-==τ则 240222)(Rbt v b aa a n-+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n--==τϕ(2)由题意应有2402)(Rbt v b b a -+==即 0)(,)(4024022=-⇒-+=bt v Rbt v b b∴当bv t 0=时,b a =1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o0160cos v v v x == 21sm 10-⋅==g a n又∵ 1211ρv a n =∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1sm -⋅,而 o60cos 2⨯=g a n ∴ m 8060cos 10)20(22222=︒⨯==n a v ρ2-3 283166-⋅===sm m f a x x2167-⋅-==s m mf a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=2101200872167452832sm dt a v v s m dt a v v y y y x x x于是质点在2s 时的速度18745-⋅--=sm ji v(2) mji j i jt a i t a t v r y x 874134)167(21)4832122(21)21(220--=⨯-+⨯⨯+⨯-=++= 2-4 (1)∵dtdv mkv a =-=分离变量,得m kdt v dv -=即⎰⎰-=vv tmkdt v dv 0mkt ev v -=ln ln∴ tmk e v v -=0(2)⎰⎰---===tttmk mk ekmv dt ev vdtx 000)1((3)质点停止运动时速度为零,即t →∞, 故有⎰∞-=='000kmv dt ev x tmk(4)当t=km 时,其速度为ev ev ev v km m k 0100===-⋅-即速度减至v 0的e1.2-7由题知,小球落地时间为0.5s .因小球为平抛运动,故小球落地的瞬时向下的速度大小为v 1=gt=0.5g ,小球上跳速度的大小亦为v 2=0.5g .设向上为y 轴正向,则动量的增量 Δp=mv 2-mv 1 方向竖直向上,大小 |Δp |=mv 2-(-mv 1)=mg碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-12 (1)由题知,F 合为恒力,∴ A 合=F ·r=(7i-6j)·(-3i+4j+16k)=-21-24=-45 J (2)w tA N 756.045==∆=(3)由动能定理,ΔE k =A=-45 J2-15 弹簧A 、B 及重物C 受力如题2-15图所示平衡时,有题2-15图 F A =F B =Mg 又 F A =k 1Δx 1 F B =k 2Δx 2所以静止时两弹簧伸长量之比为 1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p=∆∆=2-20 两小球碰撞过程中,机械能守恒,有222120212121mv mv mv +=即 222120v v v += ①3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv tx cv t t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv解出 c c t t c v 53)54(1)(122=-='∆∆-=8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x tt t v x x γγ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解: 2220153,1513βββ-=-=-=='则l l∴ c c v 542591=-=3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆∴ t cv t c t v t t ∆+'∆=∆+∆=∆γγ11′)1(cv t +'=∆γ6.01)8.0(112=-=c c γ则 γλτ)8.01(5.0)1(0c c cv t t +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+=3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何? 解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c ccc c c v cu u v v xx x143.05.06.016.05.0122-=⨯--=--='c ccc c v cu v cu v xyy 990.05.06.01866.06.011122222=⨯-⨯-=--='光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x='+'='22 正是光速不变. 3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==cv c m c m cm mcE E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆)1111(221222202122cv cv c m cm c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k F x +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k m T +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21k k k +=并 同上理,其振动周期为212k k m T +='π4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2A x =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t TA x)452cos(454πππφ+==t TA x4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10scm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311mN 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT mk 即m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m )455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A (2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大物课后习题答案大物课后习题答案大学物理是一门重要的基础学科,对于理工科学生来说尤为重要。
在学习大物的过程中,课后习题是巩固知识和提高能力的重要途径。
然而,很多同学在解答习题时常常遇到困难,尤其是对于一些复杂的题目。
为了帮助同学们更好地学习大物,我将在本文中为大家提供一些大物课后习题的答案。
1. 力学习题答案1.1 一个质点以初速度v0沿着x轴正方向做匀加速直线运动,加速度为a,求它在时间t时的速度v。
解答:根据匀加速直线运动的基本公式v = v0 + at,代入已知条件即可得出答案。
1.2 一个质点以初速度v0沿着x轴正方向做匀加速直线运动,加速度为a,求它在时间t时的位移x。
解答:根据匀加速直线运动的基本公式x = v0t + 1/2at^2,代入已知条件即可得出答案。
2. 热学习题答案2.1 一定质量的物体由温度T1加热到温度T2,求它所吸收的热量Q。
解答:根据热学的基本公式Q = mcΔT,其中m为物体的质量,c为物体的比热容,ΔT为温度变化。
代入已知条件即可得出答案。
2.2 一定质量的物体由温度T1加热到温度T2,求它的温度变化ΔT。
解答:根据热学的基本公式ΔT = (T2 - T1),代入已知条件即可得出答案。
3. 光学习题答案3.1 一束光从空气射入玻璃,求光在入射角为θ1时的折射角θ2。
解答:根据光的折射定律n1sinθ1 = n2sinθ2,其中n1为空气的折射率,n2为玻璃的折射率。
代入已知条件即可得出答案。
3.2 一束光从空气射入玻璃,求光在入射角为θ1时的反射角θr。
解答:根据光的反射定律θ1 = θr,代入已知条件即可得出答案。
4. 电磁学习题答案4.1 一个电荷为q的点电荷在距离r处产生的电场强度E为多少?解答:根据库仑定律E = kq/r^2,其中k为电场常量。
代入已知条件即可得出答案。
4.2 一个电流为I的直导线在距离r处产生的磁场强度B为多少?解答:根据安培定律B = μ0I/2πr,其中μ0为真空中的磁导率。
第一单元 毕奥—萨伐尔定律[知识点精要]1. 毕奥—萨伐尔定律:电流元Idl 在P 点产生的磁感应强度为: 304r r l Id B d ⨯=πμ 2.运动电荷产生的磁场:304r r v q B ⨯=πμ 3.磁场的叠加原理 导线L 中的电流在P 点产生的磁感应强度等于每个电流元单独存在时,在P 点产生的磁感应强度的矢量和,即⎰⎰⨯==304r r l Id B d B πμ 或 ∑=ii B B4.三种特殊形状载流导线产生的磁场:(1)“无限长”直线电流周围的磁场 aI B πμ20= (2)载流线圈圆心处的磁场 a IB 20μ=(3)均匀密绕“无限长”直载流螺线管内的磁场 nI B 0μ=5.磁矩: n IS P m =[典型例题]:例1-1.有一折成如图所示的无限长导线,已知电流I=10A ,半圆半径R=0.5cm ,试求圆心O 点的磁感应强度。
解:O 点的磁场可看成是半无限长载流导线AB 、CD 和半圆弧BC 电流产生的磁场的叠加。
AB 、BC 产生的磁场方向相同,均垂直纸面向里;CD 产生的磁场为零。
故 )11(40440000+=++=πμμπμR I R I R I B例1-2 图示为两条穿过Y 轴垂直于X-Y 平面的平行长直导线的俯视图,两条导线皆通有电流I ,但方向相反,它们到X 轴的距离皆为a 。
(1)推导出X 轴上P 点处的磁感应强度B(X)的表达式。
(2)求P 点在X 轴上何处时,该点的B 取得最大值。
解:0122I B B rμπ== 由对称性,X 轴上任一点P 的磁感应强度 B 一定沿X 轴方向。
设B 与X 轴夹角为φ,那么1222cos 2()Ia B B a x μϕπ===+ 显然x=0处,B 最大,为:0I B a μπ=例1-3 圆盘半径R ,表面电荷面密度是σ,圆盘绕轴线以匀角速度ω旋转时,求圆盘中心的磁感应强度。
解:当带电圆盘旋转时,其上电荷做圆周运动形成电流,在空间产生磁场圆盘上的电流可以看成是半径连续变化的圆形电流的叠加。
01答案:(一)选择题1.B2.D3.C4.A5.D (二)填空题6.313ct ;2ct ;24c t R 7.圆 8.21:cos θ(三)计算题9.解:1510drj tk dt υ==+;10d a k dtυ==10.解:由xx d a dtυ=得:x x d a dt υ=2cos A tdt ωω=-t=0时,0x υ=,x A =,则:20cos xtx d A tdt υυωω=-⎰⎰sin x A t υωω=-又由x dxdtυ=得: sin x dx dt A tdt υωω==-sin xtAdx A tdt ωω=-⎰⎰∴cos x A t ω=11.解:(1) 212d t dt θω==;24d t dtωα== (2) t=2s 时,ω=48,α=4824.8t a R m s α==,22230n a R m s ω==。
12.解:(1)0x t υ=,212y gt = 轨迹方程 22012y x g υ=(2) 0x υυ=,y gt υ=速度大小为υ== 方向:与x轴夹角arctanarctan y x gt υθυυ==∴2t d a g dtυ==0n a υ==02参考答案:参考答案: 1. A 2.112()33GMm GMmR R R-=- 3.零 正 负 4.解:vt22x2300230F(1)a 6tim(2)dv 6tdt v 3t (3)dx vdt 3t dtdx 3t dt =t(4)A dA F dx Fdx 36t dt 144(J)t===→======⋅===⎰⎰⎰⎰⎰⎰⎰⎰5.解:(1)由题意可知l x l mg f /)(-=μ 由变力做功⎰⎰⎥⎦⎤⎢⎣⎡--=--=⋅=lalal af x lx l mg dx x l lmgr d f W 2)21( )(μμ(2)对链条应用动能定理:∑-=2022121mv mv W W W f P += 20210mv W W v f P =∴=+la l mg xdx l mg r d P W la la P 2)(22-==⋅=⎰⎰la l mg W f 2)(2--=μ2222212)(2)(mv l a l mg l a l mg =---∴μ[]21222)()(a l a llgv ---=μ得03作业答案:1 B2 C3 E4 C5 m ( -ωasin ω t i +ωbcos ω t j ); 零6 (1)0; (2)mvi mvj --,mv 2;(3)Rmvk ,Rmv ; (4)mgR7 解:碰撞过程中子弹和木块动量守恒,碰撞结束后的运动机械能守恒,v M m mv '+=)(0222121kL v M m ='+)( 计算得到:)(M m k mLv +=0 04刚体作业答案1C 2C 3. B 4.A 5. mvl 6. 20.25kg m ⋅ 7. 250ml8.2221211712412m l ml m l ++ 9. 220.15,1.26m m s s10.22002126[()]3333[(4)]mv lmv Ml m l Ml mωω=+⨯⇒=+11.121111212221212222()()()()T r T r J m g T m a m m grm m grt t a r m m r Jm m r J T m g m aββωββ⋅-⋅=⋅⎧⎪-=⋅--⎪⇒=⇒==⎨=⋅++++⎪⎪-=⋅⎩12..11221114822T mg ma T r T r J T r T r J a g T mg mg T maa r βββ-=⎧⎪⋅-⋅=⋅⎪⎪⋅-⋅=⋅⇒=⇒=⎨⎪-=⎪⎪=⋅⎩05机械振动部分1、B2、C3、D4、A5、C6、C7、4cm 2π8、解:(g 取9.8)))(64.07cos(05.064.0,4/3)/(tan )(5/7/,/0220200SI t x radcm A m k l g k x v v x m +===-==+===∆=ϕωϕωω 机械波部分1、B2、D3、C4、A5、C6、A7、A8、⎥⎦⎤⎢⎣⎡+++=ϕω)1(cos u x t A y 9、解:()))(cos(1.0,3434312,21000SI t t s t T s T yπππϕπϕωπππω+==+====坐标原点的振动方程为=时,原点的相位为由图可知,()()()SI x t x y πππ++=5cos 1.02-程为:轴负方向传播的波动方沿()ππϕϕπππϕϕϕπ61267673425253130=+==-=-∆=Q O Q Q t=点的相位为时,由分析可知,所以,Q 点的振动方程为:()()SI t t A y Q Q ⎪⎭⎫ ⎝⎛+=+=ππϕω613cos 1.0cos(4)O 、Q 两点之间的距离为m x Q 28.048.026/72=⨯=∆=ππλπϕ10、解:(1) 设x=0处质点振动方程为()()()()⎥⎦⎤⎢⎣⎡+-==〈-==+==+=22cos 0222202sin 2/02cos 2cos //////ππγπγπϕπϕπγϕπγπγϕπγϕπγt t A y x t t t A dt dy t A y t t t A y 处的振动方程为-==+所以+时,由图可知,(2) 该波的波动方程为cos A y =⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--22/ππγu x t t07波动光学1.C2.B3.D4.A5. 996oA 6.(4/1)ne λπ±7.解:(1)明纹位置 k D x kdλ=± (k=1,2,…) 34210x -=±⨯4510D x m dλ-∆==⨯ (2) sin d k δθλ==sin d k θλ=max 1666.7dk λ== 最大级数1666级(3) 1122s i n d k k δθλλ=== 2122165k k k λλ==处重叠 即16k =时开始重合366310D x m dλ-=±=±⨯ 8. 解:设第五个明纹处膜厚为e,该处至棱边的距离为l则有,1252ne e l λλθ+== 由上充入液体前θλ4/91=l 充入液体后θλn l 4/92=充入液体前后第五个明纹移动的距离1291(1) 1.64l l l mm nλθ∆=-=-= 9.(统招)解:(1)与牛顿环计算相似:明条纹:λλk e e ±=++220)((k=1,2,…)暗条纹:212220λλ)()(+±=++k e e(k=1,2,…)(2)若调节平凸透镜与平板玻璃靠近,则厚度向边缘走动,根据等厚条纹的定义,相应的条纹也要向边缘移动,即条纹扩展。
大学物理学习指导详细答案————————————————————————————————作者:————————————————————————————————日期:2第六章 相对论【例题精选】例6-1 当惯性系S 和S ′的坐标原点O 和O ′重合时,有一点光源从坐标原点发出一光脉冲,在S 系中经过一段时间t 后(在S ′系中经过时间t ′),此光脉冲的球面方程(用直角坐标系)分别为:S 系 ; S ′系 .22222t c z y x =++ 22222t c z y x '='+'+'例6-2 下列几种说法中正确的说法是: (1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.(A) 只有(1)、(2) 正确. (B) 只有(1)、(3) 正确. (C) 只有(2)、(3) 正确. (D) (1)、(2)、(3)都正确. [ D ] 例6-3 经典的力学相对性原理与狭义相对论的相对性原理有何不同?答:经典力学相对性原理是指对不同的惯性系,牛顿定律和其它力学定律的形式都是相同的.狭义相对论的相对性原理指出:在一切惯性系中,所有物理定律的形式都是相同的,即指出相对性原理不仅适用于力学现象,而且适用于一切物理现象。
也就是说,不仅对力学规律所有惯性系等价,而且对于一切物理规律,所有惯性系都是等价的. 例6-4 有一速度为u 的宇宙飞船沿x 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为 . c c 例6-5 关于同时性的以下结论中,正确的是(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.(B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.(C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生. [ C ] 例6-6静止的μ子的平均寿命约为 τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,试论证此μ子有无可能到达地面. 证明:考虑相对论效应,以地球为参照系,μ子的平均寿命:62106.31)/(1-⨯=-=c v ττ s则μ 子的平均飞行距离: =⋅=τv L 9.46 km .μ 子的飞行距离大于高度,有可能到达地面.例6-7 两惯性系中的观察者O 和O ′以0.6 c (c 为真空中光速)的相对速度互相接近.如果O 测得两者的初始距离是20 m ,则O 相对O ′运动的膨胀因子γ= ;O ′测得两者经过时间∆t ′= s 后相遇.1.25(或5/4) 8.89×10-8例6-8 两个惯性系S 和S ′,沿x (x ′)轴方向作匀速相对运动. 设在S ′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为τ0 ,而用固定在S 系的钟测出这两个事件的时间间隔为τ .又在S ′系x ′轴上放置一静止于该系、长度为l 0的细杆,从S 系测得此杆的长度为l, 则 (A) τ < τ0;l < l 0. (B) τ < τ0;l > l 0.(C) τ > τ0;l > l 0. (D) τ > τ0;l < l 0. [ D ]例6-9 α 粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的(A) 2倍. (B) 3倍. (C) 4倍. (D) 5倍. [ A ] 例6-10 匀质细棒静止时的质量为m 0,长度为l 0,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l ,那么,该棒的运动速度v = ;该棒所具有的动能E K = .c)(020lll c m - 例6-11 观察者甲以0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为l 、截面积为S ,质量为m 的棒,这根棒安放在运动方向上,则甲测得此棒的密度为 ;乙测得此棒的密度为 .lSm925 例6-12 根据相对论力学,动能为0.25 MeV 的电子,其运动速度约等于(A) 0.1c (B) 0.5 c (C) 0.75 c (D) 0.85 c (c 表示真空中的光速,电子的静能m 0c 2 = 0.51 MeV) [ C ] 例6-13 令电子的速率为v ,则电子的动能E K 对于比值v / c 的图线可用下列图中哪一个图表示? (c 表示真空中光速)OE K v /c1.0(A)OE K v /c 1.0(B)OE K v /c1.0(C)OE K v /c1.0(D)[ D ]【练习题】6-1 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . [ B ] 6-2 假定在实验室中测得静止在实验室中的μ+子(不稳定的粒子)的寿命为2.2×10-6 s ,当它相对于实验室运动时实验室中测得它的寿命为1.63×10-5s .则 μ+子相对于实验室的速度是真空中光速的多少倍?为什么? 答:设μ+子相对于实验室的速度为v μ+子的固有寿命τ0 =2.2×10-6 s μ+子相对实验室作匀速运动时的寿命τ0 =1.63×10-5 s按时间膨胀公式:20)/(1/c v -=ττ移项整理得: 202)/(τττ-=c v 20)/(1ττ-=c = 0.99c则 μ+子相对于实验室的速度是真空中光速的0.99倍.6-3 在S 系中的x 轴上相隔为∆x 处有两只同步的钟A 和B ,读数相同.在S '系的x '轴上也有一只同样的钟A ',设S '系相对于S 系的运动速度为v , 沿x 轴方向, 且当A '与A 相遇时,刚好两钟的读数均为零.那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是 ;此时在S '系中A '钟的读数是 .x /v 2)/(1)/(c x v v -∆6-4 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?为什么?答:没对准.根据相对论同时性,如题所述在K '系中同时发生,但不同地点(x '坐标不同)的两事件(即A '处的钟和B '处的钟有相同示数),在K 系中观测并不同时;因此,在K 系中某一时刻同时观测,这两个钟的示数必不相同. 6-5 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有惯性系K '以 0.8c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为 (A) 0.6a 2. (B) 0.8 a 2. (C) a 2. (D) a 2/0.6 . [ A ] 6-6 狭义相对论确认,时间和空间的测量值都是 ,它们与观察者的 密切相关.相对的 运动6-7 地球的半径约为R 0 = 6376 km ,它绕太阳的速率约为=v 30 km ·s -1,在太阳参考系中测量地球的半径在哪个方向上缩短得最多?缩短了多少? (假设地球相对于太阳系来说近似于惯性系) 答:在太阳参照系中测量地球的半径在它绕太阳公转的方向缩短得最多.20)/(1c R R v -=其缩短的尺寸为: ∆R = R 0- R ))/(11(20c R v --= 220/21c R v ≈∆R =3.2 cm6-8 有一直尺固定在K ′系中,它与Ox ′轴的夹角θ′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角(A) 大于45°. (B) 小于45°. (C) 等于45°.(D) K ′系沿Ox 正方向运动时大于45°,K ′系沿Ox 负方向运动时小于45°. [ A ]6-9 在狭义相对论中,下列说法中哪些是错误的? (A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的. (D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这只时钟比与他相对静止的相同的时钟走得慢些. [ C ] 6-10 观察者甲以 0.8c 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg 的物体,则甲测得此物体的总能量为 ;乙测得此物体的总能量为 .9×1016 J 1.5×1017 J 6-11 一个电子以0.99 c 的速率运动,电子的静止质量为9.11×10-31 kg ,则电子的总能量是 J ,电子的经典力学的动能与相对论动能之比是 .5.8×10-13 8.04×10-2 6-12 一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v - (C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ C ] 6-13 一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.观察者A 测得其密度是多少?为什么? 答:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为2201c x x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -==∵质量 2201cm m v -=故相应密度为 V m /=ρ2222011/cV c m v v --=)1(2200c V m v -=6-14 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍. [ B ]。
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a rωωsin cos += (SI)可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωsin d d -==v , t b ty ωωc o s d dy-==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t c o sa m x F A d d ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
大学物理学习指导习题详解目录第一章质点运动学 (1)第二章牛顿定律 (3)第三章动量守恒定律和能量守恒定律 (5)第四章刚体的转动 (8)第五章热力学基础 (11)第六章气体动理论 (13)第七章静电场 (15)第八章静电场中的导体和介质 (21)第九章稳恒磁场 (28)第十章磁场中的磁介质 (35)第十一章电磁感应 (36)第十二章机械振动 (43)第十三章机械波 (45)第十四章电磁场普遍规律 (49)第十五章波动光学 (51)第十六章相对论 (55)第十七章量子力学 (57)第一章 质点运动学1. 由dtdyv dt dx v y x ==,和速度的矢量合成可知,质点在(x,y )处的速度大小2/122⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=dt dy dt dx v 。
1.由相对运动的知识易知,风是从西北方向吹来。
2.根据两个三角形相似,则t v vt t v M M -=12h h ,解得211h h vh v M -=。
3.将加速度g 沿切向和法向分解,则.23,2a t ga g n =-= 由法向加速度的计算公式Rv 2n a =,所以R v 22g 3= ,曲率半径g R 3v 322=。
4.⎰⎰===ttct dt ct dt t v t S 03203)()(,根据法向加速度和切向加速度的计算公式,Rt c R v a ct dt dv n 422t ,2a ====。
5.(1)根据平均速度的计算公式,2,5.221m x m x ==./5.01212s m t t x x t x v -=--=∆∆=方向与x 轴相反。
(2)根据瞬时速度的计算公式,692t t dtdxv t -==,m/s 6-)2(=秒末v 方向与x 轴相反。
(3)由(2)可知,,692t t v t -=当t=1.5s 时,v=0,然后反向运动。
因此m x x x x s 25.2)2()5.1()1()5.1(=-+-=。
For personal use only in study and research; not for commercial use练习一1、D ,2、C ,3、C ,4、203Q a πε D, 5、()j y a qy 2/322042+πε, (j 为y 方向单位矢量), 2/a ± , 6、()30220824Rqdd R R qd εεπ≈-ππ,从O 点指向缺口中心点. 练习二1、A2、A3、12q q ε+ ,123201(q q )49q Rπε++ ,4. 22(r )L a ρπ- 5、 解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为?=q / L ,在x 处取一电荷元d q = ?d x = q d x / L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε 总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴正向,即杆的延长线方向.6 解: 如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰∴ RE E x 0π2ελ==,方向沿x 轴正向.练习三1、C2、D3、0,0Rrσε 4、-3? / (2?0) ,-? / (2?0), 3? / (2?0) 5、解: 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即得到 012E d ρε=(板外两侧)(2)过平板内一点作一正交柱形高斯面,底面为S .设该处场强为E ',如图所示. 按高斯定理有 022ερxSS E ='得到 x E 0ερ=' (-d/2≤x ≤d/2) 6 解:(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ='d3303r ερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='3ερ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E练习四1、C2、D3、C,4、-e q / (6??0R )5、解:01=E 1R r6、解:设x 轴沿细线方向,原点在球心处,在x 处取线元d x ,其上电荷为x q d d λ=', 该线元在带电球面的电场中所受电场力为: d F = q ?d x / (4??0 x 2)整个细线所受电场力为: ()l r r lq x x q F l r r +π=π=⎰+000204d 400ελελ方向沿x 正方向.电荷元在球面电荷电场中具有电势能: d W = (q ?d x ) / (4??0 x ) 整个线电荷在电场中具有电势能:练习五1、D2、A3、C 4.rεεσσ0,5 解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2; 金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε=金属片内部场强为 0'=E 则两极板间的电势差为d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.6 解:(l )根据有介质时的高斯定理:⎰∑=⋅iq s d D可得两圆柱间电位移的大小为)2/(r D πλ= 场强大小为 rDE r rεπελεε002==两圆柱间电势差⎰⎰=⋅=21210122R R rR R r dr r d E U επελ 1200ln 2221R R r dr r R R rεπελεπελ==⎰电容 12012ln 2R R LU Q C r επελλ==)/ln(2120R R Lr επε=.(2)电场能量 rR R L C Q W επελ012224)/ln(2==练习六1.20d 4a lI πμ , 平行z 轴负向 2.?R 2c 3.0(1)226I R μππ-+ 4.)313(R 2I B 0-=πμ 5.134200==a ev B πμT .242102.92-⨯===eva a T e P mπ 2m A ⋅6.)11(4120R R I -μ,垂直纸面向外 ,2/122210)11(4R R I +μ ,12arctg R R +π217、解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为 ∴520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 练习七1.)(120I I -μ,)(120I I +μ 2.320μI 3.2204RIh πμ 4.02Ir μπ 05、解:(1) 对r ~r +d r 段,电荷 d q = ? d r ,旋转形成圆电流.则它在O 点的磁感强度⎰⎰+π==ba arr B B d 4d 000λωμa ba +π=ln 40λωμ 方向垂直纸面向内.⎰⎰+==ba am m r r p p d 21d 2λω 6/])[(33a b a -+=λω 方向垂直纸面向内. 6、解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小, 由安培环路定律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通?1为 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 因而,穿过导体外画斜线部分平面的磁通?2为 穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40Iμ2ln 20π+Iμ练习八1、A 2. )/(cos 2eB m θv π, )/(sin eB m θv 3. )2(R l BI + 4. (1)40 2.510B nI T μ-==⨯ m A BH 2000==μ(2)m A I LNH 200==0 1.05r B H H T μμμ=== 5. 解:在直线电流2I 上任意取一个小电流元dl I 2,此电流元到长直线 的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度 xI B πμ210= 6. 解:(1) IS P m =B P M m⨯= 沿O O '方向,大小为(2)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l I AJ练习九1、D ,2、C ,3、0.40 V 、 0.5 m 2/s ,4、5×10-4 Wb5、解:在矩形回路中取一小面元ds ,面元处:2IB xμπ=一个矩形回路的磁通量为:由法拉第电磁感应定律,N 匝回路中的感应电动势为:6、解:abcd 回路中的磁通量 ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ由法拉第电磁感应定律 klvt tm-=-=d d Φε 其沿abcd 方向顺时针方向.练习十1、A2、?BnR 2 、0,3、t B R /d d 212π-, 4、28/104.0s m ⨯ 顺时针5、解: 在长直导线中取一小线元,小线元中的感应电动势为: 整个直导线中 dLd vI l dl vI L d d +-=-=⎰+ln 2200πμπμε 杆的右端电势低6、解: ∵ bc ab ac εεε+=∴ t BR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →ε的方向也可由楞次定律判定。