1.1从自然数到有理数(2)
- 格式:ppt
- 大小:582.00 KB
- 文档页数:16
完整版)最新版浙教版数学七年级上册各章节重难点第一章有理数1.1 从自然数到有理数正数是指大于零的数,负数是指小于零的数,而零既不是正数也不是负数。
正整数、零和负整数统称为整数,而负分数和正分数则统称为分数。
整数和分数合在一起就是有理数。
1.2 数轴数轴是指规定了原点、单位长度和正方向的直线。
任何一个有理数都可以用数轴上的点来表示。
如果两个数符号不同,其中一个数称为另一个数的相反数。
在数轴上,互为相反数(零除外)的两个点位于原点的两侧,并且到原点的距离相等。
1.3 绝对值绝对值是指一个数在数轴上对应的点到原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,而零的绝对值是它本身。
互为相反数的两个绝对值相等。
需要注意的是,任何数的绝对值都大于或等于零(非负数)。
1.4 有理数的大小比较一般地,我们可以得出以下结论:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
第二章有理数的运算2.1 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加等于零,一个数与零相加仍得这个数。
在有理数运算中,加法的交换律和结合律仍然成立。
2.2 有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。
2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
若两个有理数的乘积为1,就称这两个有理数互为倒数。
在有理数的乘法中,乘法交换律、分配律和结合律仍然成立。
2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数都等于零。
代数式的值有时需要用“整体”代入的技巧来求解,特别是当无法求出字母的值时。
1 从自然数到有理数一等奖创新教学设计教学设计模板二课题1.1从自然数到有理数(2)主备人教学目标1.会判断一个给定的数是正数还是负数,会应用正、负数表示生活中具有相反意义的量,会将有理数正确分类. 2.让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。
3.在合作讨论中,学会交流与合作,提高创新能力;通过分析问题,解决问题,使学生体验数的发展历程.教学重难点重点:会应用正负数表示生活中具有相反意义的量;有理数的分类。
难点:负数的理解。
教法和教具讨论法、探究法多媒体课件预设教学过程教学环节学生活动二次备课导入新课月球表面白天气温可高达123℃,夜晚可低至-233℃。
图中阿波罗11号的宇航员登上月球后不得不穿着既防寒又御热的太空服。
在图中你发现了你还不是很熟悉的数了吗?“零上”与“零下”的意义有什么关系?引导学生用小学的数学知识不够用了(具体在什么情形时不够用了),因此必须把数的内容推广。
引入课题“有理数”新课学习正数与负数的概念1.你能说出几对具有相反意义的量吗这样具有相反意义的量能用我们学过的自然数和分数表示出来吗?得到正数,负数的概念。
2.想一想:数的家族又增加了哪些新成员?规定:零既不是正数,也不是负数. 有理数的分类按定义分类:提示:非负整数包括正整数和零. 按正负性分类:例题讲解例1:下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?例2:请写出3个分别满足下列条件的数:是正数但不是整数的数:(2)是整数但不是正数的数:(3)是分数但不是正数的数:___ (4)既是整数又是负数的数:___四、谈谈你这节课的收获五、课堂练习见幻灯片学生观察分析讨论回答:“零上”与“零下”是相反意义的量. 学生讨论回答:零下2-零上10;降低5米升高8米;支出100元收入500元;向东8千米向西6千米;盈利20﹪—亏损20﹪. 幻灯片上做一做学生讨论回答:正整数;负整数;正分数.负分数做一做:见幻灯片学生回答并进行纠错作业布置板书设计从自然数到有理数一、正数与负数:二、有理数正整数、零、负整数统称为整数. 正分数、负分数统称为分数. 整数和分数统称为有理数.教学反思。
1.1从自然数到有理数(2)教案课题 1.1从自然数到有理数(2)单元第一单元学科数学上课学习目标1.利用并掌握有理数的概念,理解有理数的分类;2.掌握正负数表示相反意义的量.重点会用正、负数或零表示生活实际中的量.理解有理数的概念,会对有理数进行分类;难点建立正数、负数的概念.教学过程教学环节教师活动学生活动设计意图导入新课一、创设情景,引出课题1.自然数可以用来计数、测量、标号或排序;分数和小数在实际生活中的应用.2.小学学过的数不够用了,数的范围需要扩展.思考:418+160-586=578-586=?问题1:你能用小学学过的数表示计算结果吗?为什么?自然数→分数→?20℃和-15℃这两个量分别表示什么?请你说说生活中还有哪些具有相反意义的词语?在日常生活和生产实践中,我们经常会遇到具有相反意义的量,如:温度有“零上”和“零下”,思考自议正确理解正负数的意义和0的性质与作用;通过正负数的学习,树立对立统一的辩证思想;三、典例精讲例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,176+,0.33,0,35-,-9.课堂检测四、巩固训练1. 下列说法中,正确的是()A.正整数和负整数统称为整数B.有理数包括正有理数和负有理数C.整数和分数统称为有理数D.有理数包括整数、分数和零答案:C2.下列关于“0”的叙述,不正确的是()A.不是正数,也不是负数B.不是正整数,也不是负整数C.不是非正数,也不是非负数D.不是负数,是整数答案:C3.某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是_______克~390克.38012,0,180,9,1227,12,180,9,1,0.62-1,-3.01,-15,-43,-45%12,0,180-1,-15,-43,9,1227,-3.01,-45%,0.62227,12,0,180,9,1,0.6212,0,180,1227,12,0,180,9,1,0.62课堂小结。
1.1 从自然数到有理数(2)前事不忘,后事之师。
《战国策·赵策》圣哲学校蔡雨欣知识技能1.通过丰富实例,体会对自然数和分数作扩充是生活与生产实际的必然需要;2.建立正、负数的概念,体会其实际意义;3.理解有理数的概念,会对有理数进行分类;4.会用正、负数或零表示生活实际中的量。
数学思考能独立思考,体会分类、归纳的基本数学思想和严谨的数学思维方式。
问题解决1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
2.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
3.能针对他人所提的问题进行反思,初步形成评价与反思的意识。
情感态度1.课堂中充足的生活与生产实例,让学生体会到“数学源于生活,又应用于生活”,感受数学的实用性与广泛用途,增强他们对数学的好奇心和求知欲;2.正、负数的表示,让学生感受到数字的简约美;教学重难点教学重点有理数概念。
教学难点正、负数概念的建立过程。
教学方法教法讨论法、探究法。
学法教师适当引导,学生探索、交流、讨论。
(一)复习引入,温故知新复习小学学习过的数。
为建立负数的概念做铺垫。
师:大家想一想,在小学里,学习过哪些数?生:自然数、整数、分数、奇数、偶数、质数(素数)、合数。
(请同学一个一个回答)师:恩,大家学习了这么多数,那我们下面来看一个科普视频。
播放科普视频《探索月球》片段,请同学在观看的同时找一找视频中不熟悉的数字。
看看谁发现了陌生的朋友?于是发现了视频中前面带“减号”的数字,听到了“负223度”的表达。
设疑:为什么多了“减号”?导入新课《有理数》。
【《探索月球》的视频给学生扩充科普知识的同时,让学生带着问题去观赏与寻找,培养了学生有意识观察事物的能力,生动的影像更是增强了学生探究新知的兴趣,带动了课堂气氛。
】(二)交流讨论,探索新知师:视频中提到的“123度”和“-233度”分别表示什么?利用PPT呈现以下内容(1)今日最高气温5度,最低气温零下4度;(2)小王向行驶了3千米,向西行驶了2千米;(3)爸爸从8楼到地下1层的车库;(4)新疆乌鲁木齐市高于海平面918米,吐鲁番盆地最低点低于海平面 155米。
1.1从自然数到有理数(1)一、教学目标:1. 了解自然数和分数是由于人们生活和生产实践的需要而产生的。
2. 了解自然数和分数的应用。
3. 经历数在解决实际问题的过程中的应用,感受数还需作进一步拓展。
二、教学重点和难点:重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数进一步的扩展。
难点:本节“合作学习”第2(2)题学生不易理解三、教学过程1.奥运报道:2012年伦敦奥运会中国体育代表团共由621人组成,其中运动员396人,参加本届奥运会23个大项,212个分项的比赛。
在本届奥运会上,中国体育代表团共获得奖牌88枚,其中金牌38枚,银牌27枚,铜牌23枚。
你在这段报道中看到了哪些数?它们都属于哪一类数?2.请阅读下面一段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,于2008年5月1日全线通车。
这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第1座跨海大桥。
自然数有些是用来计数和测量的,而有些是用来标号或排序的。
做一做:下列语句中用到的数,哪些属于计数和测量?哪些表示标号或排序?(1)2002年全国共有高等学校2 003所;(2)小明哥哥乘1 425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高369米,地上70层,至1990年为止,是世界第5高楼。
3.在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?4.完成合作学习的第1个问题,并在小组内交流.①T32次火车发车时间是________;②小慧坐火车从温州到杭州需______时;③小慧在市内交通和检票进站最少需_________分钟;④你是怎样理解“最迟”的含义的?⑤小慧最迟在________时从温州出发才一定赶得上火车.用自然数列式:___________________;用分数列式:_______________________.5.你对合作学习第2个问题中第二问方案可行不可行怎么理解?①硬卧下车票___________元/张?②小慧打算买一张硬卧下车票后还剩_______元,她实际有_____元钱?③方案可不可行,怎样计算?四、课堂小結:1.回顾一下小学里我们学过哪些数?2.找一找我们身边有哪些数的应用?想一想这些数有什么作用?3.想一想为什么有了自然数后还要引入分数或小数?在解决实际问题时,自然数和分数够用了吗?五、拓展训练1.某航空公司把从城市A到城市B的机票因燃油涨价而上涨了15%,三个月后又因燃油价格的落而重新下调15%.问下调后的票价与上涨前比是贵了,还是便宜了?2.如图一个台阶要铺地毯,则至少要买地毯m.六、学后反思1.1从自然数到有理数(2)一、教学目标:1.进一步理解正数、负数的意义,了解从自然数到有理数的扩展过程。
1.1从自然数到有理数(1)教学目标:1、感受自然数和分数在实际生活中的作用。
2、了解分数(小数)的意义和形式。
3、利用自然数和分数的运算解决相关问题。
一、创设情境2004年8月13日到8月29日,第28届奥运会在雅典召开,我国体育代表团以32枚金牌,17枚银牌,14枚铜牌,获得奖牌榜的第二名,为国家争得了荣誉。
我国金牌数约占总金牌数的。
跨栏运动员刘翔在男子100米栏决赛中以12秒91的成绩获得冠军,并打破奥运会纪录,平了世界纪录,刘翔是我国运动员在世界大赛中短距离竞赛项目获得冠军的第一人。
你在这篇报道中看到了哪些数?并指出它们分别属于哪一类数?分别表示什么?二、新授1、自然数的作用(1)计数:一般地,用数数的方法得到的数据。
(2)排序:为了表示某一种顺序的数据。
如年份、月份、名次等。
(3)标号:人为的编号,像门牌号、学号、座位号、车牌号、邮政编码、城市的公共汽车路线等。
(4)测量:一般地,借助工具得到的数据。
做一做⑴2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大夏高368米,地上70层,至1993年为止,是世界第5高楼。
(4)刘翔在雅典奥运会中的号码1363。
2、分数与小数(1)能否把下列分数化成小数?(2)能否把下列小数化成分数?3.14= 0.1=(3)小结:所有的有限小数,无限循环小数都可以看成是分数.(4)判断:0.101 和0.101001000100001……都是分数,对吗?三、课堂小结1.自然数的作用:2.分数与小数:1.1从自然数到有理数(2)教学目标:1、理解有理数的概念,会判断一个数是正数还是负数。
2、会用正数和负数表示生活中具有相反意义的量。
3、掌握有理数的分类,体会数学分类讨论的思想。
一、创设情境你能用已学过的数表示某一天的最高气温是5摄氏度,最低气温是零下5摄氏度吗?二、合作探究(一)正数与负数的意义为了表示具有相反意义的量,我们把其中的一种意义的量规定为正,小学学过的数(零除外),如123,25,2.5等数叫做正数(positive number)。
《从自然数到有理数》作业设计方案(第一课时)一、作业目标通过本次作业,学生能够熟练掌握自然数与有理数的基本概念与运算,明确从自然数过渡到有理数的知识框架,提高数感及数的应用能力。
二、作业内容一、基本知识掌握(请同学们完成以下题目并写出详细步骤)1. 复习自然数的定义及性质,并举例说明自然数在日常生活中的应用。
2. 掌握有理数的定义及分类,包括正数、负数、整数和分数等。
3. 理解有理数的运算法则,如加法、减法、乘法、除法等。
二、运用拓展(请同学们解决以下实际问题)1. 利用所学知识解决实际生活中的数学问题,如物品的价格、天气温度等如何用有理数表示。
2. 通过绘制简单的数学模型,理解有理数在现实生活中的运用。
三、作业要求1. 每位同学需独立完成作业,并认真书写每一步解题过程。
2. 注重概念的理解与掌握,不能死记硬背。
3. 对于运用拓展部分,鼓励同学们积极思考,尝试多种解题方法。
4. 作业需在规定时间内完成,并按时提交。
四、作业评价1. 评价标准:基本知识掌握的准确性、解题过程的规范性、运用拓展的创造性。
2. 评价方式:教师批阅为主,同学互评为辅,重视学生的自评与反思。
3. 鼓励创新解题思路与方法,对优秀作业进行展示与表扬。
五、作业反馈1. 教师需对每位同学的作业进行认真批阅,及时反馈作业中存在的问题。
2. 对于普遍存在的问题,将在课堂上进行讲解与指导。
3. 鼓励同学们相互交流学习,共同进步。
4. 针对学生的个体差异,进行个性化的辅导与建议。
六、其他注意事项1. 作业的布置需适量,既要保证学生能够完成,又要达到巩固知识的目的。
2. 鼓励学生多思考、多提问,培养自主学习与探究的能力。
3. 家长需关注孩子的学习情况,积极配合教师的工作,共同促进孩子的成长。
作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生在《从自然数到有理数》这一课程中学习的数学知识,通过作业练习,加深对有理数概念的理解,掌握有理数的运算规则,并能够灵活运用所学知识解决实际问题。